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POPULÄRVETENSKAPLIG SAMMANFATTNING

Populärvetenskaplig sammanfattning

De allra flesta människor har vid något tillfälle tagit ett läkemedel. Till
exempel vaccineras nu för tiden alla svenska barn mot bland annat stel-
kramp. Vad nog de allra flesta däremot inte har gjort är att fundera
på vad ett läkemedel är. Kanske sträcker man sig till att ha kollat
upp ett läkemedel i FASS, och kanske får man då syn på en figur som
består av streck och bokstäver (se Figur 1), något som vagt känns igen
från gymnasiekemin. En sådan figur av streck och bokstäver är inget
annat än en modell av en molekyl, och alla läkemedel är molekyler.
Läkemedelsmolekylen kan vara stor och bestå av flera hundra, kanske
tusen atomer, men de allra flesta läkemedel är mycket mindre än så. De-
ras jobb är att finna sitt mål, vanligtvis någon slags receptor, i kroppen
och växelverka, det vill säga interagera, med receptorn. En mer generell
benämning på molekyler som binder till en receptor är ligander, därav
ligand i titeln på avhandlingen.

Figure 1: Ibuprofen. Den aktiva substansen i till exempel Ipren.
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POPULÄRVETENSKAPLIG SAMMANFATTNING

Människor i allmänhet går nog runt med föreställningen att kemis-
ter, som är de vetenskapsmän som i huvudsak sysslar med molekyler, är
kufar i vita labbrockar som blandar vätskor så det pyser och stänker1.
Denna föreställning är i många avseenden helt korrekt, men den kemin
som behandlas i denna avhandling är av ett helt annat slag. Precis som
FASS använder sig av modeller av streck och bokstäver för att beskriva de
aktiva substanserna, så handlar denna avhandling om kemiska modeller.
Något mer avancerade modeller än streck och bokstäver, men likväl mod-
eller. Dessa modeller används sedan av datorprogram för att simulera det
verkliga förloppet när en ligand växelverkar med sin receptor. Resultatet
av simuleringarna behandlas sedan av matematiska teorier för att få fram
mätvärden. I denna avhandling är vi mest intresserade av storheten bind-
ningsaffinitet. Denna storhet summerar hur starkt liganden binder till
receptorn, och kan grovt beskrivas som hur mycket liganden växelverkar
med receptorn jämfört med rent vatten. Om en ligand växelverkar mer
med receptorn än med vattnet är det bra, men allra mest intressant är
att jämföra två ligander. Vilken växelverkar mest med receptorn?

Så vad har dessa modeller att göra med läkemedel? Och varför har
jag inte blandat vätskor, utan i stället använt mej av modeller? För att
kunna svara på detta behövs lite förståelse för hur ett nytt läkemedel blir
till. Läkemedelsutvecklingen börjar med att man identifierar ett mål,
det vill säga receptorn, och därefter försöker utvecklarna hitta ligander
som har en stark affinitet för receptorn. Detta är den viktigaste egen-
skapen, men långt i från den enda, som ett bra läkemedel måste ha. I
traditionell läkemedelsutveckling behöver dessa molekyler tillverkas och
testas i ett labb. Läkemedelskemisterna testar vanligtvis tusentals av
olika molekyler, men bara en bråkdel av dessa binder starkt till receptorn.
Denna process är väldigt kostsam för att inte tala om tidskrävande — det
tar vanligtvis mellan 10 och 20 år att utveckla ett nytt läkemedel. En del
av kostnaden och tidsåtgången kan reduceras genom att modellera hela
förloppet i en dator. På så sätt behöver inte en massa molekyler tillverkas.
Om modellerna som vi använder oss av är tillräckligt noggranna kan de
ersätta en del av den traditionella läkemedelsutvecklingen och på så sätt
förkorta utvecklingstiden.

Det existerar en hel flora av olika metoder och modeller som kan
beräkna affiniteten mellan en ligand och dess receptor. Denna avhandling
behandlar noggrannheten och effektiviteten hos flera av dessa metoder,
det vill säga hur väl de reproducerar verkligheten och hur fort det går
att få fram ett resultat. Så hur långt har vi kommit? Kan läkemedels-

1
Gör bara en Google-bildsökning på ordet ”chemist”
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bolagen ersätta vätskor med datormodeller? Svaret är tyvärr nej. Flera
av modellerna kan användas i ett första steg när det gäller att sortera
bort flera hundra av dåliga molekyler till ett fåtal lovande. Därefter kan
modellerna användas för att få en uppfattning om affiniteten. Tyvärr
så dras alla metoderna med flera olika brister som gör att de inte kan
användas universellt för alla typer av frågeställningar. Till exempel finns
det ingen metod idag som kan ge en väldigt noggrann siffra för en enskild
ligand inom en rimlig tid. Däremot finns det metoder som kan ge svar
på skillnaden i affinitet mellan två ligander, det vill säga en metod som
kan säga vilken utav två ligander som binder bäst. I många avseenden
är det den viktigaste informationen. Forskningen som presenteras i den
här avhandlingen kan används som en guide till vilka metoder som skall
undvikas och vilka metoder som för närvarande är bäst.
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PREFACE

Preface

So here we are. Approximately four years since I first sat on a train
headed for Lund and an interview for a PhD position, and approximately
three and a half years since I worked my first day at the department. A
lot has happened in those years, and this thesis is sort of a summary of
those things. For instance, over twenty papers have been written, and
fifteen of them are presented in this thesis.

While I have been working on those research projects, people all
around the world have become ill and people have died from numer-
ous diseases. For instance, more than 6 000 HIV infections occurs every
day all around the globe, over 30 million people are living with HIV, and
14 million children in sub-Sarahan Africa has lost at least one of their
parents to the disease [1]. According to latest statistics from WHO in
2008 [2], almost 16 million died from communicable, maternal, perinatal
and nutritional conditions, and 36 million from non-communicable dis-
eases. The largest individual group was cardiovascular diseases with over
17 million deaths. All of these diseases are treated with drugs. According
to WHO, pharmaceuticals account for between 15 and 30% of the health
spending in transitional economies, and between 25 to 66% in developing
countries. WHO has compiled a list of essential drugs, which should be
available to every citizen of a country. In 2015, an estimated 10 million
deaths a year could be saved by increasing the health intervention, many
of which depend on essential drugs [3]. Naturally the pharmaceutical in-
dustry is huge, with an estimated value of US$300 billions. The annual
sales are about US$10 billions. However, one third of the sales revenue is
spent on marketing, and only about half of that is spent on research and

xi



PREFACE

development.
Drugs are nothing more than molecules. Some of them are very large

and contain thousands of atoms, but the majority of them is much smaller
and usually contains less than one hundred atoms. Their role is to find
the intended receptor in the human body and bind to it. This thesis is
about drugs, or more generally ligands, and their receptors. It takes about
10 to 20 years to develop a new drug and costs an enormous amount of
money. The hope is that computational methods, such as those presented
in this thesis, could replace some of the laboratory work. As such, money
and time would be saved. This would also be the ultimate goal of green
chemistry because less chemicals need to be manufactured.

The theoretical foundation of the methods used during my studies
was developed several decades ago. First by John Kirkwood in 1935 [4]
and later by Robert Zwanzig in 1954 [5], who developed techniques to
calculate free energy differences. However, these theories had to wait
for the computer to be useful for anything else but really simple model
systems. In 1977, McCammon, Gelin, and Karplus performed the first
atomistic molecular dynamics simulation of a protein [6], just a few years
after the first empirical force fields for such system were published [7]. In
1984, Tembe and McCammon presented a simple thermodynamic cycle
for the calculation of relative binding affinities [8], and in 1986, Wong
and McCammon used it to, for the first time, estimate the relative bind-
ing affinities for a protein–ligand system [9]. Before that, several groups
had used similar techniques to study host–guest systems and to calculate
solvation free energies [10]. However, the sampling was too short and
the model potentials too inaccurate, for any of these results to be reli-
able. In the 90’s, several advances was made, such as better theories for
the calculation of affinities and more accurate potentials, although the
computer power at that time did not allow for much sampling. In 2000,
Kollman and co-workes declared that a new era of computational chem-
istry had begun [11]: the era of structure and free energy calculations.
That is, due to advances in accurate potential, there was hope that ac-
curate free energies could be calculated on a routine basis. In this thesis,
the most popular methods to compute ligand-binding free energies have
been used. Therefore, after you have read this, you will see how this era
is performing.

The outline of this thesis follows closely the structure of a recent
review by Christ, Mark, and van Gunsteren [12]. This is an excellent
review from a pedagogical perspective, and therefore I have chosen to
follow their outline. In the first chapter, I will introduce the topic at

xii



PREFACE

hand, together with short detours into statistics and evaluation methods.
In the three chapters after that, I will describe the three main ingredients
of any free energy method, viz., molecular modelling, sampling, and free
energy estimation. Then, I will present the research part of the thesis,
divided into approximate and rigorous methods. However, my papers
will be referenced throughout the thesis in the form of short information
boxes. Finally, I will try to summarize my thoughts on where we are now
and where we go from here.

I have enjoyed these years and I hope you will appreciate this thesis.
Bring out the equations!

On a train between Lund and Skövde,
September 2011
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1 INTRODUCTION

1 Introduction

In this text, I will treat a chemical process that can be described by the
following reaction

P + L

*) PL (1.1)

where P, L, and PL are the free protein, the free ligand, and the protein–
ligand complex, respectively. I will discuss protein–ligand complexes
throughout the thesis because these are the complexes I have mainly
studied, but Eqn 1.1 can describe the binding of any two molecules. I
have for instance studied also host–guest complexes. The reaction in Eqn
1.1 is governed by the association constant, Ka, or conversely, the dis-
sociation constant Kd = 1/Ka, given by the concentration of the three
species at equilibrium

Ka =

1

Kd
=

[PL]

[P][L]

(1.2)

The binding free energy, �G, of the reaction is related to Ka through

�G = �RT lnKaC
ref (1.3)

where R is the gas constant, T is the absolute temperature in Kelvin,
and Cref is the standard concentration. In this thesis, I will use �G as
a general notation for free energy, irrespectively if it is a Helmholtz free
energy (as in Eqn 1.3) or a Gibbs free energy. The pressure–volume term
that should be added to Eqn 1.3 for a correct definition of a Gibbs free
energy is negligible under the conditions assumed in this thesis, i.e., a
condensed system at room temperature and atmospheric pressure [13].

1



1.1 Thermodynamic basis of ligand-binding 1 INTRODUCTION

1.1 Thermodynamic basis of ligand-binding

There are several ways to derive a useful expression of Ka and the tra-
ditional one use chemical potentials as the base for the derivation [13].
However, I find it more useful to take an approach first shown by Bjer-
rum [14] and presented in modern form by Sharp and co-workers [15],
and Roux and co-workers [16].

Consider the probability, p1, that one of the L molecules is bound
to one of the P molecules. Conversely, it is possible to define p0 as the
probability that this L molecule is in the bulk, i.e., is unbound. By
normalization it follows that p1 + p0 = 1. Therefore, [PL] = p1[P]tot
and [P] = p0[P]tot, where [P]tot is the total protein concentration in the
system. Hence,

Ka =

p1[P]tot
p0[P]tot[L]

=

p1
p0[L]

(1.4)

These probabilities can be calculated by taking the configurational aver-
age of an operator H that is 1 when L is bound, and 0 otherwise. This
operator will define two parts of the configurational space of L, site and
bulk, which are the parts of space where L can be considered to be bound
and unbound, respectively. Therefore, p1 and p0, can be written as

p1 =

R
site dq

R
dSe��U

R
dq

R
dSe��U

(1.5)

and

p0 =

R
bulk dq

R
dSe��U

R
dq

R
dSe��U

(1.6)

where dq and dS are the coordinates of one ligand and the surroundings
(protein and solvent), respectively, 1/� ⌘ RT , and U is the total potential
energy of the system. Now, we can express Ka as

Ka =

1

[L]

N
R
site dq

R
dSe��U

R
bulk dq

R
dSe��U

(1.7)

where I have summed up the N ligands because they are indistinguish-
able. The derivation can be taken one step further by assuming that the
bulk region is isostropic and homogenous. This implies that we can fix
the ligand at an arbitrary point in the bulk, r⇤. Hence, we can write

Ka =

1

[L]

N
R
site dq

R
dSe��U

V
R
bulk dq�(r1 � r⇤)

R
dSe��U

= (1.8)

2



1 INTRODUCTION 1.2 Methods not based on sampling

R
site dq

R
dSe��U

R
bulk dq�(r1 � r⇤)

R
dSe��U

where � is the Dirac delta function and V the volume of the bulk. The
last equality follows from that [L] = N/V . This equation implies that
Ka, and hence the binding free energy, can be calculated as the ratio of
the likelihood that the ligand is bound to the protein to the likelihood
that the ligand is out in the bulk. The equation also tells us what we need
to do in order to compute the free energy. In fact, three main ingredients
can be distinguished [12]:

1. We need to evaluate U , the total potential of the system. Therefore,
we need a mathematical model of the system of interest. This will
be discussed in Chapter II.

2. We need to evaluate the configurational integrals, i.e., we need to
sample configurations of the system. How to sample the modelled
system will be discussed in Chapter III.

3. Finally, we need a way to evaluate the free energy. Unfortunately,
we cannot evaluate Eqn 1.8 in practice, because we cannot fully
model a bulk system and we cannot sample all possible configura-
tions. Therefore, we need to manipulate the equation such that it
can be computed. How to do this will be discussed in Chapter IV.

1.2 Methods not based on sampling

Most of the methods to calculate binding affinities used in this thesis,
are based on the treatment in the previous section, i.e., they require
averaging over many configurations to estimate the affinity. However,
this is a very time-consuming and is not feasible in for instance virtual
screening where thousands of molecules should be tested in a short time.
Therefore, simpler alternatives have been developed that are intended
to give a semi-qualitative estimate of the binding affinity [17, 18]. Such
methods are usually called scoring functions and can generally be divided
into a few classes [18]

1. Energy-based methods

2. Empirical methods

3. Knowledge-based method

4. Consensus methods

3



1.3 A primer on statistics 1 INTRODUCTION

The first class of scoring function tries to use a model, like those de-
scribed in Chapter II, to describe the overall interaction energy between
the ligand and the receptor. Additional terms to account for solvation
and entropy have been incorporated. Examples of such scoring functions
are DOCK [19] and Gold [20] that are based on a classical description of
the energies, and the work of Merz and co-workers [21] and Hobza and
co-workers [22] that are based on a semiempirical description. The second
class of methods considers several terms that are thought to contribute
to binding, e.g. hydrogen bonding, solvation, and loss of conformational
freedom. Each of the terms are scaled by parameters that are optimized
by comparing the scoring function with experimentally determined affini-
ties. Examples of such scoring functions are FlexX [23] and Glide [24].
The third class of functions is based on a statistical pair-potential. This
pair-potential is calculated from frequencies of atom contacts in exper-
imental crystal structures and as such is a simplified potential of mean
force. Examples of such scoring functions are DrugScore [25] and BLEEP
[26]. Finally, consensus methods combine several scoring functions.

The scoring functions have been used with moderate success in virtual
screening, i.e., they are fairly good at discriminating between ligands
that are very poor binders and ligands that potentially could be good
binders. However, scoring functions suffers from a generality problem. A
scoring function that performs well on one system, could fail completely
on another system [17].

In paper XI, a docking program, Glide, was used to predict binding modes
of 34 ligands to the protein trypsin, prior to simulations and calculation
of binding affinities. This gave us an opportunity to compare the results
of the Glide scoring function with simulation-based estimates. In fact,
Glide was better than the simulation-based method to discriminate be-
tween binders and non-binders. Glide was also slightly better to rank the
binders, although the ranking performance of all methods was poor. We,
also estimated the binding affinity of host–guest complexes and for these
systems, Glide was significantly worse than most of the simulation-based
methods. #

1.3 A primer on statistics

An issue, often overlooked in the ligand-binding community, is a statis-
tical evaluation of the methods developed, tested, and applied to various
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receptor–ligand systems. We have tried to be as thorough as possible in
the papers to take care of this issue, and therefore, I here introduce some
statistical concepts that are used throughout this thesis and especially in
the papers.

The results of the simulations, are samples, x1, x2, . . . , xN , from an
unknown distribution that measure the true value y. A common statistic
of such samples is the average, hxi, which is an estimate of y. To describe
the reliability of the samples to measure y, it is instructive to introduce
the mean squared error (MSE) [27]

MSE =

1

N

X
(xi � y)2 (1.9)

The MSE can easily be divided into two parts, one part that depends
only on the samples x and one part that depends on y and x.

MSE = �2
(x) + �2(x, y) (1.10)

The first term on the right-hand-side is the variance (the square-root
of the variance is the standard deviation), and the second term is the
squared bias. These terms are defined as

�2
=

1

N

X
(xi � hxi)2 (1.11)

� = hxi � y (1.12)

The bias is a systematic error and stems mainly from the model of the
system and is hard to improve by increased sampling. The variance on
the other hand, is a statistical error and can in most cases be improved
by increased sampling. I will generally talk about accuracy and precision,
when discussing the systematic and the statistical error, respectively.

The accuracy is normally discussed in the literature, in relation with
the evaluation methods described in the next section. However, the pre-
cision is rarely discussed, and in many cases it is not even reported. This
is unfortunate, because the reliability of a method cannot be assessed
without considering both accuracy and precision. For a simulation-based
estimate, it is trivial to compute an uncertainty, but it is less so for
scoring functions. However, approaches to estimate uncertainty of such
functions have been proposed [28, 29]. The uncertainty is essential when
comparing different methods. To see why, I will introduce the concept of
confidence intervals.

A confidence interval is an interval in which a sample falls with a
specific probability [30]. If I take a 95% confidence interval as example,
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and repeat the sampling, then 95% of my samples will fall within this
interval. Usually, we assume a Gaussian (normal) distribution for the
estimate and then a confidence interval can be computed according to

hxi±
z↵/2�p

N
(1.13)

where z↵/2 is a value taken from the cumulative Gaussian distribution
function at the value ↵/2. For a Gaussian distribution and a 95% confi-
dence interval, this value is approximately 1.96.

Anything within the confidence interval is indistinguishable from a
statistical point of view. Take two affinity estimates of 2 and 4 kJ/mol,
respectively, as an example. The experimental affinity is 2 kJ/mol, and
hence, the first estimate is intuitively much better than the second one
because it is closer to the experimental value. However, if both measure-
ments have an uncertainty, i.e., a standard error (�/

p
N), of 2 kJ/mol,

then neither of the differences between the estimates and the experiment
is statistical significant because they fall within the confidence interval.

1.4 Evaluating methods and models

To evaluate the success a method, a reference must be established first.
For the estimation of affinities, the naturally choice is an experimentally
determined affinity. However, for other quantities there might not be an
experiment that can give a reference. For instance, in paper V and VI,
we wanted to compare several approximate methods to compute the non-
polar solvation free energy. In those papers, a theoretically more rigorous
method was used as a reference.

Once the reference has been established, there exist several methods
to evaluate the success. For a single affinity, it is simple to report the
precision and the bias of the estimate. However, this is not as easily
done for a series of compounds. Different metrics exists, and these can
be divided into a few classes. For evaluation of absolute estimates, the
mean absolute deviation (MAD) is a good metric

MAD =

1

N

X
| xi � yi | (1.14)

where xi is the theoretical estimate, and yi the corresponding experimen-
tal value. An underlining assumption in this metric is that the estimates
follow a regression line with a slope of one and intercept at the origin.
However, if there is a systematic error in all the estimates, this will not be
the case. A way to circumvent this is to compute the MAD after removal
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of the mean signed deviation (i.e., Eqn 1.14, without taking the absolute
value). This metric is called translated MAD or MADtr for short.

MADtr =

1

N

X
| xi � yi � 1/N

X
(xi � yi) | (1.15)

The underlining assumption is still that the estimates follow a regression
curve with slope of one, but the intercept can be different from the origin.
Another popular metric is the coefficient of determination (or correlation
coefficient), r2, which measures the degree of linear correlation between
two quantities.

r =

P
(xi � hxi)(yi � hyi)pP

(xi � hxi)2 ⇥
P

(yi � hyi)2
(1.16)

A drawback of this metric is that it is sensitive to outliers in the data.
Instead of using the exact floating-point numbers in the evaluation, it is
possible to just look at the ranking among the estimates. The predictive
index, PI [31] is such a method, and has been used in many of the papers.
It is defined as follow

PI =

P
i

P
j<iwijCijP

i

P
j<iwij

(1.17)

with
wij =| yi � yj | (1.18)

and

Cij =

8
><

>:

�1, if (yj � yi)/(xj � xi) > 0

1, if (yj � yi)/(xj � xi) < 0

0, if xj � xi = 0

(1.19)

The drawback of this metric is the same as for r2, PI can become favourable
high if there exists outliers in the data. An alternative is Kendall’s ⌧ rank
correlation coefficient [30]

⌧ =

Na �Nd
1
2N(N � 1)

(1.20)

where Na is the number of pairs where the ranking of the experimental
data and predicted data is in agreement, and Nd is the number of pairs
where the ranking is in disagreement. If two pairs have a zero difference
or if the difference is not statistical significant, ⌧ can be adjusted by
removing such pairs from the calculation.
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In paper XI, the range of experimental affinities was very narrow, only
9 kJ/mol. Therefore, only 29 of the 136 possible pairs of ligands had
an affinity difference that was significant at the 95% confidence level.
Because it is strictly not possible to determine if the ranking is in agree-
ment between experiments and predictions for such pairs, these pairs were
excluded from the calculation of ⌧ . We also removed pairs where the pre-
dicted difference was not statistical significant. Finally, only between 8
and 29 pairs were included in the calculation of ⌧ . #

The metrics presented above use the estimates, but not the uncertainty
of the estimates. Because, the estimates have uncertainties, the metrics
also have uncertainties. For some of them, it can be derived analytically,
but for a ranked based metric as PI it is much more trickier to find an
analytical solution. The approach that has been used throughout this
thesis to estimate the uncertainty of the metrics is based on a statistical
sampling technique called bootstrapping [32]. The method works by it-
eratively re-calculating the value of the metric. In each iteration, a new
set of estimates are calculated by drawing random numbers from a Gaus-
sian distribution, centred on the original estimations, and with a width
equal to the uncertainty of the estimates. The metric is calculated again
with this new set of randomly drawn estimates, and the procedure is re-
peated in a number of iterations. Typically 1000 iterations are sufficient
to reach convergence, and the standard deviation of the re-calculated
metric is taken as the uncertainty.
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2 MOLECULAR MODELLING

2 Molecular modelling

A physically sound model of the system of interest is imperative for a
successful estimation of the free energy. Basically, three levels of particle-
based models can be identified at an increasing degree of coarse graining.
The best theory to model molecules is quantum mechanics (QM) that
treats both electrons and nuclei. At the next level, molecular mechanics
(MM), the electrons are ignored and only the nuclei are treated. Another
level can be created by combining several atoms into a single particle,
although such methods have never been used to estimate accurate binding
affinities. Therefore, only QM and MM are presented in this chapter.

If it is desirable to treat the system at an atomistic level and this will
create a too large system, an alternative is to treat part of the system
at an atomistic level whereas the rest of the system, e.g., the solvent
molecules, can be treated implicitly. Such approaches are also discussed
in this chapter.

2.1 Quantum mechanics

A quantum mechanical treatment is the most accurate approach to de-
scribe molecules. The atoms are described by a wave function,  , which
is a function of all the electronic, ri, and nuclear, Ri, positions. The
wave function can be calculated from the time-independent Schrödinger
equation

ˆH = E (2.1)
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2.1 Quantum mechanics 2 MOLECULAR MODELLING

where ˆH is the Hamiltonian operator and E is the total energy of the
system. The Hamiltonian is given by [33] (in atomic units)

ˆH = �1

2

X
r2

i �
1

2

X
1

M A
r2

A �
XX ZA

| ri �RA | + (2.2)

X

i

X

j>i

1

| ri � rj |
+

X

A

X

B>A

ZAZB

| RA �RB |

where indices i and j are over electrons, indices A and B are over nuclei,
and M and Z are the masses and charges of the nuclei. The terms
on the right-hand-side are the kinetic energy of the electrons, the kinetic
energy of the nuclei, the electron–nucleus attraction, the electron–electron
repulsion, and the nucleus–nucleus repulsion.

Although the Schrödinger equation can describe any non-relativistic
system, it cannot be solved for anything but very small systems. There-
fore, approximations are necessary and the most basic is the Born–Oppen-
heimer approximation. It implies that the electrons are moving around
fixed nuclei. Because the nuclei are much heavier than the electrons,
the electrons can instantaneously adopt to the nuclear coordinates [33].
Applying this approximation, Eqn 2.2 simplifies to

ˆH = �1

2

X
r2

i �
XX ZA

| ri �RA |+
X

i

X

j>i

1

| ri � rj |
+U(RB) (2.3)

where U(RB) is the potential energy of the nuclei.

2.1.1 The Hartee–Fock method

The most basic method to solve Eqn 2.1 with the Hamiltonian in Eqn 2.3
is the Hartee–Fock (HF) method [34]. It is a rather crude method, but
is useful in some application, e.g., to calculate charges for ground-state
molecules. The HF method treats the interactions between the electrons
in an average way and thereby simplifies the many-body problem in Eqn
2.3 to a one-electron problem.

The total wave function must satisfy the Pauli principle that states
that no electrons can have the same set of quantum numbers. The way
to obey this requirement is to write the total wave function as a Slater
determinant

 =| �1�2 . . .�N i (2.4)

where �i is a one-electron orbital, describing the motion of a single elec-
tron. The energy of each orbital, ✏i is then solved by introducing the
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Fock operator, ˆfi. We can then write

ˆfi�i = ✏i�i (2.5)

with
ˆfi = �1

2

r2
i �

X ZA

| ri �RA | + vHF
i (2.6)

where vHF is the average potential of all the other electrons. The total
energy of the system is then obtained by summing over all orbitals.

The one-electron orbitals are described by an expansion of a known
set of functions. Such a set of functions is called a basis function [34].
A complete basis set is one with an infinite expansion, something that
cannot be done practically. Therefore, all basis sets are approximations.
The most common basis sets used in QM calculations of molecules consist
of atomic functions that are combinations of several Gaussian functions.
A minimal basis set is a set that only contains the number of functions
required to describe all the filled orbitals in each atom. This is a rather
crude approximation, and therefore, it is more common to add two or
more functions to describe each orbital. Other functions can be added to
improve the molecular picture of the orbitals, viz., polarisation function,
or functions that better can describe electrons far out from the nucleus,
viz., diffuse functions.

In almost all papers in this thesis, the HF method has been used for
computing the electrostatic potential (ESP) around the ligands. The
ESP is then used to derive partial charges for the ligands. This is the
standard approach to derive charges in the Amber force field (see below).
#

2.1.2 Semiempirical QM

Solving the HF equations becomes impractical when there are more than
a few hundred atoms in the system. Therefore, it is not practical to
calculate QM energies of for instance a full protein. An alternative is
then to use a semiempirical QM (SQM) method, which makes several
approximations to the HF equations [34].

First, only valence electrons are treated and the core electrons are
merged into the nuclei. This assumes that only valence electrons are
involved in the chemistry of interest, e.g., bond breaking and bond form-
ing. Second, semi-empirical QM methods uses a minimal basis set that
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is based upon Slater-type functions. This makes the calculations faster.
Third, some of the interactions between electrons are simply ignored or
replaced by empirical parameters.

There exist a lot of different SQM methods that differ mainly in which
interactions are simplified. In this thesis we have used three different
SQM methods, viz., AM1 [35], RM1 [36], and PM6 [37]. All of these
methods are different parametrizations of a more primitive model called
modified neglect of diatomic overlap (MNDO). In this model, any over-
lap between orbitals on three or four atoms are ignored. Furthermore,
the overlap between orbitals on two atoms, i.e., the diatomic overlap, is
treated differently whether the two atoms are the same or not. The inter-
action between the electron in the first atom and the core of the second
atom are treated with an empirical potential, and the core interaction
between two different atoms depend on an empirical overlap function. In
addition, some polar bonds are treated with special potentials. The AM1
model mainly tries to improve the description of these core–core terms
[34], and RM1 and PM6 are more modern parametrisations of AM1.

To improve the efficiency for large systems such as proteins, there
have been several implementations of SQM methods that scales linearly
with the number of particles in the system [38, 39].

In paper III, we evaluated AM1, RM1, and PM6 to see if they could be
useful in the estimation of binding affinities. All of the Hamiltonians gave
similar results, but AM1 was best on average. It was also clear that all
of the Hamiltonians required additional, empirical terms to account for
hydrogen-bonding and dispersion interactions. #

2.2 Molecular mechanics

As explained earlier, the Born–Oppenheimer approximation allow us to
separate the nuclear motion from the electronic motion and furthermore,
in condensed system at room temperature, the QM effects can mostly be
ignored if we are only interested in a single Born–Oppenheimer surface.
Therefore, the atoms of the system can be described with Newtonian
mechanics.

The potential of the system is described by a force field that consists
of a combination of a functional form of the potential and parameters.
Most force fields for biomolecules ignore many-body effects and approxi-
mates the potential as a pair-potential, although many-body effects, e.g.,
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polarisation has been included [40, 41]. The most common force fields
for biomolecular simulations are four families of force fields, Amber [42],
CHARMM [43], OPLS [44], and Gromos [45]. These force fields differ
chiefly in their parameters, although they are based on different philoso-
phies.

The force fields differ also in which atoms they treat. The modern
versions of Amber, CHARMM, and OPLS treat all atoms, whereas the
non-polar hydrogen atoms in Gromos are merged into the carbon atoms
[45]. Such united-atom force fields were common in the 80’s and early 90’s
because they require less computing [40, 46], but were largely abandoned
when computer efficiency increased. Nowadays they are mainly used to
study process at long time scales, e.g., protein folding [40].

The potential of the Amber force field will serve as an example

UAMBER =

X

bonds

kl(l � l0)
2
+

X

angles

k✓(✓ � ✓0)
2
+

X

torsions

k!(1 + cos(n! � �)) (2.7)

+

X

i

X

j<i

✏

"✓
r0ij
rij

◆12

� 2

✓
r0ij
rij

◆6
#
+

X

i

X

j<i

qiqj
4⇡✏0✏intrij

where three first terms are bonded terms and describe bond stretching,
angle bending, and torsion rotation, and the two last terms are non-
bonded terms and describe repulsion, dispersion, and electrostatics. All
these terms will be described more thoroughly below. Amber will mainly
be contrasted with Gromos, because these are the two force fields used
in this thesis.

Paper XIV contains a comparison between affinities computed with the
Amber and the Gromos force fields, using similar methodologies. The
results of the two force fields were highly correlated. In fact, they were
more correlated with each other than either of them with experiments.
#

2.2.1 Bonded terms

As described above, the bonded terms consist of bond stretching, angle
bending, and torsion rotation (rotation about a bond). The bond term
is a sum of simple harmonic terms, where kl is the force constant, l is
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the actual value and l0 is the ideal value. Gromos uses an anharmonic
function instead [45]. The angle term is also harmonic, where k✓, ✓, and
✓0 is the force constant, the actual angle, and the ideal angle, respectively.
Contrary to the other force fields, Gromos writes the angle term with the
cosine of ✓ and ✓0 [45]. The torsion term is written as a cosine series,
where k! is the force constant, n is the periodicity, and � the phase shift.
It is possible that several torsion terms are used to describe the rotation
about a bond. (In for instance, OPLS this is written explicitly in the
functional form of the force field [44].)

CHARMM introduces a Urey–Bradley term that couples bond and
angles motions and a potential that improves the description of the tor-
sions of the protein backbone [43, 47]. Both CHARMM and Gromos
introduces an additional, harmonic term for so-called improper torsions
that is necessary for the geometry of planar and chiral groups [43, 45], in
contrast to Amber and OPLS that treats those as regular torsions.

2.2.2 Non-bonded terms

The non-bonded terms consist of a Lennard-Jones potential that de-
scribes the exchange-repulsion and dispersion (collectively called van der
Waals interactions), and a Coulomb term that describes the electrostatics.
These potentials are calculated between all pairs of atoms in the system,
with a few exceptions. First, pairs of atoms bonded to each other and
pairs of atoms separated by another atom are excluded because these
interactions are described by bond and angle terms. Secondly, pairs of
atoms separated by three bonds (so-called 1-4 interactions) are scaled
down because these interactions are partly described by the torsion term.
All force fields employ different scaling. For instance, Amber scales all
1-4 interactions in the Lennard-Jones potential with 2.0 and all such in-
teractions in the Coulomb potential with 1.2 [46], whereas Gromos do not
scale the Coulomb potential at all and has several rules for scaling the
Lennard-Jones potential [45]. Third, pairs of atoms that are separated by
more than a certain cut-off distance are excluded and replaced by some
other treatment.

The Lennard-Jones potential can be written in slightly different forms
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depending on which parameters exists in the force field [34].

ULJ =

X
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rij
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(2.8)
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where ✏ij is the negative minimum of the potential, r0ij is the separation
at the minimum, �ij the separation where the potential is zero, Aij =

4✏ij�
12
ij , Bij = 4✏ij�

6
ij , and rij the actual separation between the two

atoms. The parameters (✏ij , r0ij , �ij , Aij , and Bij) are calculated by
combining atomic parameters (✏ii, r0ii, �ii, Aii, and Bii) in a specific
way. Amber uses arithmetic and geometric average for the r0ij and ✏ii
parameters, respectively, viz., r0ij = 1/2(r0ii+r0jj) and ✏ij =

p
✏ii✏jj [42].

Gromos, on the other hand, store Aii and Bii parameters, and combine
them both using geometric averaging [45].

The r�6 term describes the dispersion in a system and can in principle
be derived from theory [48]. The r�12 term that describes repulsion
was chosen for computational convenience [34]. Physically, the repulsion
is better described by an exponential term, but this cost too much in
biomolecular simulations. The van der Waals interactions beyond the
cut-off distance can be treated with a continuum approach [49].

The parameters in the Coulomb potential, is simply partial charges
of the two atoms, qi and qj . ✏0 is the relative permittivity, and ✏int
is the dielectric constant of the media, which is usually set to unity in
simulations. To primitively model solvent effects it can be made distance-
dependent [34]. The electrostatic interactions are very important for
correct energies and therefore they must be treated rather accurately also
beyond the cut-off distance. In a periodic simulation, the electrostatics
are most commonly replaced by a Ewald summation technique that treats
the long-range interaction in reciprocal space using fast Fourier transform
[34, 50]. However, periodic simulations with the Gromos force field are
normally employed with a reaction field [45]. In non-period simulation,
a reaction field is the most common approach. In this thesis we have
used an approximation called local reaction field (LRF) [51], to calculate
long-range electrostatics.
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Figure 2.1: Lennard-Jones potential. Both the normal and soft-core
versions are included. The soft-core potentials are indicated with the
value of ↵. The parameters A and B were set to 1, and � = 0.

Both the Lennard-Jones and Coulomb potentials create rugged land-
scapes that may become problematic in free energy calculations. For in-
stance, they cause the so-called van der Waals end-point problem [52, 53],
which can lead to computational instabilities. A common approach is to
introduce soft-core versions of these potentials [54, 55]. The soft-core
Lennard-Jones potential in the Q simulation package is [56]

ULJ =

X

i

X

j<i


Aij

(r6 + (1� �)↵ij)
2
� Bij

r6 + (1� �)↵ij

�
(2.9)

and I have implemented a corresponding soft-core Coulomb potential in
this package

UCoul =

X

i

X

j<i

qiqj

4⇡✏0
p
r2 + (1� �)↵ij

(2.10)

where ↵ is the softness parameter and � is a coupling-parameter (see
Chapter 4.1). The value of ↵ is not well-defined, although a recent study
tried to optimized it [57]. Soft-core Lennard-Jones potentials are illus-
trated in Figure 2.1
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In papers XII and XIII, soft-core versions of the Lennard-Jones and
Coulomb potentials were used. We compared an approach that uses only
the soft-core Lennard-Jones potential with an approach that uses soft-
core for both van der Waals and electrostatic interactions. It was found
that both approaches performed equally well, although the approach with
both soft-core potentials seemed to be slightly more stable.

In paper XIV, we tested an approach in which the soft-core potentials
are used as a clever way to represent several different atoms with a single
unphysical, reference state. The reference state is then perturbed to a
real ligand after the simulation. This worked well for non-polar pertur-
bations, but less satisfactorily for polar perturbations. #

2.2.3 Parametrisation

When the functional form of the force field has been decided, the pa-
rameters in the force field have to be determined. Here the force fields
differ again, at least for the non-bonded parameters. The bond and angle
equilibrium and force constant parameters are usually taken from crystal
structures of small compounds and spectroscopic data, respectively. The
torsional parameters are normally fitted to a QM-calculated potential
together with the non-bonded interactions [34].

The Lennard-Jones parameters are difficult to parametrise. Histori-
cally, these were taken from crystal data for the repulsion term and from
atomic polarisabilities for the dispersion term. Nowadays, they are more
commonly fitted to experiment liquid properties such as heat of vapor-
ization by running simulations of model compounds [34, 42, 45]. The
charges in the Amber and CHARMM force fields are taken from different
QM calculations [42, 43], whereas Gromos and OPLS fit the charges so
that the force field can reproduce experimental quantities such as heat of
vaporization and densities of pure liquids [45, 44].

There usually exist separate sets of parameters for each type of macro-
molecule, e.g., protein and nucleotides. The parameters for small drug-
like compounds are usually taken from the corresponding macromolecular
force field, but the latest decade has seen an increase in force fields espe-
cially made for small molecules that should work with the macromolecular
potential [58, 59, 60].
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2.2.4 Potentials for liquid water

Interactions with solvent dominate the cost of standard MM simulations.
Therefore, the solvent is often treated specially. Because I have used
simulations in liquid water throughout the thesis I will shortly describe
some different water potentials. The simplest water potential used in this
thesis is a so-called three-point water molecule. It contains three charge
sites, one on each atom, but only a single Lennard-Jones site on the
oxygen. Two different parametrisations have been used, TIP3P [61] and
SPC [62]. A four-site potential has also been used, in which the charge of
the oxygen is moved away from the hydrogen atoms to mimic the lone-
pairs on the oxygen. The parametrization used was TIP4P-Ewald [63],
which is a re-parametrization of the original TIP4P [61] to work better
in periodic simulations.

2.3 Implicit solvent models

One of the most common methods to reduce the complexity of the system
and improve the convergence is to treat the water molecules implicitly.
The most popular approach, which originates from the work of Max Born,
is to treat the solvent as a dielectric continuum [64]. Such methods can
be used with both QM and MM methods, and are based on several pa-
rameters. Too proceed, it is instructive to introduce a phenomenological
approach to solvation [65]. In this approach, the solvation process is
divided into two phases. First, a cavity is created in the solvent that
precisely can accommodate the solute. Second, the solute is introduced
in the cavity and the interaction between the solute and the solvent is
turned on. If we assume a MM description of the interaction, we can
write the solvation free energy as

Gsolv = Gcav + Erep + Edisp + Eele (2.11)

where the first term is the free energy of creating the cavity in the solvent,
and the next three terms are the repulsion, dispersion, and electrostatics
interaction energy. The last three terms on the right-hand-side of Eqn
2.11 are written as energies rather than free energies, which stems from an
assumption that the introduction of solvent–solute interactions does not
perturbe the solvent structure. While this could be a decent assumption
for the repulsion and dispersion interactions, this is most likely not the
case for the electrostatic interaction [65]. Most of the continuum methods
separate the calculations in a polar, Gpol, which is taken as the last term
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of 2.11 and a non-polar, Gnp term, which is taken as the first three terms
of the right-hand-side of Eqn 2.11 such that

Gsolv = Gpol +Gnp (2.12)

Other approaches to implicit modeling of solvent exists; The three-di-
mensional reference interaction site model (3D-RISM) [66], is a model
based on classical density theory, and is therefore not a continuum model.
Another model that is intermediate to explicit and continuum methods
is the Langevin dipoles (LD) model [67].

2.3.1 Polar solvation

Any treatment of a dielectric continuum starts by considering the Poisson
equation for this medium [68]

r [✏(r)r�(r)] = �4⇡⇢(r) (2.13)

where ✏ is the dielectric constant, � the electrostatic potential and ⇢ the
charge density. A Boltzmann factor can be added to the equation to
account for ionic strength, giving the Poisson–Boltzmann (PB) equation.
This is is seldom done in biomolecular calculations [64] but approaches
based on Eqn 2.13 is nonetheless referred to as PB methods. Eqn 2.13
is usually solved by finite difference methods by discretising the charge
distribution and the dielectric constant on a grid [69].

The solvation free energy is obtained by calculating the potential at
two dielectric constants of the solvent, 1 and 80, representing the vacuum
and water environment, respectively. The difference between these po-
tentials is called a reaction field, �reac, and can be used to compute the
solvation free energy. If the charge distribution is represented by a set of
point charges as in a force field, the equation is [69]

Gpol =
1

2

X
qi�reac(ri) (2.14)

In the case of a single ion of radius a in pure solvent, this reduces to the
Born formula

GBorn = � q2

2a

✓
1� 1

✏solv

◆
(2.15)

where ✏solv is the dielectric constant of the solvent. The generalised
Born (GB) methods attempt to generalise this expression by picturing
a molecule as a set of spheres with charges and radii. If the separation,
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rij , between any two atoms is large compared to their radii, it is possible
to write down a sum of individual Born terms and pair-wise Coulomb
terms [70]

Gpol =

X q2i
2ai
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✏solv
� 1

◆
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(2.16)

The GB models then proceed one step further by merging the Born and
Coulomb terms

Gpol =
1

2

✓
1

✏solv
� 1

◆XX qiqj
fGB

(2.17)

where fGB is an approximate function of the separation between atoms
and their ”effective” radii. The different GB methods mainly differ in how
this function is calculated [70].

Another set of continuum methods do not start from the Poission
equation but rather from an apparent surface charge density, �(r) [64,
71]. It can be shown that this density is the only source of the solvent
reaction field and hence determines fully the solvation free energy. This
is the basis of the methods most commonly used in QM calculations, viz.,
the polarised continuum model (PCM) [72] and conductor-like screening
model (COSMO) [73].

Because these methods are based on the charge density on the sur-
face of the solute, these methods start with a determination of surface
segments called tesserae.The surface charge density can thereafter be de-
rived by considering the dielectric boundary conditions at the surface [71]
and it is those boundary conditions that differ between the various meth-
ods. In the original PCM implementation (also called dielectric-PCM),
a dielectric continuum is assumed outside the solute cavity, whereas in
COSMO (and the related conductor-PCM method), a conductor, i.e., a
medium with an infinite dielectric constant, is assumed. In the latter, it
is therefore necessary to scale the calculated charge density such that it
represents a dielectric medium. This approximation is most accurate at
high dielectric constants. In passing, it should also be mentioned that
there exists other variants of these approaches [71, 74].

In both PCM and COSMO, the surface charges can be found itera-
tively or by matrix manipulations, and once they have been determined
the electrostatic potential due to the charges can be calculated by sum-
ming over all tesserae. This potential is then added as a perturbation to
the system [71].
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In paper V, a special implementation of the PCM model was used that
is able to calculate the solvation free energy of proteins.

In paper III, the COSMO method was used as the solvent model because
it is implemented in the SQM software used. #

2.3.2 Non-polar solvation

In the PCM method, the cavitation, dispersion, and repulsion contri-
butions to the non-polar solvation free energy are calculated by three
separate terms. [75]. The cavitation free energy is calculated from scaled-
particle theory [71, 76]

Gcav =

X

atoms

Ai

4⇡Ri
GHS

(Ri) (2.18)

with

GHS
(r) = RT [K0+K1(r+Rsolv)+K2(r+Rsolv)

2
+K3(r+Rsolv)

3
] (2.19)

where Ri is the radius of an atom, Ai the total area of all tesserae on
that atom, Rsolv the radius of the solvent molecule and Kx are terms that
depends on the radius of atom i to the x:th power. Hence, this expression
depends on the radius of the atoms to the powers 0 to 3.

The dispersion and repulsion energies are calculated from volume in-
tegrals [77, 78]

ULJ,cont =

X
⇢

Z
ULJ(r)dr (2.20)

where the sum is over all solute atoms and the integration is over all
solvent-occupied volume, ⇢ is the uniform solvent number density, and
the Lennard-Jones potential is evaluated between the solute atom and
the ”solvent atom” (the oxygen in case of water). The volume integral
can then be cast into an integration over the solvent-accessible surface
through the use of the divergence theorem

ULJ,cont = ⇢
X

a

X

b

Z

Sb


Aab

6r12sa
� Bab

3r6sa

�
rsansd�s (2.21)

where the double sum goes over a pair of atoms, a and b, the integration
is over all the solvent-accessible surface of atom b, A and B are the usual
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Lennard-Jones parameters, r is the separation between atom a and the
surface, and ns is a normal vector to the surface.

It has been noted that the cavitation and repulsion energies show
a dependence on the solvent-accessible surface-area or surface-volume.
Therefore, a recent approach merged these into a single term, giving the
cavity-dispersion (CD) method [78]

GCD = Gcav + Edisp = �CDMS+ bCD + Edisp (2.22)

where MS is some kind of molecule surface, and �CD and bCD are em-
pirical parameters fitted to results from rigorous simulations. For small
molecules, it does not matter what kind of surface is used, but for larger
molecules the solvent-accessible surface-area (SASA) has been recom-
mended [78, 79].

Although the PCM are more rigorous from a theoretical perspective,
the most popular methods to compute the non-polar solvation free energy
is to relate the entire free energy to the SASA [80].

Gnp = �SASASASA + bSASA (2.23)

where �SASA and bSASA are empirical parameters fitted to experimental
solvation free energies of hydrocarbons [81]. There exists several sets of
parameters, and sometimes atom-specific parameters are used [82].

In papers V and VI, we evaluated the three different non-polar solva-
tion methods described here, on their ability to predict the change upon
ligand-binding. It was found that none of the methods were able to give
accurate predictions on a wide range of systems with different active site
hydration. On average, SASA performs best, but only because the predic-
tions are smaller than the other two methods. The PCM method could
be improved by introducing explicit interactions from the simulations,
but the set of test cases was to small too conclude if this is a general
approach. #

2.3.3 3D-RISM

In 3D-RISM, the solvent is not assumed to be a structureless dielectric
medium. Rather, the solvent structure is described by the probability
density ⇢�g�(r) of finding a solvent site, �, in the 3D space at position r,
where ⇢� is the average number density and g� is the normalized distribu-
tion function [66]. If we are interested in water, � is one of the hydrogen
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atoms or the oxygen atom. If we introduce the total correlation function
h� + 1 = g� , we can write down the 3D-RISM integral equation

h�(r) =
XZ

c↵(r� r0)��↵(r
0
)dr0 (2.24)

where c is the so-called direct correlation function, � is the chemical
susceptibility, which is taken as a parameter of the model and is pre-
computed. The sum is taken over all solvent sites and the integral over
all space. Now we have two unknown functions h and c. To solve the
equation, a closure, a relationship between h and c, is introduced and a
common choice in 3D-RISM is the Kovalenko–Hirata closure [83]:

g�(r) =

(
exp(d�(r)), for d�(r)  0

1 + d�(r), for d�(r) > 0

(2.25)

d�(r) = �U�(r)/RT + h�(r)� c�(r)

where U is the potential energy from a force field. The 3D-RISM equation
is then solved by discretizing the solute–solvent interaction potential and
the correlation functions on a grid. The solvation free energy is finally
computed from the correlation functions using statistical-mechanical for-
mulas [66].

In paper IV, the 3D-RISM method was introduced in an approach to
calculate binding affinities. In the same paper, we also tested two different
PB implementations, and four different GB methods. It was found that
many of the methods give relative predictions that are rather similar.
However, the choice of solvation method totally dictates the absolute
predictions, with differences up to 200 kJ/mol. We also found no benefit
of using 3D-RISM instead of the much faster PB and GB methods. #

2.3.4 Langevin dipoles

The Langevin dipole (LD) model is a grid-based method. The solvent is
represented by rotable dipoles on each grid point that does not overlap
with the solute, and the orientation of the dipoles is calculated using the
Langevin equation. The solute, e.g., a protein could be represented by
dipoles, forming the protein-dipoles–Langevin-dipoles (PDLD) method
[67]. This method has been used successfully, but has also drawn consid-
erably criticism. The main problem is the grid that has to be sufficiently
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fine so that the calculations do not depend on the placement of the grid
[64]. Furthermore, the results can diverge for realistic magnitudes of the
dipole of a water molecule.
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3 Sampling

The are mainly two methods that are used to sample the configurational
space of a macromolecule, molecular dynamics (MD) and Metropolis
Monte Carlo [84]. Noteworthy, is also the mining minima method [85]
of Mike Gilson that recently have been extended to protein–ligand cal-
culations [86]. Metropolis Monte Carlo works by performing a random
walk in space, subjected to a Metropolis test to determine whether the
new configuration should be rejected or not [87]. This method has only
been used in a single paper in this thesis for preparing structures and will
therefore not be discussed any further. However, MD has been used in
all papers and is described below.

When MD has been presented, I will discuss how to simulate a bulk-
like system. Periodic and non-periodic simulations are compared. When
discussing the non-periodic simulations, I will also introduce truncation
approaches. The chapter ends with a discussion on different sampling
strategies.

In paper II, a Monte Carlo method was used to sample different rota-
tional, conformational, and protonation states of amino acid side-chains,
and rotation of crystal water molecules. The different structures created
in the Monte Carlo sampling was then used as starting structures for MD
simulations. #
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3.1 Molecular dynamics

MD refers to a sampling technique that employs Newton’s second law
[88] to propagate the system in time. For a single particle i, with a mass
mi at a position qi (I will use a generalised coordinate here, which could
be an x, y, or z coordinate if we are in 3D Cartesian space), the second
law reads

Fi = mi
d2qi
dt2

(3.1)

where Fi is the force on the particle, which can be obtained by differen-
tiating the potential, viz., Fi = dU/dqi. The position after a finite time,
�t, can be computed using a simple Taylor expansion [84, 34]

q(t+�t) = q(t) +
dq(t)

dt
�t+

d2q(t)

dt2
�t2

2

+ · · · (3.2)

Hence, the position q(t), the velocity dq(t)/dt, and the acceleration d2q(t)/
dt2 are sufficient for propagating the system, if the higher order terms
are treated in some approximate way. The acceleration is given by Eqn
3.1.

An MD simulation starts by assigning velocities and positions to all
atoms in the system. Thereafter, the force is calculated on each atom,
which in turn tells in what direction the atom should move. This infor-
mation is used to update the position of each atom, and the procedure is
repeated.

3.1.1 Integration of motion

There exist numerous algorithms for integrating the equations of motions
[87, 34]. A common example is the simple Verlet algorithm [89] but the
drawback of this method is that it does not explicitly propagate the
veclocities. An alternative is to use a leapfrog [90] or velocity Verlet
algorithms [91]. However, it is out of the scope of this thesis to discuss
these algorithms at any length.

It is however pertinent to discuss the size of the time step, �t, i.e.,
the time that passes between a particle movement. As a rule of thumb,
the time step should be so small that all the motions of the system can be
described. The fastest motion in macromolecular system is the vibration
of bonds to hydrogen atoms, which is on the order of 10 fs [34]. Therefore,
the time step is usually set to 0.5 to 1 fs, if such vibrations are allowed.
However, there exist algorithms, such as SHAKE [92] and LINCS [93],
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that constrain the motion of certain bonds and most macromolecular sim-
ulations are performed with such restraints on bonds involving hydrogen
atoms. Therefore, the time step is usually set to 2 fs, which of course
increases the efficiency of the simulation.

3.1.2 Sampling in different ensembles

A thermodynamic ensemble is a collection of all possible systems that
have different microscopic states but belong to the same macroscopic or
thermodynamic state. An ensemble is usually denoted by the thermo-
dynamic quantities that are constant, e.g., number of particles, volume,
and pressure [94]. Because an MD simulation obeys the Newtonian laws
it can be shown that such a simulation will sample configurations in an
ensemble with constant number of particles, constant volume, and con-
stant total energy (potential plus kinetic energy), i.e., the microcanonical
ensemble [87].

The purpose of simulations that estimate binding affinities are to re-
produce affinities that can be measured experimentally. An experiment
that measures a ligand-binding affinity cannot be performed at constant
energy, and hence plain MD simulation would be useless for this applica-
tion. Normally, the experiments are performed at constant pressure and
constant temperature, i.e., the isobaric-isothermal ensemble, and luck-
ily there exists algorithms that keep those quantities constant in an MD
simulation.

An algorithm that keeps the temperature constant in an MD simu-
lation is called a thermostat, and there exist a lot of them [95]. In this
thesis we have mostly used a Langevin thermostat [96] that actually let
us perform Langevin dynamics, rather than Newtonian dynamics. The
equation of motion is then modified to the following equation [84]

mi
d2qi
dt2

= Fi � ⇣
dq

dt
+Ri(t) (3.3)

where the two additional terms on the right-hand-side are a frictional
term (⇣ is a friction constant) and a random-force term. Through a re-
lationship between ⇣ and R, the temperature is kept constant. Another
thermostat that has been used is the Berendsen, or weak-coupling al-
gorithm [97], which is an algorithm to re-scale the velocities such that
the temperature is kept constant. However, it has been shown that this
thermostat does not produce a fully correct thermodynamic ensemble
[87].
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An algorithm that keeps the pressure constant in a simulation is called
a barostat and chiefly works by adjusting the volume of the simulated
system [87]. In this thesis, we have exclusively used a weak-coupling
algorithm [97].

3.2 The simulated environment

Ultimately, we would like to simulate a bulk-like system because we would
like to reproduce experimental quantities that are obtained under such
conditions. However, it is not feasible to simulate so many particles and
hence we need to make approximations. Nowadays, any biomolecular
simulation that is used to estimate affinities solvate the solute in some
tens of thousands of water molecules and use cleaver tricks to mimic bulk
behaviour.

3.2.1 Periodic simulations

To approximate a bulk system, most of the biomolecular systems are
today simulated by imposing periodic boundary conditions [84]. This
implies that the solute is solvated in a box of solvent molecules. This
simulation box is then replicated infinitely in all directions. Therefore,
if an atom drifts outside the simulation box it will end up in an image
of the box, i.e., it will appear on the opposite side of the box. The
minimum-image convention makes sure that interactions are not double
counted, by only counting the shortest distance between a pair of atoms,
irrespectively if they are in the central box or in an image [34].

The simulation box is not restricted to a specific shape. Whenever
periodicity was imposed in this thesis, a truncated octahedron was used.
Such a shape reduces the number of solvent molecules that need to be
simulated, compared to a simple cubic box.

3.2.2 Non-periodic simulations

Another possibility that is used by some research groups is to solvate the
solute in a sphere, a droplet, of solvent molecules. Typically, there is
vacuum outside the droplet, and therefore, the simulated system must be
treated in a special way to reproduce bulk-like behaviour [84].

An early approach was to simulate the outer region using Langevin
dynamics, so-called stochastic boundary conditions [98]. The Langevin
dynamics imposes friction on the inner region so that the droplet does
not evaporate. The outer region is also included in a buffer of fixed atoms
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so that the atoms in the outer region are fairly fixed in space. However,
such an approach produces artificial density fluctuations and can alter
the structure of solute [84].

Another approach is to impose special restraints on the water molecules
and two different types of restraints have been used. First, a radial poten-
tial is added to the water molecules that prevent them from evaporating.
Several empirical potentials have been suggested [99, 100, 101]. Secondly,
the orientation of the water molecules is heavily affected by the outside
vacuum, and potentials are added to restore bulk-like distributions. One
such approach is the SCAAS (surface-constrained all-atom solvent) of
Warshel [101], in which a uniform distribution is imposed on the angle
between the water dipole vector and the displacement vector from the
origin. Essex and Jorgensen proposed a similar method, but they found
it also necessary to restrain the vector perpendicular to the plane of the
water molecule [100].

Instead of treating the outside as a vacuum, it can be described using
the continuum methods described in the previous chapter. Roux and co-
workers introduced such a method, called the general solvent boundary
potential [102, 103]. Simonson and co-workers introduced a method that
is a combination of vacuum simulations and continuum solvation. A
simulation is performed in vacuum and the snapshots from the simulation
are subsequently corrected for by continuum electrostatics [104].

In paper XIII, non-periodic simulations are tested and compared to pre-
vious results computed with periodic simulations. It is shown that the
non-periodic and periodic results correlate well. The size-dependence is
evaluated by making the water droplet smaller and smaller and truncat-
ing protein residues outside the droplet. It is shown that a sphere of 15
Å in radius, is sufficient for an accurate free energy estimate.

Non-periodic simulations were also employed in paper XIII, on the test
of the method linear interaction energy, which most often is performed
in a non-periodic setting. #

3.2.3 System truncation

Although the most common approach is periodic simulations, it becomes
impractical if the system is very large and the interesting chemistry only
occurs in a small region of space. Ligand-binding for instance occurs in
an active site that typically has a diameter less than 20 Å.
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In such a situation, non-periodic simulations can be very effective.
Instead of solvating the entire protein in a water droplet, the droplet is
centred on the active site and is made smaller than the protein. The
residues outside the droplet are then excluded from the simulation.

3.3 Sampling strategies

A good simulation should sample the configurational space according to
the prescribed distribution, e.g., a Boltzmann distribution if we simu-
late the canonical ensemble [105]. The N samples extracted from the
simulation is then used to compute a time average of some quantity A,

hAi = 1

N

X

snapshots

Ai (3.4)

As explained in Chapter 1.3, the reliability of this estimate is given by
the variance if we for a moment ignore the bias (which is hard to decrease
by sampling). To obtain a valid estimate of the variance, the snapshots
sampled should be independent of each other [105, 106]. Therefore, we
need a way to determine the sampling frequency. The correlation time,
⌧ , is a measure of the simulation time required before the simulation loses
”memory” of previous values of Ai. The number of independent samples
is then, Nind ⇠ tsim/⌧ , where tsim is the total simulation time. If ⌧ is
known, it can be used to correct the estimate of the variance [107], or
one could simply sample snapshots at intervals of ⌧ .

3.3.1 Estimating the correlation time

One approach is to calculate ⌧ from the normalized autocorrelation func-
tion (ACF), but the estimation of the ACF for a finite data series is non
trivial [106, 108, 109]. Whenever, ⌧ has been estimated in this thesis,
the method of statistical inefficiency [110, 111] has been used. In this
procedure, the following quantity is calculated

� =

m�2
(B)m

�2
(A)

(3.5)

where �2
(A) is the variance of the time series {A} (the average of this

time series is shown in Eqn 3.4), and �2
(B)m is the variance of the block

average of {A}, where the block length is m. This block average is cal-
culated from

Bi =
1

m

n�(i�1)mX

j=n�im+1

Aj (3.6)
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That is, {A} is divided into a number of non-overlapping series, each
with a length of m. Once m is so large that the successive values of Bi

are statistical independent, � will become a constant and m will be an
estimate of the correlation time.

Example uses of the method of statistical inefficiency can be found in
papers I and VIII. #

3.3.2 Independent simulations

The above procedure as well as the determination of ACF is sensitive
to correlations at long time-scales [105]. Therefore, it is very difficult to
obtain an accurate estimate of ⌧ . An alternative and effective sampling
strategy is then to start M independent simulations and to calculate a
statistical ensemble average [105]. The ensemble average of some quantity
A can be written

hAi = 1

M

X

simulations

1

N 0

X

snapshots

Ai (3.7)

Usually, N > N 0. The ergodic hypothesis of thermodynamics suggests
that the two averages in Eqn 3.4 and Eqn 3.7 are identical with perfect
sampling [94]. However, it is truly hard to have perfect sampling of a
biomolecular system, and hence these two averages can be considerably
different. In particular, the precision of the two will be different, because
in Eqn 3.4 it is inversely proportional to

p
N , whereas in Eqn 3.7, it is

inversely proportional to
p
M , although it also depends on N 0.

In Paper I, we compared the time-average and the ensemble-average ap-
proaches, i.e., we tested whether it was better to run a single long sim-
ulation or several shorter. As a test case, we used the avidin protein,
which is a tetramer with four identical subunits. A converged free energy
estimate should therefore give the same estimate for all four subunits.
A single long simulation failed to give this answer, because the precision
was underestimated. However, using several short independent simula-
tions the same affinity was obtained within the statistical uncertainty.
Therefore, it is better to run several short simulations. It is then also
straightforward to improve the precision by running more simulations.
#
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The most common method to generate independent simulations, is sim-
ply to assign different starting velocities to the atoms [112, 113, 114],
which here is denoted velocity-induced independent trajectories (VIIT)
approach. This must be considered as a rather small perturbation to the
system because none of the positions are changed. However, a few studies
have used different crystal structures or an NMR ensemble as a starting
point for MD [115, 116, 117]. Even a limited conformational search has
been used as preparatory step [116]. In Paper II, we suggested three
other approaches, which employs the uncertainty in the setting up of
macromolecular simulations to increase the sampling of the phase space.

1. Solvent-induced independent trajectories (SIIT)

2. Conformation, rotation, and protonation-induced independent tra-
jectories (CRPIIT)

3. Alternative conformation-induced independent trajectories (ACIIT)

In SIIT, the solute is solvated in different water boxes for each inde-
pendent trajectory. The water boxes can be created by any means, but
in Paper II, they were taken from MD simulations. A similar approach
has been used previously [118]. In CRPIIT, different rotational, confor-
mational, and protonation state of amino acid side chains are sampled
with MC, and used as starting structures for the MD simulations. Fi-
nally, ACIIT takes advantage of the fact that many high-resolution crys-
tal structure contains alternative conformation for several of the amino
acids.

In paper II, we compared VIIT, SIIT, CRPIIT, and ACIIT. The con-
clusion was that SIIT and ACIIT gave improved sampling. Therefore,
it is recommended to use SIIT because it can always be used. However,
ACIIT can only be used if there exists alternative conformations in the
crystal structure. The CRPIIT approach was little bit more problem-
atic, because the choice of protonation, rotation, etc. is not arbitrary.
However, it was clear the the sampling of active site residues should be
avoided, otherwise unwanted effects can be introduced. #
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4 Free-energy estimates

After a discussion on molecular models and sampling, I now return to the
core of this thesis, namely free-energy estimates. As will be clear at the
end of this chapter, all free-energy estimates are based upon differences
between various states. Therefore, this chapter starts by deriving three
rigorous approaches for calculating free-energy differences. These tech-
niques can be seen as tools that are employed by approaches to calculate
standard (absolute) and relative binding free energies. Such approaches
are discussed thereafter.

I will end this chapter with a thorough discussion on approximate
free-energy methods and my intention is to highlight similarities and
differences. At the end of this chapter, the most popular methods to
compute ligand-binding affinities from equilibrium simulations have been
covered. Non-equilibrium methods will not be covered at all; a discussion
of such methods can be found in [27].

4.1 Basic techniques

In this section, I will consider two Hamiltonians, H0 and H1, with the
following relationship

H1 = H0 +�H (4.1)

where �H is the difference between the two Hamiltonians. These two
Hamiltonians could for instance describe benzene free in solution and
phenol free in solution, respectively. �H would then contain, the inter-
action between the solvent molecules and the hydroxyl group of phenol,
and some intramolecular terms. The problem now is how the free-energy
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difference between these two systems can be computed. In what follows,
I will describe the three most common approaches to solve this issue.

4.1.1 Thermodynamic integration

In thermodynamic integration (TI) [4], a composite Hamiltonian, H, is
introduced that depends on a coupling parameter, �. The requirement for
this Hamiltonian is that when � = 0, H = H0, and when � = 1, H = H1.
There are different functional forms that satisfy this requirement [107],
but in this thesis, I have only used the linear relationship

H(�) = (1� �)H0 + �H1 (4.2)

The derivation of TI [34] now follows by differentiating the free energy,
G, with respect to �

@G(�)

@�
= �RT

@ lnQ(�)

@�
= �RT

1

Q(�)

@Q(�)

@�
(4.3)

where Q is the canonical partition function, which naturally depends on
� as well:

Q(�) = ⇠

Z

q

Z

p
dqdpe��H(�) (4.4)

where the integration is over all coordinates, q, and over all momenta
p, and ⇠ is a pre-factor that depends on the number of particles in the
system. Differentiating Q with respect to � gives
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(4.5)
and substituting back into Eqn 4.3 we have

@G(�)

@�
=

1

Q(�)
⇠

Z

q

Z

p
dqdp

@H(�)

@�
e��H(�) (4.6)

The last expression can be identified as an ensemble average of @H(�)
@� ,

hence
@G(�)

@�
=

⌧
@H(�)

@�

�

�

(4.7)

where the subscript indicates that it is an ensemble average for a fixed
�. Finally, by integrating from 0 to 1, the free-energy difference can be
computed [34]

�G = G1 �G0 =

Z 1

0

@G(�)

@�
d� =

Z 1

0

⌧
@H(�)

@�

�

�

d� (4.8)
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This integration is usually computed by a finite-difference method such a
trapezoid integration [119], and therefore, simulations are performed at
specific values of �.

4.1.2 Free-energy perturbation

Alternatively, the free-energy difference, �G, between two states can be
written as a ratio of two partition functions

�G = G1 �G0 = �RT ln

Q1

Q0
(4.9)

where Q is the canonical partition function, written analogously to Eqn
4.4. Inserting the expression for the partition functions into Eqn 4.9 and
ignoring pre-factors, we have [27]

�G = �RT ln

R
q

R
p dqdpe

��H
1

R
q

R
p dqdpe

��H
0

= �RT ln

R
q

R
p dqdpe

���He��H
0

R
q

R
p dqdpe

��H
0

(4.10)
the last expression can be identified as an ensemble average of e���H ,
hence

�G = �RT ln

D
e���H

E

0
(4.11)

where the subscript indicate that the average should be taken from a
simulation of system 0. The contribution from the momenta is cancelled
out if the number of atoms in the two systems is identical [27], and
therefore, Eqn 4.11 is further simplified to

�G = �RT ln

D
e���U

E

0
(4.12)

where�U is the potential energy difference. Eqn 4.12 is usually called the
forward equation, because the perturbation is from 0 to 1. By reversing
the process, we can write down the backward equation, as

�G = RT ln

D
e��U

E

1
(4.13)

where the simulation should be of system 1.
Now we can ask ourselves if Eqns 4.12 or 4.13 could be used to com-

pute the free energy difference of the system discussed above, i.e., between
benzene and phenol free in solution. The general answer is no. �U will in
most of the sampled configurations by very large because there is a large
energy difference between the benzene and phenol systems. Therefore,
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most of exponential terms will be small, leading to an inaccurate estimate
of the free energy difference. The solution is to introduce intermediate
states, between the benzene and phenol molecules. Because the free en-
ergy is a state function, it does not matter how system 0 is perturbed into
system 1. Hence, the Hamiltonian can be written as in Eqn 4.2, and the
perturbation is made from �i to �i+1, and the FEP formula is employed
as a sum over smaller free energies [27, 120]

�G = �RT
X

ln

D
e��[U(�i+1

)�U(�i)]
E

�i

(4.14)

In passing, it should be mentioned that there exist different strategies of
how to perturbe from one �-value to another [121], not just from �i to
�i+1(forward) or from �i to �i�1 (backward).

4.1.3 Bennet’s acceptance ratio method

The Bennet’s acceptance ratio (BAR) method was first derived by Bennet
[122] in the 70’s but was not popularized until recently [123]. Bennet
showed that the free energy difference between two systems is given by

�G = RT

✓
ln

hf(��U + C)i1
hf(�U � C)i0

◆
+ C (4.15)

for any function f(x) satisfying f(x)/f(�x) = exp(�x) and for any offset
C. However, to minimize the variance of the free-energy estimate, Bennet
showed that f(x) should be the Ferm-function, i.e.,

f(x) = 1/(1 + exp(�x)) (4.16)

and that C should be

C = �G+RT ln

N0

N1
(4.17)

where N0 and N1 are the number of samples from the simulation of state
0 and state 1, respectively. Eqns 4.15 and 4.17 is then solved iteratively,
until the free energy converges. It is clear from Eqn 4.15 that BAR treats
the forward and backward peturbations equally, and the method can be
considered as an optimal weighted average of the two perturbations. As
with FEP, BAR may also require that the perturbation is divided into
smaller steps [120]. An alternative to summing all the small free energies
has been proposed recently [124].
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Before we conclude this section, a fourth method to compute free-
energy differences should be mentioned, viz., weighted-histogram analysis
method (WHAM) [125]. This method also combines informations from
several states to compute a free energy and can in fact be shown to
be equivalent to BAR for only two states [124]. However, it is not as
commonly used as TI, FEP, and BAR for ligand binding.

In paper XII, we presented TI results and in paper XIII, we presented
FEP results on the same systems. We found that the FEP results had
a much better precision than the TI results. This partly comes from
the free-energy estimator used, but also from details in the simulation
setup. In paper XIII, we also tested BAR, but the differences between the
BAR and FEP results were not statistically significant. This is probably
because the test system was well-behaved, i.e., a small difference between
the FEP estimates in the forward and backward direction. #

4.2 Rigorous methods

Now that a few basic techniques have been introduced, I will proceed
by showing how the free energy of binding can be computed in practice.
In this section, I will discuss rigorous methods that are based on the
techniques described above together with the thermodynamic treatment
of ligand-binding in Chapter 1.1. Therefore, such methods are exact from
a theoretical point of view. However, because perfect sampling is hard to
achieve with a biomolecular system and because a force field is only an
approximation to the quantum mechanical potential, the practical results
are only estimates.

We can distinguish three kinds of methods to compute the binding
free energy rigorously. First, there are methods that try to estimate
the standard binding free energy, i.e., the free energy that is measured
experimentally. Estimates of such methods are also sometimes called
absolute free energies, to contrast them with the second class of methods
that only try to compute the relative binding free energies between two
ligands. These two classes are collectively called alchemical methods
because they relay on the unphysical, yet computational feasible, method
of transforming one system into another [126]. A third class of methods,
less employed and not used in this thesis, is methods that try to mimic
the natural process of binding or unbinding by pulling the ligand to or
from the binding site.
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4.2.1 Standard binding free energies

Let us recall the final expression for the association constant Ka from
Chapter 1 [16]

Ka =

R
site dq

R
dSe��U

R
bulk dq�(r1 � r⇤)

R
dSe��U

(4.18)

The methods in this section compute Ka by introducing a series interme-
diate states into Eqn 4.18 [16, 127]

Ka =

R
site dq

R
dSe��U

Zn
⇥ Zn

Zn�1
⇥ · · · (4.19)

Z2

Z1
⇥ Z1R

bulk dq�(r1 � r⇤)
R
dSe��U

The problem is then reduced to finding the intermediate states, i.e., Z1

through Zn. The first proposed method to compute standard binding free
energies was the double-annihilation method [128]. In this method, only
a single intermediate state is introduced in Eqn 4.19, a state where the
ligand is completely decoupled (annihilated) from the environment. Il-
lustrated by the thermodynamic cycle in Figure 4.1a, the final expression
for the free energy (by talking the logarithm of Ka) is given by

�Gbind = �Gbound
annihi ��Gfree

annihi = (4.20)
�Gbound

ele +�Gbound
vdW ��Gfree

ele ��Gfree
vdW

where, �Gbound
annihi and �Gfree

annihi are the free energies of decoupling the
ligand when it is bound to the protein and when it is free in solution,
respectively. Both these free energies can further be decomposed into
an electrostatic, �Gele and a van der Waals term, �GvdW, which give
the free energy when the electrostatic and van der Waals interactions are
turned off, respectively. Both of these terms are computed with, e.g., TI
or FEP.

When the ligand is decoupled from the environment it is free to diffuse
around in the simulation box. This may lead to problems with conver-
gence, because there is more space to sample [129]. Also, it is unclear
how the standard concentration can be defined unambiguously, although
ad-hoc recipes have been suggested [130].

In the double-decoupling method [13, 129], this is solved by intro-
ducing two additional intermediate states in Eqn 4.19, by restraining
the ligand in the active site of the protein. This approach is illustrated
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Figure 4.1: Thermodynamic cycles to compute binding free energies,
a) double-annihilation, b) double-decoupling, and c) relative free energy.
L0 describes a non-interacting (decoupled) ligand.
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in Figure 4.1b, and the final expression for the free energy is given by
[16, 129]

�Gbind = �Gbound
restr+ +�Gbound

annihi +�Gbound
restr� ��Gfree

annihi (4.21)

• A state in which the ligand is restrained in the binding site has
been introduced. The free energy of introducing the restraints is
given by �Gbound

restr+

• The free energy of decoupling the ligand from its environment, while
it is restrained to the binding site is given by �Gbound

annihi

• The free energy of removing the restraints of the decoupled ligand
is given by �Gbound

restr�

• The free energy of decoupling the ligand from its environment when
it is free in solution is given by �Gfree

annihi

�Gbound
restr+ can in principle be computed with for instance TI, but can some-

times, in conjunction with �Gbound
restr�, be estimated from an approximate

analytical formula [131]. �Gbound
restr� can in any case be derived analyt-

ically [131]. Several different restraints have been suggested and used
[112, 131, 132]. The most basic restraints are rotational and transla-
tion restraint but if the ligand is large, it might be advantageous to also
restrain the conformational freedom of the ligand.

In paper V and VI, the double-decoupling method was used to estimate
the binding affinities of five small ligands. Rather accurate results were
obtained, although the precision deteriorated when the ligands became
larger. Despite this, the estimates could be used as benchmark for ap-
proximate methods. #

4.2.2 Relative affinities

The difficulties associated with the methods above can be reduced if
its only interesting to determine the difference between the binding free
energy of two ligand A and B to the same protein. Employing Eqn 4.18
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for Ka, we have

�Gbind(B)��Gbind(A) =

�RT

"
ln

R
site dq

B
R
dSe��U(B)

R
bulk dq

B�(r1 � r⇤)
R
dSe��U(B)

�

ln

R
site dq

A
R
dSe��U(A)

R
bulk dq

A�(r1 � r⇤)
R
dSe��U(A)

#
= (4.22)

�RT

"
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R
site dq

B
R
dSe��U(B)

R
site dq

A
R
dSe��U(A)

�

ln

R
bulk dq

B�(r1 � r⇤)
R
dSe��U(B)

R
bulk dq

A�(r1 � r⇤)
R
dSe��U(A)

#
=

�Gbound ��Gfree

Here, �Gbound is the free energy of mutating ligand A to ligand B when
they are bound the to protein, and �Gfree is the corresponding process
when the ligands are free in solution. Both these free energies can be
calculated with any of the techniques discussed in Chapter 4.1. A ther-
modynamic cycle (see Figure 4.1c), describing this approach was first
suggested by Tembe and McCammon [8].

In papers XII to XV, relative free energies were computed using the
method described above, together with either FEP and TI.#

4.2.3 Practical considerations

As mentioned before, the approaches described in the two previous sec-
tions are collectively called alchemical methods because they transform
one system into another. This is possible because the potential is usually
described by a force field and as such, the system, can be modified to
any extent. It is easy to realize that alchemical methods require sam-
pling of a Hamiltonian that is a mixture of two force fields, and there are
two approaches to implement this on a computer. In the single-topology
approach, one force field is specified together with parameters for the
two end-states. Whenever an atom is disappearing, it is mutated into
a dummy atom that does not have any charge and zero Lennard-Jones
parameters. In the dual-toplogy approach, two force fields are simulta-
neously kept in the simulation and mixed appropriately. In such an ap-
proach there is no need for dummy atoms [27, 133]. The advantage with
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a dual-topology approach is that more complicate differences between
ligands can be easily treated at the cost of an increased uncertainty.

Another related problem is which force-field terms that should be
perturbed. The electrostatics and van der Waals are obvious, but the
treatment of the bonded term is less so. In theory, this should not matter
because these parameter are perturbed twice, e.g., once in water and once
in the protein, and hence they should cancel out. However, the bonded
terms has been treated by different approaches [134]. Putting the bonded
terms aside, the question is how to perturb the non-bonded interactions.
Perturbing them simultaneously is the obvious answer from an efficiency
perspective, but this will cause instabilities unless soft-core potentials
are used [54, 55]. Thermodynamically it should not matter whether the
electrostatics are perturbed first and then the van der Waals, or vice versa.
However, from a technical perspective, the electrostatic perturbation is
always performed first, because it is not possible to propagate the motion
of a set of atoms with charges but no repulsive term (which determines
the size). It is also possible to divide the van der Waals perturbation in
two steps [127], although this is seldom done.

We have seen that it is often necessary to introduce several interme-
diate states in FEP and BAR calculations because the phase space of the
two end states do not overlap sufficiently. In TI, such a division comes
naturally from the theory. The question is then how many intermediate
states that are necessary. As a rule of thumb, for TI the integrand should
be smooth, and for FEP, the difference in the important phase space of
the two states involved in the perturbations should be small. There have
been suggestions how to quantify this overlap [135].

In papers XII and XIII, we investigated how many intermediate states are
necessary for an accurate estimate. It turned out that rather few interme-
diate states were required, between three and five, depending on whether
the electrostatic and van der Waals perturbations were attempted simul-
taneously. #

4.2.4 (Un)binding simulations

Although seldom used to estimate binding affinities, the standard binding
free energy from ”pulling” simulations can be derived from Eqn 4.19.
The intermediate states here are positions of the ligand at different fixed
distances from the active site. The binding free energy is thus expressed
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as a potential of mean force along the chosen path [127]. However, there is
no information that can reveal the correct thermodynamic path a-priori.
Unbinding simulations has suggested to be useful for charged ligands or
for ligands with a large desolvation energy [129, 136].

4.3 Approximate methods

From the previous section, it is clear that the rigorous free energy meth-
ods require extensive computations. Simulations of the ligand bound to
the protein and free in solution are required, the electrostatic and van
der Waals perturbation might have to be computed separately, and the
simulations require sampling of several unphysical, intermediate states.
To remove the necessity to introduce intermediate states, approximate
methods have been developed that require only the simulation of the
complex and perhaps the free ligand or the free protein. Such methods
are called end-point methods and are described below.

All of these methods are approximate in nature and will not necessar-
ily give the exact result, even with perfect sampling. This is an important
point; the hope is that the method will give a good estimate of the binding
affinity by error cancellation.

In paper XI, all approximate methods described below that are able to
compute binding free energies, except PDLD/s-LRA, were used in a blind
test. 34 ligands to the trypsin protein and a series of host–guest com-
plexes was used as a test case. Unfortunately, none of the methods gave
especially accurate results on the trypsin-case, but rather good results on
the host–guest complexes. #

4.3.1 Linear-response approximation

It is instructive to start with the linear-response approximation (LRA),
although it cannot be used on its own to estimate binding affinities be-
cause it considers only electrostatic perturbations. We start with two
Hamiltonians, H0 in which the ligand interacts fully with its environ-
ment, i.e., with both electrostatics and van der Waals interactions turned
on, and H1 in which only the van der Waals interactions are turned on.
Here, we are only concerned with the potential energy difference between
the two systems, �U , which is the electrostatic interaction energy be-
tween the ligand and the surroundings, here denoted by EL�S

ele . The free
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energy difference between these two states can theoretically be calculated
with FEP, and expanding the FEP formula in powers of 1/RT gives [137]

�Gele = (4.23)

h�Ui0 �
1

2RT

⌦
(�U � h�Ui0)2

↵
0
+

1

6(RT )2
⌦
(�U � h�Ui0)3

↵
0
� . . .

and reversing the process gives

�Gele = (4.24)

h�Ui1 �
1

2RT

⌦
(�U � h�Ui1)2

↵
1
� 1

6(RT )2
⌦
(�U � h�Ui1)3

↵
1
� . . .

By truncating after the first term and taking the average of Eqn 4.23 and
4.24 we arrive at the LRA formula [27, 137]

�Gele =
1

2

[h�Ui0 + h�Ui1] =
1

2

h
hEL�S

ele i0 + hEL�S
ele i1

i
(4.25)

4.3.2 Linear interaction energy

The linear interaction energy (LIE) method [138, 139] takes Eqn 4.25
one step further and assumes that EL�S

ele is zero when sampling at state
1, i.e, when there is no electrostatic interactions between the ligand and
the surroundings. However, LIE allows deviation from this assumption by
letting 1/2 be a parameter that depends on the nature of the ligand [137].
Furthermore, the LRA treatment must be supplemented by an estimate
of the non-polar free energy and LIE assumes that this can be described
by scaling the van der Waals interactions with the surroundings.

The LIE approach for ligand-binding can be derived form the same
arguments as in the double-annihilation approach (see Eqn 4.20) or from
the cycle in Figure 4.2. Hence, the LIE formula for ligand-binding is [139]

�G = ↵
⇣
hEL�S

ele iPL � hEL�S
ele iL

⌘
+ �

⇣
hEL�S

vdWiPL � hEL�S
vdWiL

⌘
(4.26)

where EL�S is the interaction energy between the ligand and the sur-
roundings (either protein or solvent), ↵ and � are two parameters, and
the subscript of the ensemble averages indicates from which simulation
they are calculated.

In paper VIII, the efficiency of the LIE method was investigated and
compared to the efficiency of the MM/PBSA method (see below). It was
concluded that LIE is somewhat more efficient than MM/PBSA, although
the LIE method requires some special setup of the system. #
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Figure 4.2: Thermodynamic cycle to compute binding free energies
with LIE. L’ describes a ligand with zeroed charges, and L0 describes a
non-interacting (decoupled) ligand.

↵ is a parameter that scales the electrostatic interactions and depends
on the nature of the ligand. In the most common parametrisation [137], ↵
depends on the number of hydroxyl groups in the ligand and its charge. If
the ligand is charged, ↵ = 0.5, if the ligand is neutral and has no hydroxyl
groups, ↵ = 0.43, and if it is neutral and has one or more than one
hydroxyl groups, ↵ = 0.37 or 0.33, respectively. An attempt to include
other groups has been published recently [140]. The other parameter, �,
which scales the van der Waals interactions, is truly empirical. In the
work from the Åqvist lab, it is most commonly set to 0.18 [141, 142],
but many groups treat it as a fitting parameter [142]. There have been
attempts to derive an expression for the optimal parameter [143]. In
passing, it should be noted that in the literature, ↵ is sometimes used
as the parameter that scales the van der Waals interactions, and � is
therefore used as the parameters that scales the electrostatics. A third
parameter, �, has also been suggested that depends on some kind of
molecular surface of the ligand or the protein [144]. However this will
only affects the absolute estimates, and it is unclear if it improves the
results [145]. Additional terms such as hydrogen bonding terms have also
been added to Eqn 4.25 [146], but then the method becomes more of a
statistical method with terms partially derived from simulations.
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4.3.3 PDLD/s-LRA

Similarly to LIE and the double-annihilation methods, the LRA expres-
sion for ligand binding is obtained by taking the free energy of the bound
state and subtracting the free energy of the free state, i.e.,

�Gele = (4.27)
1

2

⇣D
�Ubound

E

PL
+

D
�Ubound

E

PL0
�
D
�U free

E

L
�
D
�U free

E

L0

⌘

Although the LRA method could be used to compute the electrostatic
part of the binding free energy, it suffers from the fact that interaction
energies with explicitly modelled solvent can be hard to converge [147].
Therefore, the semi-macroscopic protein-dipole–Langevin-dipole method
was introduced in the LRA framework, giving the PDLD/s-LRA method.
This approach tries to obtain more stable energies by using a simplified
water model and scaling the electrostatic interactions. Therefore, this
approach does not sample, �Ubound

= �U free
= EL�S

ele , but instead sam-
ples effective potentials derived from the thermodynamic cycles in Figure
4.3, viz.,

�Ubound
= (4.28)
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(4.29)

In addition to simulations of the complex and the free ligand, this method
requires also simulation of the complex and the free ligand with the ligand
charges zeroed (PL0 and L

0). Hence, this method does not assume that
these energies are negligible as in the LIE method. Gpol is the polar
solvation energy, EL

ele and EL�P
ele are the intramolecular and intermolecular

electrostatic energies, respectively, ✏int is an effective dielectric constant
of the solute, and ✏ext is the dielectric constant of the solvent.

Naturally, this method needs to be combined with an estimate of the
non-polar free energy. A common strategy is to borrow it from the LIE
method, giving the PDLD/s-LRA/� method [149, 150].

46



4 FREE-ENERGY ESTIMATES 4.3 Approximate methods






































ABCDBEBFAECB













Figure 4.3: Thermodynamic cycle used to derive the PDLD/s-LRA
terms. The binding free energy is calculated by the central cycle, which
is broken down into electrostatic and non-electrostatic contributions,
�Gbind = �Gbound

ele � �Gfree
ele + �Gnon�ele. The non-electrostatic term

is calculated by other approaches, see text, whereas the electrostatic
terms are further broken down into the two outer paths. �Gbound
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⌘
. Eqn

4.28 is the sum of the free energies A, B, and C and Eqn 4.29 is the sum of
the free energies D, E, and F. L is the ligand with full charge, whereas the
ligand charges have been zeroed in L’. The boxes with white and shaded
backgrounds indicate an enviroment with the solvent dielectric constant
equal to ✏ext and ✏int, respectively.
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In paper IX, the PDLD method was replaced with an Amber force
field and Possion–Boltzmann or generalised Born solvation, forming the
MMPB/s-LRA and MMGB/s-LRA methods. These methods were then
compared to the MM/PBSA method. #

4.3.4 MM/PBSA

Molecular mechanics with Possion–Boltzmann and surface-area solvation
(MM/PBSA) [11, 151, 152] is a method that also treats the polar part of
the binding free energy with continuum electrostatics. In this method,
the free energy of a state, either the protein–ligand complex, the free
protein, or the free ligand, is calculated from [11]

G = Eint + Eele + EvdW +Gpol +Gnp � TS (4.30)

where the three first terms are the molecular mechanics energies, viz.,
the internal (bonds, angles, torsions), electrostatic, and van der Waals
energies, Gpol and Gnp are the polar and non-polar solvation free energy,
and the last term is the absolute temperature times an entropy estimate.
The polar solvation energy could in principle be calculated by any con-
tinuum method and a common choice, apart from PB, is the generalised
Born (GB) method, giving the MM/GBSA method. In this thesis, I will
use MM/PBSA as the common name for this method. Furthermore, the
MM energies could in principle be calculated by QM methods instead.

Sometimes it is useful to separate the MM/PBSA energy terms into
a polar and a non-polar part. Whenever this is the case, the polar part
is defined as the sum of the Eele and Gpol term, and the non-polar part
is defined as the sum of the other four terms.

To compute the free energy of binding, an ensemble average of the
free energy of the complex is subtracted from the analogous averages for
the free protein and free ligand

�G = hG(PL)i � hG(P)i � hG(L)i (4.31)

Each of these averages should rigorously be calculated from three dif-
ferent simulations, one for each species, an approach that I will call the
three-average (3A-MM/PBSA) approach. However, it is much more com-
mon to simulate only the complex and then obtain the other species by
removing atoms [142]. Such an approach will be called the one-average
(1A-MM/PBSA) approach. The rationale is that such an approach will
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reduce the noise of the estimates. In addition, the Eint term will cancel
exactly.

The theoretical foundation of the MM/PBSA approach has been criti-
cised, although attempts have been made to connect it to thermodynamic
theories [15, 153]. One of the most criticised terms is the entropic term
[150], which is usually computed from normal-mode frequencies [11].

In papers I through VII, the MM/PBSA method was thoroughly exam-
ined, and all of the terms in Eqn 4.29 were tested separately. In paper IX,
the 3A-MM/PBSA was compared to the 1A-MM/PBSA method. Fur-
thermore, in paper XII, the MM/PBSA results were compared to ther-
modynamic integration calculations. All these tests are more thoroughly
described in Chapter 5. #

4.3.5 Continuum linear interaction energy

It is possible to replace the explicit ligand–water interactions in the LIE
method with estimates from continuum electrostatics. Such methods
have been presented several times before, but to my knowledge only for
the polar part [154, 155, 156]. Here, I will show how the non-polar part
can also be replaced with a continuum treatment. This method will be
denoted continuum LIE (CLIE). This will be useful when we compare
the different approximate methods in the next section.

In papers XI, we used a method that we called continuum LIE. However,
this uses a continuum description only for the electrostatic interactions
with the solvent. The van der Waals interactions with the solvent were
treated with explicit water. #

We start with the electrostatics part of Eqn 4.26, ↵(hEL�S
ele iPL�hEL�S

ele iL).
The electrostatic interactions between the free ligand and the surrounding
water molecules are simply hEL�S

ele iL = 2GL
pol, because the continuum sol-

vation methods are also based on linear response theory [156]. However,
the electrostatic interactions between the bound ligand and the surround-
ing water molecules are slightly more tricky to obtain. The hEL�S

ele iPL
term represents the free energy of turning off the ligand charges when it
is bound to the protein. This free energy can be shown to be a sum of
three terms [156]; the electrostatic interaction between the ligand and the
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protein, EL�P
ele , the polar solvation energy of the complex, 2GPL

pol, and the
polar solvation energy of the complex when the ligand charges is zeroed,
2GPL0

pol . (Here we assume that the internal energy of the ligand cancels).

Hence, hEL�S
ele iPL can be replaced with

D
2

⇣
GPL

pol �GPL0
pol

⌘
+ EL�P

ele

E

PL
.

It should be mentioned that an alternative form of the electrostatic
term has been used in CLIE [154]. To understand this, we write the total
continuum solvation free energy of the complex within the PB formalism

GPL
pol =

1

2

X

i

qi�(ri) =
1

2

X

p

qp�(rp) +
1

2

X

l

ql�(rl) = (4.32)
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2

X
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qp(�
P
(rp) + �L

(rp)) +
1

2

X

l

ql(�
P
(rl) + �L

(rl))

where �(r) is the reaction field (RF) of both the protein and the ligand,
which can be divided into a RF of the protein, �P

(r), and a RF of the
ligand, �L

(r). The sum over i takes into account all the charges in the
system, which can be divided into ligand charges denoted by l and protein
charges denoted by p. Likewise, GPL0

pol = 1/2
P

p qp�
P
(rp) and therefore,

GPL
pol �GPL0

pol =

1

2

X

p

qp�
L
(rp) +

1

2

X

l

ql(�
P
(rl) + �L

(rl)) (4.33)

whereas the alternative [154] is only to evaluate the last two terms of Eqn
4.32, which we will denote by G

L(P)
pol , and therefore ignore the interaction

between the protein charges and the part of the RF created by the ligand.
The motivation is that this represents the interaction between the ligand
and the total RF and therefore the interaction between the ligand and
the solvent. To obtain G

L(P)
pol , we need to evaluate Eqn 4.32 but also GPL0

pol

and GP0L
pol = 1/2

P
l ql�

L
(rl) . G

L(P)
pol is then obtained by combining the

different calculations, viz., G
L(P)
pol =

1
2

⇣
GPL

pol �GPL0
pol +GP0L

pol

⌘
. Herein, I

will only use the expression in Eqn 4.33.
Next, we consider the non-polar part of Eqn 4.26, �(hEL�S

vdWiPL �
hEL�S

vdWiL). The van der Waals interactions can be replaced by the cor-
responding continuum estimates. As described in Chapter 2.3.2, this is
simply a integral over solute surface segments. For the free ligand, Eqn
2.20 or 2.21 can be applied directly, but again, for the bound ligand, the
situation is a little bit more complicated. However it is easy to realize
that the sum in Eqn 2.20 can be divided into a sum over all ligand atoms
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and a sum over all protein atoms, hence

EPL
cvdW =

X

l

⇢

Z
ULJ(r)dr+

X

p

⇢

Z
ULJ(r)dr = (4.34)

E
L(P)
cvdW + EP0

cvdW

where cvdW is used as an abbreviation for continuum van der Waals,
and the term we are interested in is E

L(P)
cvdW because this is exactly the

interaction between the ligand and the solvent.
Now, we can put everything together and the continuum LIE method

can be written as

�G = ↵
hD

EL�P
ele

E

PL
+ 2

D
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pol

E

PL
� 2

⌦
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+ (4.35)

�
hD

EL�P
vdW

E

PL
+

⌦
EPL

cvdW � EP0
cvdW

↵
PL

�
⌦
EL

cvdW

↵
L

i

4.3.6 Comparison of approximate polar methods

It is instructive to compare the various approximate approaches to es-
timate binding affinities. Although the main equations look rather dif-
ferent, all methods have some things in common. In this section, I will
compare the polar parts of 1A-MM/PBSA, PDLS/s-LRA, and continuum
LIE.

I start the comparison by setting the solute dielectric constant in
the PDLD/s-LRA method to unity, because that is the constant usually
adopted in MM/PBSA calculations. However, it is easy to use a different
constant in both MM/PBSA and CLIE. It should be noted that the
internal dielectric constant is less of a physical constant than a parameter
of the method [147, 157]. Assuming an internal dielectric constant of
unity, PDLD/s-LRA reduces to

�G =

1

2

⇣
⇣
hGPL

pol �GPL0
pol iPL + hGPL

pol �GPL0
pol iPL0

⌘
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(4.36)
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where ⇣ = (1� 1/✏ext) = 0.99 (in water).

In paper IX, we tested the influence of the internal dielectric constant in
the MM/PBSA and PDLD/s-LRA methods. Depending on the system
and the method, an increased dielectric constant could be advantageous
or disadvantageous. #

After inserting Eqn 4.30 into Eqn 4.31, the polar part of the 1A-MM/PBSA
approach is

�G = hEL�P
ele iPL + hGPL

pol �GP
poliPL � hGL

poliPL (4.37)

By identifying four different types of interactions in the equations, protein–
ligand interactions, ligand intramolecular electrostatic energy, protein sol-
vation, and ligand solvation, the three methods are compared in Table 4.1.
The protein–ligand interactions are treated similarly in 1A-MM/PBSA
and CLIE, although CLIE scales the interaction. PDLD/s-LRA on the
other hand average the interaction over two ensemble averages, and the fi-
nal energy would be somewhere between the 1A-MM/PBSA and CLIE en-
ergy. PDLD/s-LRA is also the only one that treats changes in intramolec-
ular energy, although this could be achieved with the 3A-MM/PBSA
methods. The protein solvation term is treated rather differently in the
three methods. MM/PBSA considers an unbound cavity that is void of
ligand and therefore filled with continuum solvent, whereas PDLD/s-LRA
and CLIE consider an unbound cavity that is filled with a non-interaction
ligand. In addition, PDLD/s-LRA takes contribution from two ensem-
bles, and both this method and CLIE scales the solvation, although it
is clear that the effective scaling is close to unity. The ligand solvation
is also treated rather differently. 1A-MM/PBSA takes this contribution
from the complex simulation, although this could be improved by using
the 3A-MM/PBSA method. PDLD/s-LRA averages over two ensembles
and also scales the solvation. CLIE uses in principle the pure solvation
free energy of the ligand. In conclusions it seems that the one of the
largest difference is that MM/PBSA is the only method that does not
scale the energies, most clearly seen for the protein–ligand interaction
energy. Recently is was suggested that scaling could improve the results
[150] and a test has been made in that direction [158].
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Table 4.2: Comparison of approximate methods to compute non-polar
binding free energy

Interaction 1A-MM/PBSA CLIE

EL�P
D
EL�P

vdW

E

PL
�
D
EL�P

vdW

E

PL

Protein non-polar
solvation

⌦
EPL

cvdW � EP
cvdW

↵
PL

�
⌦
EPL

cvdW � EP0
cvdW

↵
PL

Ligand non-polar
solvation

�
⌦
EL

cvdW

↵
PL

��
⌦
EL

cvdW

↵
L

Cavitation energy h��GcaviPL

Entropy h�TSiPL

4.3.7 Comparison of approximate non-polar methods

In this section, I will compare the non-polar terms of 1A-MM/PBSA
and CLIE. I start the comparison by choosing the PCM method for the
non-polar solvation free energy (see chapter 2.3.2) and expand the 1A-
MM/PBSA approach, which gives

�G = hEL�P
vdW + EPL

cvdW � EP
cvdW � EL

cvdWiPL + (4.38)
h��Gcav � T�SiPL

Similar to the comparison of polar methods, I here introduce a number of
interactions, protein–ligand van der Waals interactions, protein non-polar
solvation, ligand non-polar solvation, cavitation energy, and entropy. The
comparison is made in Table 4.2

The interaction energy between the protein and the ligand is iden-
tical, but CLIE scales this term (and usually rather extensively). The
protein non-polar solvation differ in which unbound cavity the methods
assume: 1A-MM/PBSA assumes that the unbound cavity is completely
void of ligand and therefore filled with solvent, whereas the CLIE method
assumes that it is filled with a non-interacting ligand. 1A-MM/PBSA cal-
culates the ligand non-polar solvation from a complex ensemble, although
this could be improved with the 3A-MM/PBSA. Again, CLIE scales this
term. Furthermore, CLIE lacks an explicit cavitation term, although such
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a term has been suggested. CLIE also lacks an entropy term, but it has
been argued that it is implicitly in the � parameter [159]. In the stan-
dard MM/PBSA approach, a SASA term is used that should in principle
model protein and ligand solvation, as well as cavitation energy.

From this and the preceding section, it is clear that approximate con-
tinuum solvent-based methods differ mostly in the non-polar treatment,
whereas the polar treatment is rather similar.
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5 Summary of thesis work

In this chapter I will shortly summarize the most important findings of
this thesis. As the papers are only a few pages away, there is no need to
repeat the abstracts but I rather try to provide a quick overview of what
have been done. I have followed a logical rather than a chronological
order to make a more clear connection between the papers. Furthermore,
I have divided the fifteen papers into two sections. First, I will discuss the
evaluation of the MM/PBSA method and the comparison with the LIE
and PDLD/s-LRA/� methods. Thereafter, I will discuss three studies
in which rigorous methods rather than approximate methods have been
used as the main tool.

5.1 Approximate methods

Most of the papers in this thesis are dedicated to the evaluation of the
MM/PB(GB)SA method. In paper I, we start with investigating how
to obtain MM/GBSA estimates with a statistical precision of 1 kJ/mol.
Typically, MM/PBSA gives poor precision and thus could not be com-
pared to other methods, although this is a topic rarely discussed in the
literature. We tested if it is best to run a single long simulation or if
it is advantageous to run several short simulations. As a test case, the
tetrameric protein avidin was used. Because the four binding sites are
equivalent, a reliable method should give four identical estimates within
the statistical uncertainty. This could not be obtained by running a single
long simulation because the estimated standard error was too low. How-
ever, by running several simulations and average the results, we could
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Figure 5.1: MM/GBSA results for 20 simulations and 4 subunits of the
avidin–biotin complex.

obtain converged results. As shown in Figure 5.1, the estimates from
the different simulations could differ by up to 70 kJ/mol, illustrating the
imprecise nature of the method. By averaging over 20 to 25 simulations,
the goal of a precision of 1 kJ/mol, could be reached.

In the second study, paper II, we investigated several methods to
obtain statistically independent simulations. Four different approaches
were tested

1. Velocity-induced independent-trajectories (VIIT)

2. Solvent-induced independent-trajectories (SIIT)

3. Conformation, rotation, and protonation-induced independent-traj-
ectories (CRPIIT)

4. Alternative conformation-induced independent-trajectories (ACIIT)

These approaches were introduced in Chapter 3.3.2 and all of them take
advantage of some ambiguities when setting up a biolmolecular system for
simulations. We found that SIIT and ACIIT could improve the sampling,
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compared to the simpler and more common VIIT approach. Therefore,
it is recommended to always use at least SIIT. (ACIIT can naturally only
be used when the crystal structure contains alternative conformations.)
CRPIIT could also be used to improve the sampling, but care must be
taken so that the chemistry of the active site do not change.

In the following five papers, we evaluated each of the terms in the
MM/PBSA method, viz., the energy model, polar and non-polar sol-
vation, and entropy. In paper III, we replaced the MM energies (elec-
trostatics and van der Waals) with a semi-empirical QM method and
the polar solvation method with COSMO. Three different Hamiltonians
were tested, viz., AM1, RM1, and PM6. These Hamiltonians were sup-
plemented with empirical corrections for hydrogen-bonds and dispersion
interactions. It was found that all of the Hamiltonians perform more or
less equally well compared to experiments, although AM1 was on average
the best method. However, it was clear that a dispersion correction was
required to obtain any correlation with experiment. The benefit of the
hydrogen-bond correction was not clear but it can be applied by default
because it is very cheap. However, even with the best method and both
corrections, the results were not significantly better than with the regular
MM/PBSA method.

In paper IV, we introduced the 3D-RISM method into the MM/PBSA
framework, by replacing the polar and non-polar terms. This also gave
us a chance to compare this method to the usual GB and PB methods.
In total, we tested two variants of 3D-RISM, two implementations of
PB, and four different GB methods. The binding-affinity estimates when
using each of these methods are shown in Figure 5.2. It is clear that
many of the methods gave similar relative affinities, although there are
differences of about 40 kJ/mol. However, the absolute affinities varied sig-
nificantly more depending on the solvation method with differences up to
200 kJ/mol. Therefore, it is meaningless to discuss absolute MM/PBSA
results. Also, we saw no advantage of using 3D-RISM even though it is
more rigorous.

In papers V and VI, we evaluated three continuum estimates of the
non-polar solvation free energy by comparing them to rigorous thermo-
dynamic integration calculations. Three different continuum estimates
were considered, viz., SASA, CD, and PCM (see Chapter 2.3.3). In pa-
per V, we studied the binding of benzene to the engineered cavity of
T4-lysozyme. This cavity is void of any water molecules in the unbound
state, something that the continuum methods cannot handle because they
fill all unoccupied space with continuum water.
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Figure 5.2: MM/GBSA results for seven avidin ligands using various
polar solvation methods.

However, this behaviour could be corrected for by introducing a non-
interacting ligand in the unbound state. In paper VI, this study was ex-
tended to four other protein systems with a varying degree of solvation in
the unbound protein. It was found that neither of the continuum method
could give an accurate estimate on the wide range of protein systems as
illustrated in Figure 5.3. This is because they neglect the microscopic
structure of water molecules, the interaction energy between the active
site water molecules and the protein, and the entropy change when the
water molecules are expelled by the ligand. The SASA performed best
overall but only because it is a restrictive method, always giving small
estimates. We showed how the PCM method could be improved by sup-
plementing it with energies from explicit simulations, but the set of test
cases was too small to determine if this is a general approach.

Finally, in paper VII, we evaluated the normal-mode entropy usually
employed in the MM/PBSA method. We showed that removing residues
within 8 to 16 Å of the ligand but including a buffer region of residues and
water molecules changes the absolute entropies by 1 to 5 kJ/mol on av-
erage. However, the error introduced is systematic and relative entropies
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Figure 5.3: Non-polar solvation free energy using either PCM or CD
for five complexes. The results are plotted on a relative scale; at 0 the
continuum estimates are most accurate if the unbound site is void of
water (P0), and at 1 the continuum estimates are most accurate if the
unbound site is filled with water (P). The figures indicate the solvent
exposure of the active site.

deviate not more than 1.5 kJ on average, which is within the statistical
uncertainty. Hence, we have showed that it is more advantageous to use
a truncated protein because it is much more efficient and gives better
precision than calculations of a full protein.

In paper VIII, we compare MM/PBSA with LIE. Because we used
only one test we could not make any definite conclusion about the accu-
racy of the method. Therefore, we concentrated on the precision of the
two methods and the computer time required to obtain the estimates. It
was found that LIE was more efficient than MM/PBSA. For a truncated
simulation, LIE is about 2–7 times more efficient and for a full protein
it is about 1.0–2.4 times more efficient. However, LIE requires a special
setup of the simulation, e.g., neutralisation of amino-acid residues and
this seems to affect the results. Moreover, LIE cannot easily be used to
study four binding sites of avidin simultaneously.
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We continued the comparison of approximate methods in Paper IX, by
comparing variants of the MM/GBSA, MM/PBSA, and PDLD/s-LRA/�
method. We tested different ways to average energies from simulations,
i.e., a one-average or three-average MM/PBSA or a LRA treatment which
require simulations of the protein and free ligand both when the ligand
is fully charged and when its charges have been zeroed. Furthermore,
we tested if the methods could be improved by scaling the electrostatics
energies with a dielectric constant. The study showed that the results
are highly system dependent.

In paper X, I step away from protein system and look instead at host–
guest complexes. Such complexes are interesting test systems because
they are smaller whereas the binding is dictated by the same forces as
in a protein system. I evaluated MM/PBSA, MM/GBSA, and LIE on
their ability to reproduce experimental results for two sets of host–guest
complexes. Because there is no tailor-made force field for such systems, I
investigate the effect of three different charge schemes. The methods were
very robust regarding the choice of charges and hence it is sufficient to
use the cheap AM1-BCC charges. MM/GBSA reproduced experimental
affinities well on both test systems, whereas LIE required optimisation of
the non-polar part for one of the test systems.

In paper XI, we present our predictions to the Sampl3 challenge. The
Sampl3 challenge is a blind test of affinity predictions for 34 ligands to the
trypsin protein. We participated with estimates using MM/PB(GB)SA,
(C)LIE, and Glide score. (In this study, we only used continuum electro-
statics in CLIE). Unfortunately, none of the methods were able to give
accurate results. However, many of the experimental affinity differences
were not statistical significant and the range of experimental affinities
were narrow. Removing pairs of ligands with differences that are not sta-
tistical significant, rather accurate ranking of the remaining ligands pairs
could be obtained. Half of the ligands were considered non-binders be-
cause their affinity could not be measured experimentally. CLIE or LIE
were either equal or worse than a random guess too discriminate between
binders and non-binders. However, MM/PBSA and MM/GBSA were sig-
nificantly better than chance. The Sampl3 challenge, also included a test
of host–guest affinities. Here, MM/PBSA, MM/GBSA, LIE and CLIE
performed well, whereas Glide score was slightly worse. This highlight
that the methods are highly system-dependent.
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5.2 Rigorous methods

In Paper XII, we move away from the approximate methods. The main
objective is to determine an optimal TI protocol. As a test case, we use
nine inhibitors to the factor Xa enzyme. We wanted to know how many
intermediate states were necessary for an accurate estimate, how long
simulations that are required, and if it was best to separate the electro-
static and van der Waals perturbation or not. We found that rather few
intermediate states were required, five if we performed the electrostatic
and van der Waals perturbation separately, and only three if the two
perturbations were done simultaneously. For the free ligand simulations,
about 2 ns of sampling was required, whereas the complex simulations
only required 1 ns to converge. This protocol gave accurate results, ex-
cept if we attempted a perturbation from a ligand with +2 net charge to
a ligand with a +1 net charge. In such perturbation, we obtained errors
compared to experiments on the order of 30 kJ/mol. Finally, we com-
pared the TI results to MM/GBSA and found that TI is slightly more
accurate and actually the more efficient method. The latter comes from
the fact that TI is inherently more precise, whereas MM/GBSA requires
averaging over many independent simulations to reach a similar precision.

We continued with the development of a rigorous protocol in paper
XIII. Here, we investigate if we could go from a periodic system to a
non-periodic system, and then truncate the non-periodic system. A com-
parison of the periodic and non-period simulations revealed a high de-
gree of correlation and none of the differences were statistical significant.
Therefore, we started to truncate the water droplet, and we could do that
successfully for all ligands down to 15 Å radius, without introducing an
error in the affinity estimate of more than 1 kJ/mol on average (see Fig-
ure 5.4). By truncating the system we could reduce the computational
cost by a factor of 500.

Next, in paper XIV, we study another approach to improve the effi-
ciency of rigorous calculations. In this approach, only a single reference
molecule was simulated instead of all the other ligands. The idea is that
the reference molecule should encompass all the other ligands of inter-
est, i.e., it should be able to sample configurations important to many
ligands and therefore it contains soft-core sites. After the simulation of
the reference molecule, it is perturbed to all the real ligands. This ap-
proach was tested on the factor Xa inhibitors, and it was found that for
non-polar perturbations the approach worked satisfactorily. However, for
polar perturbations, the approach introduced large errors. The solution
is to make several reference states.
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Figure 5.4: Free energy of transform one ligand into another when they
are bound to the protein. Free energies are shown for different system
radii, relative to a system with the entire protein.

The final paper, paper XV, is more about entropies than free energies.
However, it compares statistical properties of entropy estimates with the
properties of free energy estimates and therefore, it is included in this
thesis. The title of the paper tells the objective: we want to find out if
molecular dynamics simulations of protein will converge to an equilibrium
state. This was motivated by our studies on conformational entropies and
related quantities, where we have observed slow convergence of absolute
entropy estimates. In this paper, we present a simple protein model that
describes this behaviour and we perform 500 ns simulations of three pro-
tein systems. Because the entropy did not converge, we asked ourselves
if other properties from MD simulations do converge. Therefore, we also
computed MM/GBSA estimates for two ligands, and perform the first
step in a FEP estimate of the electrostatic and van der Waals pertur-
bation. We show that MM/GBSA fluctuates by 3 to 15 kJ/mol due to
conformational changes. In contrast, the FEP estimate fluctuates less
than 1 kJ/mol. Hence, from a statistical and thermodynamical perspec-
tive, an FEP approach is preferred.
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Concluding remarks

A little more than a decade ago, Kollman and co-workers declared that
a new era of biomolecular simulations had begun: the era of structure
and free-energy calculations. Owing to advances in simulation techniques
such as particle-mesh Ewald summation, improved theories for computing
free energies such as double-decoupling, and much better potentials for
macromolecules, it was envisioned that simulations could be used on a
routine basis to estimate ligand binding affinities. As a decade has past,
it is pertinent to ask: Has this vision come through? Where are we now?
And how do we move on from here? I believe that the research presented
in this thesis can cast some light on these questions.

In the same paper where Kollman and co-workers declared the new
era they, for the first time, published a unified presentation of the MM/
PBSA method (although it had been used previously). Looking at the
results of the research in this thesis, it is clear that MM/PBSA was not
the answer to all problems. Although it is probably the most popular
simulation-based method to estimate affinities, it suffers from huge prob-
lems. Perhaps the most clear and alarming problem was presented in
paper VI, on the study of non-polar solvation free energies. The con-
clusion drawn in this paper is that MM/PBSA is unable to accurately
predict the relative affinity between two ligands, if the structure of the
ligand differs significantly. This immediately precludes one of the best
uses of MM/PBSA, i.e., to predict relative affinities without concern of
structural similarities of the ligands that is a requirement for many of the
rigorous methods.

In my view, the LIE and PDLD/s-LRA� methods suffer from similar
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problems, although it is less obvious, because the non-polar solvation free
energy is partly parametrised. Ultimately this come down to whether the
method can handle a variable number of water molecules in the active
site, both when different ligands are bound and when the protein is un-
bound. Because neither LIE nor PDLD/s-LRA� requires a simulation
of the unbound protein, they cannot consistently treat water expulsion.
Additional terms that are based on a surface term have been suggested
to improve LIE, but we have shown that such a method predicts the
non-polar solvation free energy poorly.

Rigorous free energy methods based on TI or FEP can theoretically
treat a variable number of water molecules, although it requires more
sampling. Starting with methods that attempts to compute absolute free
energies, because they could potentially remove the need for approximate
methods such that MM/PBSA and LIE, the outlook for accurate and ef-
ficient estimates are promising at best. At the moment, they require an
enormous amount of computer resources to reduce the uncertainty. In
papers V and VI, we used such methods with very small ligands and
already a ligand of more than 20 atoms, we had problems with the pre-
cision. This can of course be solved by prolonging the simulations, but
waiting a month or more to obtain a precise estimate probably scares
off most researchers. However, with increased computer resources, this
could be feasible in the future.

However, using TI or FEP to compute relative affinities seems to
be more promising. We have shown that the efficiency can be improved
without loosing accuracy or precision. But of course these methods suffer
from limitations themselves. One of them is that only small perturba-
tions can be practically handled. Therefore, if it is of interest to study
larger changes, several intermediates ligands have to be created. Another
drawback of the TI and FEP methods, is that they cannot easily be used
study changes in total charge of the system. For instance, it was not pos-
sible to accurately predict the relative affinity of a ligand with a charge
+2 to a ligand with a charge +1. Hence, relative affinity methods work
efficiently, but are restricted in their use.

The above concerns are mainly technical and some of them will proba-
bly be solved in the future. However, it is also of interest to note how well
the methods do their job, i.e., how accurate are the available methods?
And perhaps more interesting: What accuracy can we expect? What
kind of systems can be studied? This thesis also has some guidelines to
this end.

Looking at the Sampl3 challenge in paper XV, it is clear that none
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of the approximate methods tested were able to accurately predict the
affinities. However, we must consider the narrow range of the experi-
mental affinities (⇠ 9 kJ/mol). A successful method on such a test case
must have a high accuracy but also a very a high precision. The precision
would need to be better then the experimental precision, which of course
indicates that for such a test case the problem is only partly computa-
tional. As shown in that paper, only ⇠ 20% of the experimental pairs
had a free energy difference that were statistical significant.

In many projects, we have used avidin that is much better test case
from a computational perspective. The free energy difference between
many of the ligands is so large that we do not have to worry about the
experimental uncertainty. However, it is less interesting from a real-life
perspective because it would be a truly rare compound series of putative
drugs that have a range of over 70 kJ/mol.

To conclude, I would say that the vision of Kollman and co-workers
has not been fully realised. For some problems, free energy calculations
can be routinely used, but it is a long way until we could put any two
ligands in the computer, press a button, go home, sleep, and read off an
accurate and precise estimate of the affinity the next morning.
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