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Abstract—In very-large multiple-input multiple-output
(MIMO) systems, the base station (BS) is equipped with very
large number of antennas as compared to previously considered
systems. There are various advantages of increasing the number
of antennas, and some schemes require handling large matrices
for joint processing (pre-coding) at the BS. The dirty paper
coding (DPC) is an optimal pre-coding scheme and has a
very high complexity. However, with increasing number of
BS antennas, linear pre-coding performance tends to that of
the optimal DPC. Although linear pre-coding is less complex
than DPC, there is a need to compute pseudo inverses of
large matrices. In this paper we present a low complexity
approximation of down-link Zero Forcing (ZF) linear pre-coding
for very-large multi-user MIMO systems. Approximation
using a Neumann series expansion is opted for inversion of
matrices over traditional exact computations, by making use
of special properties of the matrices, thereby reducing the cost
of hardware. With this approximation of linear pre-coding,
we can significantly reduce the computational complexity for
large enough systems, i.e., where we have enough BS antenna
elements. For the investigated case of 8 users, we obtain 90%
of the full ZF sum rate, with lower computational complexity,
when the number of BS antennas per user is about 20 or more.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) techniques for

wireless communication offer high data rates and reliabil-

ity through the utilization of multiple transmit and receive

antennas. These techniques are becoming more mature and

have been incorporated in advanced standards like LTE (Long

Term Evolution) Release 10 [1] to meet the International

Mobile Telecommunications-Advanced (IMT-A) requirements

of gigabits-per-sec data rates. Basically, the more antennas the

transceivers are equipped with, the better performance can

be obtained in terms of data rate, diversity (reliability) and

spectral efficiency.

In [2], a Multi-User (MU) MIMO system with (an assump-

tion of) unlimited number of base station (BS) antennas in

a multi-cell environment is investigated. It is shown that all

the effects of uncorrelated noise and fast fading disappear, as

does the intra-cell interference. The assumption of an unlim-

ited number of BS antennas greatly simplifies the theoretical

analysis. However, it is obvious that in a practical system the

number of antennas cannot be arbitrarily large due to physical,

cost, and power constraints.

The theoretical analysis in [2], assumes that inner products

between propagation vectors of different users grow at a

slower rate than inner products of the propagation vectors

with themselves when the number of antennas grow, i.e.,

the user channels are asymptotically orthogonal. In [3], mea-

surements in a realistic propagation environment for large

array of antennas at a BS (up to 128 antennas at the BS

and 26 different single antennas users) are performed. It

was shown that by using reasonably large antenna arrays it

is possible to decorrelate single user channels. Furthermore,

in [4], residential area measurements for very-large MIMO

system were performed, showing linear pre-coding sum rates

of up to 98% of those achieved by dirty paper coding (DPC),

for BS to Mobile Station (MS) antenna ratios as low as 10.

Although there is a clear benefit of scaling up the number

of BS antennas, including an almost (near) optimal linear pre-

coding, the hardware cost and signal processing complexity

can be very high. When using linear pre-coding, such as

Zero-Forcing (ZF), we can operate at the above mentioned

BS/MS antenna ratios around 10 and the main source of

complexity for ZF pre-coding becomes the inverse of a K×K
matrix, where K is the number of users. The assumption of

a significantly higher number of antenna elements does not

affect the dimensions of this matrix, but it does offer the

opportunity to carry out the matrix inverse by much simpler

means than outright inversion.

There are various hardware implementations for matrix

inversion using different algorithms, QR-Gram Schmidt [5],

QR-Givens Rotation [6], and Gauss-Jordan [7]. While these

methods are generic and work well for any type of matrix,

we can exploit the special structure of matrices appearing in

very-large MIMO to reduce the complexity of the linear pre-

coding and make it more hardware efficient. To meet these

objectives, approximations (using Neumann series) of matrix

inversion is opted rather than computing the exact inverse.

We describe the general setting in which our pre-coding is

assumed to operate, discuss the linear class of pre-coders, and

finally focus on complexity of the ZF pre-coder, when using

QR-Gram Schmidt and Neumann series expansion to perform

matrix inversion. We derive and compare complexity both in

terms of the number of operations and the energy required to

perform the computations.
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Fig. 1: System model of a MU-MIMO system with M-antenna

base station and K single-antenna mobiles stations.

II. SYSTEM DESCRIPTION

The system model and the pre-coding in the following

section is in line with the corresponding description in [8].

A MU-MIMO system model consists of a BS equipped with

M antennas, which is simultaneously serving K single users

antenna, as shown in Fig. 1. The received vector y of size

K × 1 is described as

y =
√
ρHz + n , (1)

where H is the K ×M propagation matrix of complex-valued

channel coefficients, z is an M × 1 transmit vector, and n is

an additive noise vector with Independent and Identically Dis-

tributed (IID) zero-mean and unit-variance complex Gaussian

random variables. The scalar ρ is a measure of the Signal-to-

Noise Ratio (SNR) of the link, which is proportional to the

transmitted power divided by the noise-variance. Furthermore,

it also absorbs various normalizing constants. The total trans-

mit power is normalized and independent of the number of

antennas M , the transmit vector z satisfies E{||z||2} = 1 .
The pre-coding process at the transmit side is specified as

z = Fx , (2)

where F is a M ×K pre-coding matrix, x a K × 1 vector

containing user symbols, as described in [4].

Although the very-large MU-MIMO model is similar to a

standard MIMO model, the increased number of BS antennas

has several consequences. Things that were random before,

now start to look deterministic. For example, the distribution

of the singular values of the channel matrix approaches a

deterministic function [9]. Another observed property is that

very wide (or tall) matrices tend to be very well conditioned.

III. LINEAR PRE-CODING SCHEMES

The optimal sum rate in the downlink of a MU-MIMO

system with prefect channel state information (CSI) can be

achieved by the interference pre-subtraction coding technique

called DPC [10]. The optimal sum rate is given as

CDPC = max
Tr(P )=1

log2 det (I + ρHHPH), (3)

where P is a K × K diagonal matrix for power allocation.

The sum rate is maximized by optimizing the power allocation

under the constraint that Tr(P ) = 1, where Tr(·) is the trace

operator.

Although optimal sum rate is achieved by DPC, this

approach is too resource expensive to be implemented in

hardware and is used as a benchmark for ZF, Minimum Mean

Square Error (MMSE) and low complexity approximations of

ZF. The pre-coding matrix F can be decomposed as

F =
1√
γ
W

√
P , (4)

where W represents a particular linear pre-coding algorithm,

and γ = ||W
√

(P )||2F , is a power normalization factor, where

|| • ||F is Frobenius Norm.

A. ZF pre-coding scheme

ZF linear pre-coding transmits user signals towards the

intended user with nulls steered in the direction of other users.

The ZF pre-coder is given as

WZF = H† , (5)

where H† = HH(HHH)−1 is the pseudo-inverse of the

channel matrix H . A perfect CSI at the transmitter and nulling

makes this scheme interference free, and the sum rate is given

as

CZF = max
Tr(P )=1

K
∑

i=1

log2

(

1 +
ρPi

γ

)

. (6)

As the number of BS antennas M increases, H tends to

have nearly orthogonal columns as the terminals are not

correlated due to their physical separation. This assures that

the performance of ZF pre-coding will be close to that of

optimal DPC pre-coding. However, ZF pre-coding requires

computation of the pseudo-inverse (in (5)), which requires the

computationally expensive inversion of a K ×K matrix.

B. MMSE pre-coding scheme

MMSE pre-coding can trade interference reduction for

signal power inefficiency. The MMSE pre-coder is given as

WMMSE = HH
(

HHH + αI
)−1

, (7)

where α = K/ρ. At low SNRs (large α) the MMSE ap-

proaches a Matched Filter (MF) pre-coder, i.e., WMF = HH ,

and at high SNRs (low α) it approaches the ZF pre-coder.

C. Low Complexity Pre-Coding

A problem with both ZF and MMSE pre-coding is the

inverse operation of the K ×K matrix. Since the complexity

for both linear pre-coders is similar (when α is not large in

(7)), in this paper we analyse impact of low complexity (ap-

proximations) only on ZF pre-coder. A standard and expensive

approach would be to compute the exact inverse of the matrix

Z(, HHH) in

WZF = H† = HH(HHH)−1 = HH(Z)−1 . (8)



However, as the number of BS and MS antennas (M and

K) increases, the eigenvalues of the matrix Z converges to

a fixed deterministic distribution known as the Marchenko-

Pastur distribution. Now following the analysis in [8], the

largest and the smallest eigenvalues of Z converge to

λmax(Z) −→
(

1 +
1√
β

)2

, λmin(Z) −→
(

1− 1√
β

)2

,

where (β = M/K), as M and K grows to infinity. By scaling

the Z matrix with a factor
(

β
1+β

)

, the eigenvalues are found

in the region

λmax

(

β

1 + β
Z

)

−→
(

1 + 2

√
β

1 + β

)

,

λmin

(

β

1 + β
Z

)

−→
(

1− 2

√
β

1 + β

)

. (9)

Hence, the eigenvalues of IK−β/(1+β)Z = IK−Z/(M+K)
lie in the range [−2

√
β/(1 + β), 2

√
β/(1 + β)], where IK is

an K×K identity matrix. By asymptotically increasing β, the
eigenvalues of IK − Z/(M +K) lie in the range

lim
β→+∞

[

(

−2

√
β

1 + β

)

,

(

2

√
β

1 + β

)

]

−→ [−0, 0] . (10)

Therefore, as β grows, the faster is the convergence of

lim
n→∞

(

IK − 1

M +K
Z

)n

≃ 0K . (11)

It is known that if a matrix satisfies (11), its inverse can be

expressed by Neumann series [11] as

Z−1 ≈ δ

M +K

L
∑

n=0

(

IK − δ

M +K
Z

)n

, (12)

with equality when L grown to infinity, and δ < 1 is a

attenuation factor introduced, since for finite M and K the

eigenvalues of channel realizations may lie outside the range

specified in (9). For a feasible implementation of a matrix

inversion using Neumann series the number of iterations (L)
needs to be finite (or small).

The inverse of Z is approximated by a summation of powers

of a matrix (or matrix multiplications) (12), which has a

complexity order O((L − 1) ·K3). Although the complexity

order can be equal or higher (depending on L) than computing

the exact inverse (direct inversion, QR based etc), matrix

multiplications are preferable in hardware compared to exact

inversion.

The convergence of (11) is based on the fact that the

eigenvalues lie in the range given by (9) as M and K grows

asymptotically. However, for practical systems with finite M
and K the eigenvalues may lie outside this range. In addition

to what is described in [8], we introduce one modification of

the Neumann series inversion. It is based on the fact that the

closer the eigenvalues of our matrix are to 1, the faster the

convergence of the series in (12).

The modification is described as follows. The scalar multi-

plication by δ/(M +K) in (12) is represented as a diagonal

matrix

DMP =
δ

M +K
IK .

Using this notation, (12) is rewritten as

Z−1 ≈
L
∑

n=0

(IK −DMPZ)
n
DMP , (13)

the accuracy of the approximation, for a given number of terms

(L), depend on the size of the eigenvalues of (I − DMPZ).
The smaller their magnitude, the faster the convergence. Given

this, we want to pre-condition our matrix Z so that it will lead

to a fast convergence for a finite M and K system.

Now, assume that we want to pre-condition it with a diag-

onal matrix D, with non-zero diagonal entries. In principle,

we would like to calculate the eigenvalues of (I −DZ) and

optimize D so that the magnitudes of the eigenvalues are as

small as possible. This, however, is a complex and non-trivial

task. We will therefore use Gershgorins circle theorem [12] to

derive an upper bound of the magnitude of the eigenvalues.

By keeping this bound small, by selecting D, we can also

guarantee that the magnitude of the eigenvalues are small.

In this derivation of the ”optimal”D we will assume that the

Hermitian matrix Z = HHH is diagonally dominant, meaning

that the magnitude of the diagonal elements zii are larger than
the sum of the magnitude of the off-diagonal elements in the

same row, zij , i 6= j, namely that |zii| >
∑

i6=j |zij |. The
largest magnitude of any eigenvalue of (I − DZ) is upper

bounded by

max
i

|λi| ≤ max
i

(

|1− dizii|+ di
∑

i6=j

|zij |
)

, (14)

and under the condition of a diagonally dominant Z , the

smallest upper bound is obtained if di = 1/zii. For this

selection of D we also have that max
i

|λi| < 1, which

guarantees convergence of the Neumann series. Hence, our

final approximation of the inverse of a diagonally dominant

Z is a matrix D = diag(1/z11, 1/z22, ...., 1/zkk), the inverse

can be expressed using Neumann series as

Z−1 ≈
L
∑

n=0

(IK −DZ)
n
D . (15)

A fast (or accelerated) way to compute the series (15) and

(12), up to L = 2P − 1 terms, where P is an integer, is to use

the identity

Z−1 ≈
L
∑

n=0

(IK −DZ)
n
D =

( P−1
∏

n=0

(I + (I −DZ)2
n

)

)

D,

(16)

which leads to a numerical complexity proportional to the

logarithm of the number or terms in the truncated series. In

terms of number of matrix multiplications, the brute force

computation of the inverse using (15) (or (12)) would require
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Fig. 2: Sum rate for pre-coding schemes at SNR = 30 dB,

number of users (K = 8), in very-large MU-MIMO systems.
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Fig. 3: Percentage of Ideal ZF sum rate achieved by ap-

proaches (12) and (15) at SNR = 30 dB.

L − 1, whereas computation using (16) would require only

2(P − 1) matrix multiplications, where P = log2(L+ 1).
In [13], a method to solve linear systems using Operator

Perturbation Technique (OPT) is described. It can be shown

that this method is essentially the same as our Neumann series,

and the acceleration we proposed can be applied to OPT for an

exponential convergence. In [14], another method to accelerate

OPT is developed, and it would be interesting to merge these

techniques, as part of our future work.

The accuracy of the inversion depends on the convergence

of equations (16) with iterations P . Therefore, it is important

to have a trade-off between complexity and the accuracy of

the approximation. In the next section the impact of these low

complexity approximation techniques on the overall system is

analysed.

IV. PERFORMANCE SIMULATION

With an increased number of antennas at the BS, the user

channels become less and less correlated, as shown in [4]. In

this paper a Gaussian IID channel model is chosen to analyse

the effects of low complexity pre-coders.

TABLE I: Complexity comparison for k× k matrix inversion.
Multiplication Division Square

Root

Neumann series
Using (12) 2(P − 1)k3 k + 0

Modified (16) 2(P−1)k3+k2 k 0

QR

Gram-Schmidt 3k3 + 2k2 * 3

2
k2 k

Householder 3k
4
+k

2

2

5

2
k2 2k

Givens 8

3
k3 k2 − k # k2 − k #

Gauss-Jordan k3 + k2 k
2
+k

2
0

+ Constant Division, implement using multiplier.
* Only QR complexity, does not include inversion i.e. (R−1QH ).
# Usually implemented as a unified cordic block.

The sum rate for different pre-coders with increasing M
(and a fixed number of users K = 8) is shown in Fig. 2.

The ideal (floating point precision) ZF pre-coder approaches

optimal DPC pre-coding, as the ratio β = M/K increases.

Due to expected favourable values on β in very large MIMO

systems, linear pre-coders (ZF, MMSE) are close to optimal

pre-coders. The Neumann series approximations approaches

ideal full precision ZF with increase in iterations (P ). Com-

putational complexity of the Neumann series approximation

increases with P and beyond a certain value it becomes more

complex than exact matrix inversion. However, increasing the

ratio of antennas (β) the number of iterations (complexity) to

reach certain level of sum rate reduces. To further analyse this

trend, the ideal floating point ZF is taken as a benchmark to

evaluate the Neumann series approximation (required number

of iterations to reach percentage of ZF sum rate) as shown

in Fig. 3. It should be noted that the computation of both

the methods are performed using the identity (16), except for

different approach of pre-conditioning matrices. The conver-

gence of the modified method (using (15)) is slightly higher,

e.g., when P = 3, it reaches 90% level for β around 25

whereas the other method requires β around 35. In the next

section the feasibility of this approach is compared with other

matrix inversion methods, wherein various factors like order

of complexity, energy efficiency, hardware cost (area) and re-

usability is taken into account.

V. RESULTS AND COMPLEXITY ANALYSIS:

In Table I, complexity (# of multiplications) for matrix

inversion using different algorithms is shown. Guass-Jordan

elimination requires lower multiplications than other algo-

rithms, however the mathematical properties (dynamic range,

stability) would require expensive floating point implemen-

tations in hardware [7]. QR decomposition has very good

mathematical properties but requires specialized circuits and

operations including k2 divisions and k square root. The

approximation using Neumann series requires fewer division

operations (compared to QR and Guass-Jordan) and has a

variable multiplication complexity based on the iterations (P ).

Hence its important to analyse the impact of P on system

performance.

In Fig. 4(a), a complexity comparison for reaching a certain

level (90% of ZF) sum rate is shown. For β > 27, the

approximations have lower complexity (P = 3) than a QR
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Fig. 4: Performance comparison of Neumann series based approximation to achieve 90% of Ideal ZF for different β values.

based matrix inversion. Furthermore, in hardware the Neu-

mann series approximation can be implemented by using sim-

ple matrix multiplication, whereas QR decomposition requires

complicated data-flow mechanisms and specialized units (e.g.,

square root, sin/cos functions). Therefore, in terms of area

(hardware cost) and energy we expect that the crossover

point would be even lower (β < 27) for Neumann series

approximations over exact matrix inversion.

As a case study (for energy comparison), we choose a state

of the art 4x4 QR decomposition reported in literature [15],

which requires a Normalized Energy1 (N.E) of 2.05 nJ per QR

decomposition. A 4x4 matrix multiplier implemented in 65 nm

CMOS technology and operating at 1.2V, required 0.36 nJ of

energy2 per matrix multiplication (from [16]). Using these

energy numbers the crossover point as expected reduced to

around β = 10, see Fig 4(b). Although this case study is for

a 4x4 matrix, we do expect Neumann series (implemented

using matrix multiplication) to be energy efficient even for

larger matrices, implying a lower crossover point.

Furthermore, the matrix multiplication can be implemented

using a generic Multiply-and-Accumulate (MAC) structure,

which can easily be reused for other computations in the BS.

Another feature is that the lower (first) order approximations

can be made available earlier where lower precision approxi-

mations can be used.

VI. CONCLUSION

While performance of linear pre coding schemes is known

to be good for very-large MIMO systems, little is know about

the computational complexity required. We have investigated

1Normalized Energy = Energy× 1.2V
Voltage

×
65nm

Technology
2Energy simulation is performed on gate-level netlist with back annotated

timing and toggle information.

Neumann series approximation of ZF pre-coding, leading to an

approximate low-complexity scheme. The performance versus

complexity relation is most attractive for a high ratio between

numbers of BS and terminal antennas. Counting complexity

only in terms of required multiplications, the ratio has to be

about 27 before the Neumann series approximation is com-

petitive. However, when considering required computational

energy, a 4x4 matrix case study showed Neumann series

to be competitive for ratio around 10. There are also other

complexity related issues (e.g., hardware cost, throughput) not

accounted in this study that may change this. The matrix

multiplication used in the Neumann series approximation has a

high potential of being re-used in other parts of the transceiver,

it has relatively simple data flows and it does not require

specialized arithmetic units, as compared to other algorithms.

When these things are accounted for, we expect the Neumann

series approximation to be a competitive approach for linear

pre-coding in very large MIMO system. More detailed studies

will be performed, where hardware architecture and imple-

mentation aspects are taken into account.
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