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Abstract—This paper presents a highly parallelized MIMO
signal detection algorithm targeting vector-based reconfigurable
architectures. The detector achieves high data-level parallelism
and near-ML performance by adopting a vector-architecture-
friendly technique - parallel node perturbation. To further reduce
the computational complexity, imbalanced node and successive
partial node expansion schemes in conjunction with sorted QR
decomposition are applied. The effectiveness of the proposed
algorithm is evaluated by simulations performed on a simplified
4 x 4 MIMO LTE-A testbed and operation analysis. Compared to
the K-Best detector and fixed-complexity sphere decoder (FSD),

the number of visited nodes in the proposed algorithm is reduced
by 15 and 1.9 times respectively, with less than 1dB performance
degradation. Benefiting from the fully deterministic non-iterative
dataflow structure, reconfiguration rate is 95% less than that of
the K-Best detector and 17% less than the case of FSD.

I. INTRODUCTION

Spatial-multiplexing multiple-input multiple-output (SM-
MIMO) technology 1s capable of improving system capacity
by transmitting independent data streams concurrently through
multiple antennas without additional bandwidth or transmit
power. To exploit MIMO potential in a fading and noisy
channel, sophisticated signal detection schemes are required.
This demand poses a critical challenge for practical implemen-
tations due to its prohibitively high computational complexity.

Driven by time-to-market and flexibility requirements in
coping with evolution of standards, hardware platforms for
implementing wireless baseband has come to the era of
reconfigurable architectures [1]-[3]. Systems with embedded
vector processors, e.g., SIMD, have recently received attention
because of their potential computation ability by executing a
common set of operations on a large set of data in parallel.
Most developed MIMO detection algorithms have been tar-
geted and optimized for ASIC or FPGA platforms, leaving
a golden opportunity to fully exploit the extensive data-level
parallelism (DLP) provided by both MIMO technology and
vector-based systems. Linear detection algorithms, such as
zero-forcing (ZF) and mimmum mean squared error (MMSE),
mainly consist of vector operations and thus are architecture-
friendly to vector processors. However, they suffer from
significant performance degradation compared to the optimal
maximum-likelihood (ML) detection, especially in frequency-
selective fading channels. On the other hand, near-ML tree-
search algorithms, e.g., sphere decoder (SD), K-Best, and
their derivatives [4] [5], do not map efficiently to vector

processors. This comes from the fact that the tree-search
procedure involves massive sequential scalar operations, which
are frequently switched between node expansion, partial Eu-
clidean distance sorting, and branch pruning. Thereby, careful
architecture-aware algorithm design 1s needed to achieve high
performance on vector-based architectures.

This paper aims to bridge the algorithm-architecture gap
by developing a highly parallelized MIMO signal detection
algorithm that provides near-ML performance, like tree-search
algorithms, while retaining the inherent vectorized operations
of linear detection schemes. The algorithm has originated
from linear MMSE detection, followed by a parallel node
perturbation scheme with the purpose of generating a list of
candidate vectors around the MMSE vector. The final detection
is obtained by applying the ML criterion to the candidate list,
1.e., inding the vector with the smallest Euclidean distance.
Moreover, an imbalanced expansion strategy 1s adopted 1in
the node perturbation process to improve the candidate-search
efficiency by utilizing the spatial-selectivity of MIMO chan-
nels. This scheme adaptively adjusts the search space of each
spatial layer according to an instantaneous channel quality
indicator - post-detection SNR. Finally, to reduce complexity,
a successive partial node expansion technique is applied to
the layer with the smallest post-detection SNR, obtained with
the help of sorted QR decomposition of channel matrices. To
testify the effectiveness of the proposed algorithm, we conduct
simulations based on a simplified LTE-A downlink system
and operation analysis. Compared to the K-Best detection
and FSD, the performance degradation i1s less than 1dB at
frame-error-rate (FER) = 1072, with 95% and 17% fewer
reconfigurations required during signal detection.

II. BACKGROUND

Considering a spatial multiplexed MIMO system with N
transmit and receive antennas, the /N x 1 received complex
signal vector y 1s expressed as

y=Hzx + n, (1)

where @ is the N-length transmit vector, n is the i.i.d. complex
Gaussian noise vector with zero mean and variance ¢, and
H denotes the N x N channel matrix. Each component of x
1s obtained by mapping a set of information bits, encoded by
error-correcting codes, onto a Gray-labelled complex constel-
lation such as M-QAM. In this paper, we assume the receiver



has perfect channel knowledge. Without loss of generality, we
use LTE-A downlink as a testbed and employ FER as the
detection performance measure.

A. MIMO Signal Detection

The signal detector of a MIMO system 1s used to recover
the transmitted vector @ given y and H. Linear detection
algorithms are preferred for real-time implementations due to
their low computational complexity. For instance, the widely-
used MMSE detector simply multiplies the received vector y
with an MMSE filter G, i.e.,

mWSE:Gy:(HHH+JEIN)_1HHy. (2)

Hard-output detection result 2MMSE is generated by slicing

xMMSE (o the nearest constellation point. In (2), H* stands for
Hermitian transposition of H, and Iy is the identity matrix of
size N. Since MMSE detection mainly operates on matrices,
symbol detection at each spatial stream can be efficiently
vectorized and performed in parallel. Hence, it 1s one of
the most popular algorithms for implementations on parallel
architectures such as vector-based reconfigurable platforms [2]
[3]. However, MMSE detection suffers from huge performance
degradation compared to the optimal ML detection, especially
for high dimensional MIMO systems, e.g., LTE-A, where the
maximum MIMO configuration is increasing from 4 x 4 to
8 X 8.

Alternatively, tree-search algorithms are getting much atten-
tion because of their near-ML performance. A tree-search de-
tection formulates a minimum-search procedure as a N-depth
M -ary complex-valued tree search problem, by factorizing H
into an unitary matrix ) and an upper triangular matrix R.
Amongst the N layers of the search-tree, the N'" layer is
annotated as the root and 15! layer as the leaf. Practical sub-
optimal tree-search detectors solve the NP-complete problem
of optimal ML detection by only traversing through a number
of branches, characterized by a parameter P. Various tree
search algorithms such as depth-first and breadth-first use
different search criteria to determine P. Among them, the
breadth-first K-Best algorithm 1s commonly used in practi-
cal implementations thanks to its regular dataflow structure.
Besides, the breadth-first FSD has recently received great
interests [6] [7]. The FSD offers fixed data throughput and
extensive complexity reduction by avoiding computational-
intensive sorting procedures. According to [6]-[8], both the
K-Best detector and FSD achieve a near-ML performance for
hard-output MIMO detection. Hence, we consider them as our
benchmarks for both performance and complexity measure.

Although many state-of-the-art tree-search detectors offer
near-ML performance, they have mainly been implemented
in ASIC-lhike architectures [4] [5] [7] [B]. One fundamental
problem with tree-search algorithms 1s their intrinsic data
dependence between adjacent layers, namely symbol detection
at the " layer is based on the results of (i 4+ 1)!" layer.
Theretfore, the native vector structure of MIMO systems 1s
destroyed. Consequently, none of the tree-search detectors 1s
suitable for implementations on vector-based architectures. To

attack this problem, some detection algorithms such as FSD
and SSFE (selective spanning with fast enumeration) [1] bring
in vectorized operations that may be performed independently
at each layer. However, these algorithms have kept the essential
problem of tree-structured symbol detection unsolved, 1i.e.,
dependencies between spatial layers restrain the full potential
of parallel architectures. The above analysis call for new
techniques for implementing near-ML detectors on vector-
based reconfigurable architectures. Our aim 1s to develop a
MIMO detector which 1s highly vector-parallelized, ike linear
detectors, and at the same time, has the performance close to
the level of tree-search detectors.

III. PROPOSED SIGNAL DETECTOR

To balance detection performance with architecture-
friendliness, a vector-level closest point search algorithm in
conjunction with linear detectors 1s introduced. In this section,
three main techniques are presented with emphasis on vector
parallelization, performance improvements, and complexity
reduction.

A. Farallel Node Perturbation

The proposed algorithm starts by obtaining an initial de-
tection result using MMSE (2). Thereatfter, a detection search
space 18 defined by expanding each scalar MMSE symbol with
a number of neighbors. More specifically, for the i*"* symbol
of the N-length MMSE vector (zMMSE) a set of €; locally
nearest sibling symbols 1s found:

N 1 w {1,
&L; :[Ii:,"',i[.'i,"',i[.'ii, (3)

~MMSE

with their distances to x; sorted 1n ascending order, as

|:L'1 . iiy‘lh‘lSEli < ..

: <z —MMEZ < @)

— i
Different from the layered tree search, this approach eliminates
data dependent operations by carrying out nearest-neighbor-
expansion in parallel on all spatial streams, i.e., on N-length
vector FMMSE

Once the search space 1s delimited, we define detection
search paths by generating a list S of candidate vectors using
symbols from the search space. In [9], the only-one-error case
1s considered for a 2x 2 MIMO detection and candidate vectors
are generated by replacing only one symbol in 2MMSE | while
keeping other ones unchanged, i.e., for the expanded =22, €);
candidate vectors are generated as

1 - SE 1 I SE
Si:[ﬁm :"':Ih"'::’fhﬂ.w ]
2 A SE 2 - SE
31,:[:5?’“"‘ ,"',:Eij"',ifhﬂ?rhd ]
(5)
(1 A SE {1 -~ MMSE
,S?:'i':[:[ﬁ&-wI !...!Ii"'!...!:EN ]

After (5) being applied to all zX® (i € [1,N]), L = 1 +
Eil (1; candidate vectors are obtained in the list § including
the initial MMSE result #MMSE The final signal detection



result is generated by searching within & and finding the vector
with the smallest squared Euclidean distance (ED), 1.e.,

o . . B 2
Z = argmin ||y — Hz ||”. (6)

In a 2 x 2 MIMO system, single-error dominates error events
in the MMSE detection. Therefore, the candidate generation
method in (5) 1s enough to provide good performance. How-
ever, for 4 x 4 or larger MIMO configurations, considering
only one error 1n the i1nitial detection 1s far from enough to
cover most of the error events due to the increased degree
of spatial selectivity. Hence, a full-error scenario needs to be
considered, 1.e., assuming all symbols in @ are erroneously
detected by the MMSE. In consequence, all combinations
of expended symbols xX® in S have to be included, which
results in totally L = Hi1(ﬂi + 1) candidate vectors to
be searched. To verity the above analysis, we simulate the
detection performance for single-error (SE-CVG) and full-
error (FE-CV(@G) Candidate Vector Generation schemes in 2 x 2
and 4 x4 MIMO systems, respectively. As expected, the single-
error & construction method provides detection performance
approaching to its full-error counterpart for the 2 x 2 system,
while large performance degradation is observed in the 4 x 4
case, as demonstrated in Fig. 1.

B. Imbalanced Node Perturbation

The perturbation parameter {1; in (3) needs to be adjusted
to achieve a good performance-complexity trade-off. Basically
there are two strategies to determine {);. The first approach,
referred to as equally distributed (EQD) expansion, 18 to con-
sider the same number of neighbors around each scalar symbol
FMMSE je., Q; = Q. However, EQD expansion may not be
cost-effective from a complexity point of view, as channel
properties of each antenna port i1s not utilized when determin-
ing the search space. Consequently, search paths in .S may be
over-selected, which increases the computational complexity
in (6) without any improvement in performance. Therefore, an
imbalanced distribution expansion (IMD) scheme 1s proposed
to treat symbol expansion in #Y™M5E differently and assign Q;
depending on the channel condition. More specifically, we
expand more neighbors for those symbols located in spatial
layers with lower post-detection SNRs (n), ie., {}; > 2; if
1; < n;. Here, the post-detection SNR of MMSE detection at
the i*" spatial layer is given by [10]

1
M = —— 5L D
o?||(HYH + o*Iy); " ||

where A; denotes the it"

¢%-norm of vector a.

Thanks to the use of channel properties during symbol
expansion, the IMD scheme provides better performance than
EQD while using fewer number of candidate vectors. As
illustrated in Fig. 1, detection using IMD with expansion
vector 2 = [5,4,3,2] is 0.6dB better than the case of
EQD with = 4 at FER = 1072, even though the latter
scheme has 2 times more candidate vectors. When comparing
computational complexity, IMD requires additional processing

row of matrix A, and ||a|| is the
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Fig. 1. Performance comparisons of different candidate vector generation
(SE-CVG and FE-CVG) and symbol expansion (EQD and IMD) schemes.

prior to each detection to assess individual channel condition
associated with each spatial stream. Moreover, decisions on {1;
assignments need to be made during search space delimitation.
However, IMD 1s more cost-effective, since the additional
operations are performed only once and the cost (scalar- and
vector-based operations in (7)) 1s negligible when compared
to the repetitious ED calculations (matrix-based operations in
(6)) associated with the EQD scheme. Hence, we focus on the
IMD expansion scheme, and elaborate FER performance of
different {); assignments in Section IV.

C. Complexity Reduction with QR Decomposition

From Section III-A, the major computational complexity
of our proposed algorithm lies in the calculation of (6), which
entails large number of matrix operations of size N. Moreover,
(6) has to be computed for each candidate vector in S of
size L. To alleviate this computational burden, we leverage
QR decomposition [11], where H is replaced by an upper
triangular matrix R with H = Q@QR. The corresponding
system model 1s thus changed to

9y = Rx + N, (8)

where 7 = Qy and n = Qn is a noise vector with
the same statistics as n. Accordingly, the final detection (6)
becomes:

L e 2
& = argmin | § — R ||?. ©)

Thanks to the large number of zero elements in R and the
fact that the diagonal elements of R being real-valued, the
complexity of each ED calculation has been reduced by half.

1) Sorted OR Decomposition: In the atorementioned IMD
expansion scheme, channel conditions are assessed by mea-
suring post-detection SNR (7;) of each spatial stream, which
then leads to a decision on {2; values. To facilitate this scheme
in the QR-decomposed system model, we adopt the sorted QR
decomposition (SQRD) [11], where H is column-wise permu-
tated with the criterion that their corresponding 7); 1s sorted 1n
ascending order, i.e., 7 = [Jmin, " * s Mmaz)- AS a result, the



assignments of (2; is simplified by arranging the vector {2 in
descending order, namely 2 = [0z, ", Qninl-

Since (2; assignments in the IMD expansion only relies
on a relative measure of 7, 1.e., channel conditions that are
measured n reference to 1,42, COMmmon factors g% and —1 in
(7) can be neglected without any effect on {2; decisions. More-
over, the scalar division i1n (7) can be avoided by sorting 7); 1n
reverse order to preserve symbol positions, 1.e., spatial stream
under worst channel condition 1s placed at the first layer. To
summarize, the criterion for determining {2; assignments (i.e.,
channel sorting in SQRD) 1s formulated as

1 |

s
where the result of (H"H + JEIN)_I can be directly
drawn from (2) without additional processing.

2) Successive Partial Node Expansion (SPE): It should be
pointed out that the average error rate in a MIMO system 18
generally dominated by the spatial stream that sutfers from the
worst channel condition. Hence, node expansion for symbol
with smallest 1 value after SQRD, i.e., Y™5E, needs to be
handled with special care. According to the proposed IMD
expansion scheme, #Y™5E will be expanded with more neigh-
bors to mitigate the high error probability. This strategy results
in a larger search space, which considerably mcreases the total
number of candidate vectors, incurring huge computational
complexity for the minimum-search process i (9). Thus, 1t
1s highly beneficial from an implementation perspective to
develop a scheme that can reduce the processing complexity
of #Y™SE expansion, while keeping performance unaffected.

We address this by adopting the successive partial node
expansion (SPE) scheme to reduce the search space for £} M5E,
The basic 1dea 1s to utilize the property of the upper triangular
matrix & and the fact that the symbol with smallest 7
has been moved to the first layer after SQRD. With R,
(j =[2,---, N]) being zeros, the detection of x, is solely de-
pendent on y;. Thereby, an optimal expansion of x, can be ef-
ficiently obtained by solving a linear equation, given that other
symbols have been expanded prior to x,. More specifically, the
proposed scheme starts by expanding “stronger” symbols (1e.,
[ZNMSE L 23MSE) and then generates (N —1)-length partial
candidate vectors a!l. Here, z!!! = [z5,--- ,zx]T denotes
the subvector of & with the 1°* symbol x; being omitted.
Thereafter, x, 18 decided by substituting x!1 into the 1% row

of channel matrix R:

(HYH + oIy, |I* (10)

N N
- 1
i = Zrljiﬂj = ry1a + ZleIj = 1111 + -]*_[1 ]ﬂ:[l]
j=1 j=2
- 1
(Z-'h - T’{ ]I[l])
z}t = , (11)
r11
where r{l] = [ri2,--,rin]. The expansion of x; is then

completed by slicing z5°C to the nearest constellation point.
For all possible x!1 candidates of size L, where L is depended
on the candidate-generation scheme discussed 1n Section III-A,

L number of z'F are found. In this way, the search space

for #2Y™5E is reduced to only include symbols that, in con-
junction with 1], generate the most likely search paths, i.e.,
ones resulting in the smallest Euclidean distance for given
x!!l vectors. Thus, the SPE scheme dramatically reduces the
number of candidate vectors and therefore complexity of (9),
while at the same time providing an equivalent performance
as 1f all possible x; symbols were included in the candidate
vectors.

Due to the successive expansion of symbol ZY™5E the
SPE scheme partially breaks the structure of the N-length
vector 2MMSE However, this adverse effect is substantially
outweighed by the reduction of costly ED calculations and
the efficiency of the optimal #Y™M5E expansion.

IV. ALGORITHM EVALUATION

In this section we compare the proposed detection algorithm
with the hard-output K-Best [8], FSD [6] and linear MMSE
algorithms, by simulating their FER in a simplified SMHz
bandwidth 3GPP LTE-A test environment. The simulation
setup 1s based on 64-QAM over a 4x4 MIMO frequency-
selective fading channel, in which multi-path delay profile
complies with the 3GPP Extended Vehicular A (EVA) model
with a maximum Doppler frequency of 70Hz. For each
simulation, Ny LTE-A subframes, i.e., 14 OFDM symbols
each containing 300 data subcarriers, are transmitted over
a quasi static channel, namely the MIMO channel remains
unchanged within one LTE-A subframe. Furthermore, a rate
1/2 parallel concatenated turbo code with block length of 5376
1s employed and the number of decoding iteration 1s 6. In our
simulations, Ny is dynamically adjusted to take account of
different FERs with respect to SNR values. With a target of
FER = 1072, a commonly used design criterion, N varies
between 500 and 3000.

Simulated FER 1s evaluated m Fig. 2, in which IMD
= [F,- -] represents the used SPE scheme (Section ITI-C).
Using all three techniques, 1.e., node perturbation, IMQ, and
SPE, the performance of the linear MMSE detector 1s en-
hanced substantially. More importantly, an FER performance
close to that of the K-Best detector and FSD 1s achieved.
For 2 = |[F,5,4, 3|, performance degradation to both K-
Best decoder (with K = 10) and FSD is less than 1dB
at FER = 1072, Better performance can be achieved by
including more candidate vectors in symbol expansion at
the expense of implementation complexity. This 1s similar
to the tree-search based detectors with different number of
branch traversals, e.g., K-Best algorithm with different K
values. Fig. 2 compares the FER of different expansion vector
2. Comparing 2 = [F,5,4,3] and [F,5,3,1], the former
assignment 1S 1 dB better than the latter one, but with 4 times
more candidate vectors involved 1n detection, thus demands
more computational power.

With imbalanced (); assignments, the symbol detection of
each spatial stream can be tuned dynamically to adapt to the
instantaneous channel condition or currently available com-
putational resources. Hence, our algorithm 1s highly scalable
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Fig. 2. Simulated FER performance for 4 x4, 64-QAM MIMO system.

and suitable for implementations on reconfigurable platforms
that can be configured at run-ttime to achieve on-demand
complexity-performance trade-ofts.

V. OPERATION ANALYSIS

Considering the computational complexity, we analyze the
number of visited nodes to compare with the K-Best detector
and FSD. Based on the node perturbation scheme, the node
expansion number of the proposed algorithm 1s formulated as

Nf’mpmd—iﬂ-ﬁ- —iﬂ- ﬁﬂ (12)
— L Vi1 — i 7 }

t=1 i=1 j=i+1

where N; is the number of nodes at the i*" spatial stream,
and N, = €2; = 1 when using the SPE scheme. In the K-Best
algorithm [8], M Ny nodes are expanded at each layer and
the K best candidates are selected for succeeding layers. The
total number of visited nodes 1s calculated as

N
NK—B-E:EI — M ZN_F'_Ij
i=1

(13)

where Nt = min(K, M Nj) denotes the number of parent
nodes at the " layer. The node extension number of the
FSD is determined by a parameter PP [6], which specifies the
number of layers that require full-search, 1.e., expanding all
M branches for each parent node. The remaining (N — P)
layers performs a single-search, expanding only one branch
per node. For instance, the corresponding extension vector of
FSD for P =1 is [1,1,1, M]. Using a generalized extension
vector p = [p1,p2,...,pn|, the number of visited nodes in
FSD can be formulated as

N N
NFSD _ ZHP*"

i=1 j=i

(14)

In Table I, visited node counts (NVyjieq) for all three algo-
rithms are compared in 4 x 4 64QAM MIMO systems, where
Q = [F,5,4,3] and [F,5,3,1], K = 10, and P = 1 are
used, respectively. It clearly shows that the number of nodes
visited in the proposed algorithm with £ = [F,5,4,3] is 15

TABLE 1
COMPARISONS OF VISITED NODES ( Nyisiten ), LOOP HIERARCHY ([ gr),
AND RECONFIGURATION COUNTS ( Ncowne ) FOR 4x 4 64QAM MIMO.

SNR [dB] @

Parameter Neisited Lgr Neont FER i lél_g
K-Best K =10 1984 2 99 19.4
FSD P=1 256 | 6 19.5
QO=[F.543 | 133 _ 202
Proposed o — 5.3 1] 34 1 . 313
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Fig. 3. Code structure of the proposed vector-parallelized detector.

and 1.9 times fewer than that of the K-Best detector and FSD
respectively, which demonstrates the cost effectiveness.

Beside the complexity analysis, hardware-friendliness to-
wards vector-based reconfigurable architectures is evaluated
by analyzing data and control flow and the number of recon-
figurations required per vector detection. Reconfiguration is
defined as one context switching between two different data
operations. Code structures of the proposed, K-Best, and FSD
algorithms are presented 1n Fig. 3 and 4, where shaded boxes
depict vector operations and layered boxes indicate parallel
processing. V indicates context switching, ¢) (I) represents
loops with count [, while V' and M denotes vector and ma-
trix operations respectively. Dataflows containing hierarchical
loop structures involve iterative data processing and require
frequent context switching, thus are considered to be less
friendly to reconfigurable platforms. As illustrated in Fig. 3,
our algorithm has a highly regular and non-iterative data flow,
containing four main processing stages: the initial MMSE
detection, symbol IMD expansion, ED calculation, and final
detection. Although one loop structure appears in an inner
block, i.e., the node expansions of [ZYMSE ... FMMSE]"the
overall structure of the algorithm 1s non-iterative. This dra-
matically reduces context switching compared to the iterative
case, thus reducing reconfiguration overheads. Hereby, our
algorithm fits well to reconfigurable architectures. The number
of reconfigurations 1s equal to the total number of operations
required in each vector detection, ie., N, r™ = Nj,.
The abundant vector and parallel operations (Fig. 3) enable
independent data processing that are naturally mapped onto
vector-based architectures.

In contrast, the K-Best algorithm (Fig. 4(a)) has an iterative

data flow (processing stage 2) and only operates on scalars.
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Fig. 4. Code structure of conventional tree-based signal detectors.

Besides, the nested loop in tree search stage involves a
variable loop count, e.g., O (1) = min(K, MN). This
1s not compiler-friendly to make full use of fixed-loop-count
based optimization schemes such as loop unrolling. The total
reconfiguration count of the K-Best is equal to NXBst =
2 + N(NiuNopn + Nopnode), Where Njp is the loop count
of l1, Nopi1 and Nypnode 18 the number of context switching
in loop [; and node selection, respectively. Compared to a
K-Best detector, the FSD 1mproves vector parallelism to a
certain extent thanks to its deterministic dataflow structure
[7]. In Fig. 4(b), a vector processor oriented mapping of
FSD is presented. However, inherited from tree-search based
detection algorithms, data dependencies between adjacent lay-
ers during candidate vector constructions limit the use of
vector processing. In Fig. 4(b), 1t 1s clearly shown that symbol
expansions on all spatial layers in FSD (blocks in process-
ing stage 1 & 2) are performed iteratively using sequential
scalar operations. To summarize, Table I compares the three
algorithms in terms of loop hierarchy (I) and the number
of reconfigurations (Nt ). Thanks to the deterministic non-
iterative structure, our algorithm (€2 = [F, 5, 4, 3]) reduces the
number of reconfigurations in each vector detection by 19.8
times 1n comparison to the K-Best, and 1.2 times to the FSD.
According to [12], dynamic configuration takes up to 40% of
the overall power consumption, thereby reducing the number
of reconfigurations 1s an efficient approach in reducing the
total power in reconfigurable platforms.

VI. CONCLUSION

This paper exploits the massive data-level parallelism pro-
vided by MIMO and vector-based systems and bridges the
algorithm-architecture gap on MIMO signal detection algo-
rithms. The proposed detector inherits full advantages of linear
detection algorithms, namely high vector parallelism, and
brings a near-ML detection performance like tree-search based

detectors. Demonstrated by simulations performed on a 4 x 4
MIMO LTE-A downlink and operation analysis, the proposed
algorithm reduces the number of reconfiguration by 95% and
17% compared to the K-Best and FSD, while has less than

1 dB performance degradation at FER = 102,
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