
Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

BluEJAMM: A Bluespec Embedded Java
Architecture with Memory Management

Flavius Gruian1 Mark Westmijze2

1Lund University, Sweden
flavius.gruian@cs.lth.se

2University of Twente, The Netherlands
m.westmijze@student.utwente.nl

The 1st International Workshop on
Real-Time and Embedded Systems

in conjunction with SYNASC’07



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Outline

1 Introduction

2 System Architecture

3 BlueJEP, the native Java Processor

4 Memory Management

5 Implementation Results

6 Summary



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Goals

What are our goals?

1 An embedded Java architecture, as a test platform

2 Evaluate BSV as a design language

BlueSpec System Verilog (BSV)

Rule based, strongly-typed, declarative hardware specification
language, making use of Term Rewriting Systems to describe
computations as atomic state changes.

3 Outperform other existing Java solutions in terms of
design time
flexibility
execution speed
device area

BluEJAMM

BlueSpec Embedded Java Architecture with Memory Management



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Design parameters

Constraints and Features

For the BlueJEP Java processor (based on JOP):

micro-programmed, stack machine core
predictable rather than high-performance (RT systems)
given instruction set (bytecodes)
preset micro-instruction set (for ease of programming)
given executable image (loaded classes)
preset back-end (synthesis) tools
preset implementation platform (FPGA)

Memory management

given object structure
both software and hardware (MMU) solutions



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Architecture and Configurations Overview

On-chip Peripheral Bus (OPB)

BlueJEP 
Java

Processor

Timer

RAM

RS232 GPIO

1 Software memory management

2 Hardware MMU using a dual-port RAM

3 Hardware MMU using the system bus



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Architecture and Configurations Overview

On-chip Peripheral Bus (OPB)

BlueJEP 
Java

Processor

Timer

Dual Port 
RAM

RS232 GPIO

MMU
(RAM)

1 Software memory management

2 Hardware MMU using a dual-port RAM

3 Hardware MMU using the system bus



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Architecture and Configurations Overview

On-chip Peripheral Bus (OPB)

BlueJEP 
Java

Processor

Timer

 RAM

RS232 GPIO

MMU
(OPB)

1 Software memory management

2 Hardware MMU using a dual-port RAM

3 Hardware MMU using the system bus



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Processor Architecture

Six Stages Pipeline, Stack Machine

Fetch 
Bytecode

Fetch 
micro-I

Decode
& Fetch 
Register

Fetch 
Stack

Execute Write-
back

micro-
ROM

BC2 
microA

jump 
table

bypass

forward

BC-
Cache

JPC

StackRegisters

bus interface (OPB)

load cache

SP VP

MD MrAMwA

PC

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
bc

fif
o

de
cfi

fo

fs
fif

o

ex
fif

o

w
bfi

fo

OPD

const
CacheCtl

rollback

MMU access registers



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Programming Aspects

Run-Time Environment

Object.javaUserApp.java

javac

Native.java

JVM.java String.java

BlueJ Run-time library

bjrt.jar BlueJim bj.hex to RAM

BlueJim image generator

offline class loading
and linking

replaces native calls
with custom
bytecodes

throws away unused
methods and fields

adds GC information

JVM.java Java implemented bytecodes.

Native.java Java-hardware interface.

*.java Reduced JRE library.



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Object structure, address space and garbage collection

HandleM

Size

Data

Instance
mark
bit

InstancePtr
Handle

NEntries

Refs Skips

Refs Skips

GC info

...

GCInfoPtr

ClassPtr

M
ClassInfo Application Image

(ClassInfo, GCInfo,...)

Actual Heap
(Object instances)

GC Stack
(grey handles)

Handles
(used and free)

fix
ed

gr
ow

s
gr

ow

Low

High

EoH

BoH

GC Algorithm: Mark-Compact

Hardware (MMU):

handles all memory management functions
tight integration with the processor core
(scans the stack for references)
stop-the-world GC for now, concurrent later on



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Synthesis input, tools, and results

Input: BSV code, 1300 lines (BlueJEP) + 600 lines (MMU)

Tools:

BSV compiler 2006.11, BSV → Verilog
Xilinx EDK 9.1i, Verilog + IPs → System
Xilinx ISE 9.1i, System→ FPGA
Chipscope, to monitor and debug

Target: FPGA, Xilinx Virtex-II (XC2V1000, fg456-4)

Area: (no optimization efforts)

BlueJEP = 3460 slices (68%)
BlueJEP + MMU = 4340 slices (85%)

Clock speed: (few optimization efforts)

BlueJEP = 85 MHz
BlueJEP + MMU = 64 MHz



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

Bytecode and application execution speed

Execution time in
clock cycles for
several bytecodes:

Bytecode(s) J
O

P

B
lu

eJ
E
P

iload iadd 2 3
iinc 11 13
ldc 9 12
if icmplt taken 6 23
. . . n/taken 6 8
getfield 23 38
getstatic 15 18
iaload 29 45
invoke 126 166
invoke static 100 111

Profile for a simple application

Profile SoftGC MMU ratio

bytecodes 24810 10304 42%
cc/byte 6 7 117%
cache fills 1601 675 42%
mem accesses 9063 3139 34%
GC clocks 49214 2626 5%
total cc 168977 73981 44%

Performance similar to JOP, taking
into account the faster clock

Faster with MMU, even with the
reported clock speed degradation



Introduction System Architecture BlueJEP Memory Management Implementation Results Summary

To conclude...

Summary: we introduced BluEJAMM, which:

includes a native Java processor
includes a hardware MMU
is specified in BlueSpec System Verilog
proves that BSV is perfect for fast prototyping

Extensions:

Multi-block, multi-method caching [completed]
Micro-instruction folding [under evaluation]
Concurrent MMU [under development]



Micro-code Generation

microcode.asm types.bsv

bluejasm
generator.

bsv
bsv compiler

-sim
genrom

BC2microA Micro-ROM jump table stack

The encoding of the micro-instructions does not affect the
assembler (bluejasm)!

The actual encoding is interesting for optimization purposes
only.


	Introduction
	Goals
	Design parameters

	System Architecture
	BlueJEP, the native Java Processor
	Processor Architecture
	Programming Aspects

	Memory Management
	Implementation Results
	Summary
	Appendix

