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Goals

What are our goals?

1 An embedded Java architecture, as a test platform

2 Evaluate BSV as a design language

BlueSpec System Verilog (BSV)

Rule based, strongly-typed, declarative hardware specification
language, making use of Term Rewriting Systems to describe
computations as atomic state changes.

3 Outperform other existing Java solutions in terms of
design time
flexibility
execution speed
device area

BluEJAMM

BlueSpec Embedded Java Architecture with Memory Management
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Design parameters

Constraints and Features

For the BlueJEP Java processor (based on JOP):

micro-programmed, stack machine core
predictable rather than high-performance (RT systems)
given instruction set (bytecodes)
preset micro-instruction set (for ease of programming)
given executable image (loaded classes)
preset back-end (synthesis) tools
preset implementation platform (FPGA)

Memory management

given object structure
both software and hardware (MMU) solutions
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Architecture and Configurations Overview

On-chip Peripheral Bus (OPB)

BlueJEP 
Java

Processor

Timer

RAM

RS232 GPIO

1 Software memory management

2 Hardware MMU using a dual-port RAM

3 Hardware MMU using the system bus
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Architecture and Configurations Overview
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Architecture and Configurations Overview
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Processor Architecture

Six Stages Pipeline, Stack Machine
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Programming Aspects

Run-Time Environment

Object.javaUserApp.java

javac

Native.java

JVM.java String.java

BlueJ Run-time library

bjrt.jar BlueJim bj.hex to RAM

BlueJim image generator

offline class loading
and linking

replaces native calls
with custom
bytecodes

throws away unused
methods and fields

adds GC information

JVM.java Java implemented bytecodes.

Native.java Java-hardware interface.

*.java Reduced JRE library.
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Object structure, address space and garbage collection
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Hardware (MMU):

handles all memory management functions
tight integration with the processor core
(scans the stack for references)
stop-the-world GC for now, concurrent later on
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Synthesis input, tools, and results

Input: BSV code, 1300 lines (BlueJEP) + 600 lines (MMU)

Tools:

BSV compiler 2006.11, BSV → Verilog
Xilinx EDK 9.1i, Verilog + IPs → System
Xilinx ISE 9.1i, System→ FPGA
Chipscope, to monitor and debug

Target: FPGA, Xilinx Virtex-II (XC2V1000, fg456-4)

Area: (no optimization efforts)

BlueJEP = 3460 slices (68%)
BlueJEP + MMU = 4340 slices (85%)

Clock speed: (few optimization efforts)

BlueJEP = 85 MHz
BlueJEP + MMU = 64 MHz
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Bytecode and application execution speed

Execution time in
clock cycles for
several bytecodes:

Bytecode(s) J
O

P

B
lu

eJ
E
P

iload iadd 2 3
iinc 11 13
ldc 9 12
if icmplt taken 6 23
. . . n/taken 6 8
getfield 23 38
getstatic 15 18
iaload 29 45
invoke 126 166
invoke static 100 111

Profile for a simple application

Profile SoftGC MMU ratio

bytecodes 24810 10304 42%
cc/byte 6 7 117%
cache fills 1601 675 42%
mem accesses 9063 3139 34%
GC clocks 49214 2626 5%
total cc 168977 73981 44%

Performance similar to JOP, taking
into account the faster clock

Faster with MMU, even with the
reported clock speed degradation
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To conclude...

Summary: we introduced BluEJAMM, which:

includes a native Java processor
includes a hardware MMU
is specified in BlueSpec System Verilog
proves that BSV is perfect for fast prototyping

Extensions:

Multi-block, multi-method caching [completed]
Micro-instruction folding [under evaluation]
Concurrent MMU [under development]



Micro-code Generation

microcode.asm types.bsv

bluejasm
generator.

bsv
bsv compiler

-sim
genrom

BC2microA Micro-ROM jump table stack

The encoding of the micro-instructions does not affect the
assembler (bluejasm)!

The actual encoding is interesting for optimization purposes
only.
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