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Abstract

As distributed systems continue to evolve, automatic re-
source management is becoming more and more impor-
tant. The resource management system must be able to
dynamically handle large heterogeneous systems in a way
that gives good performance and resource utilization. In the
performance context, allocating software modules to nodes
in an efficient way is of high interest. This paper considers
the problem of allocating software modules to processing
nodes in an automatic dynamic manner using module mi-
gration algorithms. The module allocation problem is NP-
complete and many heuristics have been proposed. How-
ever, in systems where the workload changes over time, it
may be infeasible to update module allocation often enough
to handle changes in workload. This paper presents the
Match-maker algorithm that performs load balancing by
pairing overloaded nodes with under-loaded ones, initiat-
ing module migration within the pair. The paper presents a
load balancing optimization problem, and uses the bench-
mark problem to evaluate the algorithm. In addition, the
Match-maker algorithm is compared with other previously
described algorithms for module migration. The Match-
maker algorithm is found to be fast and efficient in reducing
load imbalance in distributed systems, especially for large
systems.

1 Introduction

There is considerable interest in autonomic management
systems for distributed systems. One important area for
management is the efficient allocation of software to pro-
cessing elements. Since the allocation will have impact on
the performance of the system, it is of great interest to au-
tomate the allocation procedure, just as resources are auto-
matically allocated ordinary computers today.

Several objectives can compete in performing the al-
location procedure:

1. Avoid unnecessary communication: communication

overhead is wasted resources.

2. Utilize available resources: try find allocations that
share the load on the nodes.

3. Maintain security policies: certain parts of the soft-
ware may only be executed at certain trusted nodes

4. Maintain reliability policies: parts, whether nodes,
network elements or other, in a distributed system can
and do fail, the resource management system must
handle the failure in such a way as to reduce the im-
pact on the users of the system

5. Economic concerns: minimize the economic cost of
running the application for the owner of the applica-
tion and maximize the revenue for the operator of the
system.

We make a difference between static and dynamic al-
location algorithms. In static allocation, which has been
widely studied, a model of the system is used to formu-
late and solve an optimization problem, that gives an opti-
mal allocation. In dynamic allocation, which has received
less attention, no predefined allocation is used. Instead, the
system migrates modules during run-time in response to
changes in load and availability of resources.

The module allocation problem is really a family of
problems with different formulations, where the common
idea is to find an optimal allocation of modules according
to a given obective function. An overview of results, in-
cluding several formulations, is presented in a survey by
Norman and Thanisch [1]. This reference also presents
heuristics devised to solve module allocation. Of newer
works not presented in [1], see for instance Woodside and
Monforton [2], Stoyenko et al [3] or Braun et al [4].

Little has been published on module migration algo-
rithms. Silaghi and Keleher [5] presented an algorithm for
migrating objects in a Java system, where migration could
happen at high rates. Melliar-Smith et al [6] introduced
two types of simple migration algorithms for use in the
real-time CORBA Realize environment: Cooling and Hot-
spot. The Cooling algorithm has also been implemented in
CORBA by Schnekenburger and Rackl [7].

Module migration is not free from overhead costs.
However, systems using static module allocations suffer
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from overhead. First, running the allocation optimization
algorithm is, as mentioned before, very time consuming.
Second, if load situation in the network changes, then mod-
ules must migrate just as they would in the migration algo-
rithm case. Third, in the static case the migration of all
modules is initiated at one time instead of being spread out
over longer time.

Present research on module migration has not inves-
tigated any of the following: (1) how close to optimal the
migration algorithm is, (2) the dynamic behavior of migra-
tion algorithms, (3) the scalability of the migration algo-
rithm. This paper studies these questions. The paper does
not cover implementation specifics. Implementation issues
are discussed in Schnenkenburger [8] and Henning [9].

The main contribution of this paper is to show by ex-
ample that a module migration algorithm with low over-
head can be used to efficiently distribute load in a dis-
tributed system. The paper also discusses how migration
algorithms may be analyzed by comparison with theoreti-
cally optimal solutions.

In section 2 we describe a model for a module based
distributed system. In section 3 we describe a reference
load balancing optimization problem. In section 4 we
introduce a novel algorithm for module migration called
the Match-maker algorithm. In section 5 we evaluate
the Match-maker algorithm in comparison with allocations
generated using the reference optimization problem as well
as other migration algorithms. Finally in section 6 we
present conclusions and general results.

2 Model

In this section we describe a model of a distributed mod-
ule based system, to be used as reference model in the dis-
cussion of the migration algorithms. As a system’s per-
formance is the result of interaction between software and
hardware, models for both hardware and software are pre-
sented.

We consider a distributed system where communicat-
ing software modules are to be allocated to physical pro-
cessing nodes in a network. In figure 2, the rectangles
are nodes, circles are modules, lines are communication re-
quirements between modules and dashed lines indicate an
allocation of modules to nodes.

The physical resources in the model is represented by
a collection of N processing nodes. The nodes are het-
erogeneous, and a particular module incurs different costs
when executed on different processors, due to varying com-
putational facilities at each node. For the present study, as-
sume that the nodes belong to a common domain with high
network speed compared to node processing capacity, such
as computers connected to a high speed LAN. Thus, net-
work latency is negligible, and the nodes can be assumed
to be fully connected.

In the model we use the term load as the workload
generated by software modules running on physical pro-
cessors. We assume that the load of a module running on
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Figure 1. System model

a processor can be measured. Also, high load on a node
means that delays become increasingly large.

The software in the system is represented by by M
modules. A module is an atomic software entity, like an ob-
ject or component, that can be migrated from node to node.
The execution load for a module is given by an N × M
matrix E, where element eij is the execution load for mod-
ule j allocated to node i. eij = ∞ if module j may not be
allocated to node i, due to security or domain membership
reasons.

Modules interact using an RPC-like protocol. The
communication model is similar to Bokhari [10], where the
actual communication cost between two modules is zero if
they are co-allocated on the same node. Otherwise, the
communication load is given by an M × M matrix C,
where element cjk is the communication load if modules
j and k are allocated to different nodes. Note that cjj = 0
and we assume that cjk = ckj . The communication load
models the protocol handling required to support commu-
nication between nodes, and is thus a cost for the node host-
ing the modules involved in communication. We do not
consider the loading of the underlying network, since we
have already assumed that it is of high enough capacity.

An activity is a sequence of module interactions, with
given start and end times. It is the arrival of activities that
make the modules work. The working modules generate
load on the nodes they are allocated to.

The allocation of modules to nodes is given by an al-
location matrix α with binary elements. Element αij = 1 if
module j is allocated to node i, αij = 0 otherwise. When
many allocations are considered at the same time, let αk,ij

be αij for allocation k.

3 Reference optimization problem

The module allocation problem is to allocate modules to
physical nodes in a way that best satisfies a given set of
objectives and constraints. Typically, several conflicting
objectives exist and the exact formulation depend on the
problem application.



The main conflict of objectives for performance is be-
tween clustering and distribution of modules. By cluster-
ing modules that communicate the communication cost can
be reduced. However, heavy clustering results in imbal-
ance allocations where some nodes have most modules and
others have only few. Imbalanced allocations in turn typ-
ically results in long delays as some nodes become over-
loaded while others remain almost idle. By distributing
modules higher parallelization is gained, at the cost of more
resources wasted to communication processing. However,
too much distribution results in allocations where a large
part of available resources are used to support communica-
tion.

The objective may be formulated in many ways, de-
pending on application and system parameters. Since the
objective of this work is to study load balancing using mod-
ule migration, we chose an objective that minimizes the
load imbalance in the system.

First, let the the workload wi for node i given alloca-
tion α be:

wi(α) =
∑

j=1

(ejαij +

M∑

k=1

cjkαij(1 − αik)) (1)

The objective of the reference problem is to allocate
software modules to nodes so that system load imbalance is
minimized. This means that the total load on node i should
be as close as possible to the average load wref,i for node
i given allocation α. In our notation, the load imbalance L
given allocation α is:

L =

N∑

i=1

M∑

j=1

|wi(α) − wref,i(α)| (2)

where wref,i(α) is the average load of the nodes weighted
by node capacity.

Each node may not be allocated more than it’s capac-
ity:

0 ≤ wi < 1.0, i = 1..N (3)

The optimization problem is to find the α that mini-
mizes L subject to (3).

4 The Match-maker algorithm

In this section we describe a new algorithm for module mi-
gration, called the Match-maker algorithm. We also briefly
describe other published migration algorithms and discuss
important differences between them.

The objective of the Match-maker algorithm is to bal-
ance the load on nodes as efficiently as possible and thus
minimize load imbalance. The balancing operation is per-
formed by matching nodes with high loads with nodes with
low load, and then letting migration take place within the
pair. The pseudocode in figure 2 describes the algorithm.

node list.sort()
for each n in node list:

n.module list.sort()
i = 1
k=node list.length() (N )
while i < k:

ns=node list(i)
nd=node list(k)
if ns.load > ns.wref and nd.load < nd.wref :

j = 1
while j ≤ns.module list.length():

m=ns.module list(j)
if nd.can accommodate(c) and

nd.load + m.load < nd.wref :
migrate(ns,nd,m)

else:
j = j + 1

i = i + 1
k = k − 1

Figure 2. The Match-maker algorithm

Each pair has one node with high load called the
source node, ns and one node with low load called desti-
nation node, nd. In the pair (ns, nd), ns will be the source
from which a module may be migrated to destination nd.

The algorithm works in intervals of length T . During
the interval load in the system is measured. The matching
operation is performed at a centrally located coordinator
node collects load information and then redistributes it to
other nodes. The coordinator is an ordinary node that acts
as a hub for transferring load information in the network.

The matching procedure is made by load imbalance
order: the first pair has the most overloaded node and the
must under-loaded node, the second pair has the second
most overloaded node and the second most under-loaded
and so on.

For each (ns, nd) pair, the module to be migrated
is selected in a greedy fashion: migrate the largest (in
load) module that will fit on nd, since this will simulta-
neously decrease the load imbalance on both nodes the
most. The can accommodate(mod) function handles non-
performance related allocation policies, such as security or
reliability.

4.1 Comments

Load metrics: We assume that the individual nodes can
estimate the fraction of its total load that is due to a
given module allocated to the node. The load metrics are
recorded periodically and reflect the average load in a mov-
ing window of time. As the modules migrate to and from
a node, the node’s load is updated with an estimate of the
migrating module’s load.



Chosing a coordinator: Any node in the system can be
used as coordinator. However, it is preferable to use a node
with good connections to other nodes.
Scalability: The Match-maker algorithm is scalable in the
sense that in large systems with many nodes the system can
be partitioned into groups. Each group can have it’s own
coordinator and nodes are paired within the group, without
necessarily impairing algorithm performance. If the node
groups are used, nodes can rotate among the groups to im-
prove the load balancing by allowing more choices.
Overhead: The overhead associated with the Match-maker
algorithm includes the load information sent to the coordi-
nator and the reply messages sent to each source node, a
total of at most 3N

2
messages. The decision process in the

coordinator is simple. The module selection is also simple,
possibly requiring information to be passed from destina-
tion nodes. The actual migration of a module is likely to be
expensive and difficult. However, the migration workload
is distributed as much as possible, as no node takes part in
more than one migration during a single interval.

4.2 Comparison with other algorithms

Cooling [7] [6] The Cooling algorithm is similar to Match-
maker on the surface, the difference lies in which order
modules are chosen. The Match-maker algorithm first finds
(ns, nd) pairs, and then attempts migration within each
pair. In the Cooling algorithm, the most heavily loaded
node is always the source node, and the module with high-
est load on that node is the primary candidate for migra-
tion. The destination node is the least loaded node that
can accommodate the candidate module. The advantage
of Match-maker is that several migrations can be made in
parallel, this being more difficult in the case of the Cooling
algorithm. The Cooling algorithm requires all lists of mod-
ule loads to be submitted by nodes at end of every interval.
This is not necessary for the Match-maker algorithm, since
the source node knows what modules it has and is likely to
be able to choose a good candidate for migration.
Hot spot [6] The hot spot algorithm is similar to Cooling,
with the addition of looking at estimated queuing latency
of an activity when deciding what to migrate. The module
that gives the greatest latency to an activity is migrated to a
node where it’s added estimated latency is less than on the
source node. As we do not presently consider task latency,
we do not further discuss the Hot spot algorithm in this
paper.

5 Evaluation

This section describes a series of experiments that we have
run to illustrate the efficiency of the Match-maker algo-
rithm and compare it with the Cooling algorithm and static
allocation methods. No useful reference problems for allo-
cation problems exist, therefore Parameters had to be ran-
domly generated.
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Figure 3. Experiment 1: Small network, M=14 and N=6.
Optimal value for allocation is 0.03

Experiments were conducted using simulation. In the
experiments, we were mostly interested in load balancing
characteristics of the investigated algorithms. We therefore
let communication cost be zero (cij = 0 for all i and j).
Note that communication overhead is not taken into ac-
count by other work on migration algorithms ([5], [6] and
[7]).

In all simulations, the total load on the system was
wtotal = N/2. All nodes are assumed to be equal in terms
of processing powers, and all nodes could (potentially) ac-
commodate all modules. Modules were randomly gener-
ated with eij :s normalized to bring system total load to
wtotal. In experiments 1, 2, 3 and 4 eij :s were constant.
In experiment 5 eij :s were variable with mean eij .

The data in each figure represents averages taken over
ten simulations in each case.

The measure used for evaluation is the measured load
imbalance L divided by the number of nodes N .
Experiment 1: A small problem In this case N = 6
and M = 14. The optimal allocation was derived using
AMPL and CPLEX. The solution time, using a SUN Ultra
60 Workstation, was 32 minutes to derive the optimal al-
location. Figure 3 shows the results from the simulation.
The dotted line at the bottom shows the result for optimal
allocation. We see that for this small system neither migra-
tion algorithm perform very well, with Match-maker doing
about 20% worse than Cooling. The reason for the poor
performance is that with the small ratio of M to N , the mi-
gration algorithms are unable to move anything since over-
loaded nodes have no modules that the under-loaded nodes
can receive.
Experiment 2: A mid-sized toy problem Since it is very
time-consuming to solve the reference problem for larger
systems, a problem with special parameters that had a
known objective and known optimal allocation was devel-
oped. This special problem allows larger systems to be
studied.

The idea was to create a system with only one pos-
sible optimal combination. Equivalent permutations of the
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Figure 4. Experiment 2: Toy system, M=129 and N=10.
Optimal value for allocation is 0.

optimal allocation was considered equal. The parameters
for the system was generated in the following way: Let the
number of nodes be N . Let pl be the lth prime number,
starting at p1 = 2. Let M =

∑N

l=1
pl. Now, let there be pl

modules, each with load eij = 1

2pl

for each l from 1 to N .
For example, for N = 10, there are two modules with

load 1

2·2
, three with 1

2·3
, up to finally 29 modules each with

load 1

2·29
.

Given these modules, it was easy to see that the opti-
mal value of the objective function is 0 and the optimal al-
location placed the two modules with load 1

4
on one node,

and the three with load 1

6
on another and so on.

Figure 4 presents the results given a toy problem sys-
tem (N = 10 and M = 129). From the figure it can be seen
that both algorithms find allocations that are close to opti-
mal. Both algorithms solutions that are much more equal
than in experiment 1.
Experiment 3: Transient loads In this experiment we let
the workload at certain intervals. The change models a
transient in module access pattern, for instance caused by
a change in what activities are performed. The first tran-
sient removes 75 modules from the system. The load on the
remaining modules is increased to keep total system load
constant at wtotal = N/2. The second transient returns the
removed 75 modules and also returns remaining modules
to their original loads. The results from the simulations are
found in figure 5. In the figure we see that both algorithms
adapt to the transients with the same behavior as in exper-
iment 2, with impact on load balance scaled down to take
into account that the system prior to the transient was load
balanced already for a slightly different set of modules.
Experiment 4: Scalability In this experiment we investi-
gated the influence of ratio between M and N . In the ex-
periment, N = 40 was constant, while M was increased
from 100 to 290 in steps of 10. Every point in the di-
agram represents the mean of ten samples. The samples
were the best values attained by the algorithm during sim-
ulation. Figure 6 shows mean optimal values reached by
algorithms as function of M . Both algorithms perform bet-
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Figure 5. Experiment 3: A large system with transients at
T=100 and T=200 (N=80, M=600)
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Figure 6. Experiment 4: Load imbalance as function of
number of modules. (N=40)

ter when the ratio of M to N is large. Cooling outperforms
Match-maker as is expected.
Experiment 5: Stochastic input traffic In this experi-
ment we used variable input traffic generated by a Poisson
source. Activities arrived with λ = 20s−1. Service times
were deterministic and calculated to give mean system load
wtotal = N/2. Activity structure was simple: each activity
calls each module once. This simplification could be done
as no internode communication overhead was modeled.

Figure 7 indicates that the averaged result over 10
simulations. The general difference in convergence speed
between Match-maker and Cooling is apparent. The aver-
age load imbalance per node in the interval T=50 to T=150
shows only a 5% difference between Cooling and Match-
maker.

5.1 Discussion of results

The simulations show that both Match-maker and Cool-
ing algorithms quickly improve load balancing in system.
Match-maker is faster in convergence, but Cooling finds
a slightly better allocation. In small systems, Cooling is
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Figure 7. Experiment 5: Variable loads due to Poisson in-
put traffic. N=40 and M=300.

more efficient. In large systems, Cooling takes a long time
to converge, and the difference in load imbalance is not
very large. In terms of overhead, Match-maker performs
about 10% fewer migrations than does Cooling before con-
vergence.

The choice of migration algorithm is between slower
and more exact or faster and less exact for Cooling and
Match-maker respectively. What should also taken into ac-
count is the need for centralized versus distributed deci-
sion making. Cooling depends on a centralized control to
do all decision making as all system information must be
collected at the central node. Match-maker depends on a
central node only to do the match-making, the migration
control is distributed to the nodes that may do it.

6 Conclusions

To shield the implementor of a distributed program from
the difficult details of implementing efficient load balanc-
ing, transparent and automatic mechanisms are needed.
The Match-maker and Cooling migration algorithms dis-
cussed in this paper are examples of such mechanisms. The
algorithms are likely to provide sub-optimal solutions to
the load balancing problem. However, the algorithms work
with no a-priori knowledge of the system and are yet able
to find good solutions even in large systems very quickly.

The Match-maker algorithm described in this paper
migrates modules from overloaded nodes to nodes with
spare capacity, continually improving the solution. The al-
gorithm has low complexity and high adaptability, and as
such is well suited for performing load balancing in dy-
namic systems where both traffic levels and activity mixes
changes. The Match-maker algorithm is much faster than
the previously published Cooling algorithm. The Cooling
algorithm finds allocations that yield 5-10% lower load im-
balance than the Match-maker for large systems. Both al-
gorithms perform better when the ratio of modules to nodes
is high. Both algorithms also efficiently handles changes
in activity behavior, even though Cooling is slower to re-

spond.
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