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ABSTRACT

In this paper, we consider the problem of multi-pitch estima-
tion and tracking of an unknown number of harmonic audio
sources. The regularized least-squares is a solution for simul-
taneous sparse source selection and parameter estimation. Ex-
ploiting block sparsity, the method allows for reliable tracking
of the found sources, without posing detailed a priori assump-
tions of the number of harmonics for each source. The method
incorporates a Bayesian prior and assigns data-dependent reg-
ularization coefficients to efficiently incorporate both earlier
and future data blocks in the tracking of estimates. In com-
parison with fix regularization coefficients, the simulation re-
sults, using both real and synthetic audio signals, confirm the
performance of the proposed method.

Index Terms— Multi-pitch estimation, tracking, har-
monic signal, regularized least-squares, sparsity

1. INTRODUCTION

Estimation of the fundamental frequency, or pitch, detailing
a set of audio sources, is an important problem in a wide
range of applications, such as source separation, music tran-
scription, and enhancement [1–3]. In speech recognition, for
example, reliable pitch estimates are required in a prosodic
implementation. The topic has for this reason attracted much
interest, in particular for single pitch estimation [4], but the
more challenging problem of multi-pitch estimation has also
been given notable attention [5–8]. Often, these methods
make strong a priori assumptions on the number of measured
sources, as well as on the model orders of these sources. To
determine such model order information is well known to
be challenging [6], although some efforts on joint pitch and
model order estimator techniques have been presented for the
single pitch case [9]. For joint multi-pitch and model order
estimation of the given number of sources, the problem have
been formulated for polyphonic music transcription [5].

The recent pitch estimation using block sparsity (PEBS)
technique introduced in [8] avoids such assumptions by im-
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posing a verity of sparsity constraints, such that from a large
dictionary of feasible pitches, both the number of sources and
the model order of each found source can be determined. In
this work, we introduce an extension of the PEBS algorithm to
allow the efficient tracking of audio sources. Given the natural
behavior of audio signals, the pitch often changes smoothly
over time. That makes pitch values in sequential data frames
highly correlated, which is often exploited in pitch tracking
[10–12]. To allow for such temporal smoothness, we intro-
duce data-dependent regularization coefficients for the spar-
sity constraints in the PEBS method, such that the estimate
for the currently processed data frame is affected by the lo-
cal spectral neighborhood of both the past and future data
frames. The approach builds on earlier work on the adap-
tive Lasso [13] and the Bayesian Lasso [14], as well as use
a Gaussian smoothing kernel to regularize the corresponding
components in the PEBS dictionary.

The remainder of this paper is organized as follows: In
the next section, we present the signal model. In Section 3,
we present the proposed multi-pitch estimation and tracking
using Bayesian inference. Experimental results are presented
in Section 4. Finally, we conclude on our work in Section 5.

2. SIGNAL MODEL

Consider a sum of M harmonic audio sources, each with a
fundamental frequency ωm, and containing Lm harmonics,
for m = 1, 2, . . . ,M , and Let

yn =
[
y(n) y(n+1) . . . y(n+N−1)

]T
(1)

denote the data frame processed at time n, with N being the
length of the frame. To simplify the notation and to reduce
the resulting computational complexity, we here model the
discrete-time analytical signal of the measured signals, as ob-
tained using the method detailed in [15] (see also [6]). Thus,
yn may be well modeled as

yn ,
M∑
m=1

Zmbm + v = Zb + v (2)



where

Z =
[
Z1 Z2 . . . ZM

]
Zm =

[
zm z2m . . . zLm

m

]
zlm =

[
1 ejlωm . . . ejlωm(N−1) ]T

b =
[
bT1 bT2 . . . bTM

]T
bm =

[
bm,1 bm,2 . . . bm,Lm

]T
and (·)T denotes the transpose. The matrix Z contains the
Ltot =

∑M
m=1 Lm complex-valued sinusoids, with the corre-

sponding complex amplitudes b, and is formed out of sub-
basis matrices, Zm, detailing the tones presented in each of
the M sources. The additive noise, v, is here formed similar
to yn in (1), and is assumed to be a circularly symmetric Gaus-
sian distributed white noise, i.e., E{v(n)vH(n)} = σ2

v IN ,
where E{·} denotes the expectation.

3. MULTI-PITCH ESTIMATION AND TRACKING

Consider the problem of spectral amplitude estimation of
multiple sinusoids from the observed signal yn. For the given
(known) basis matrix Z, with N � Ltot, and where the com-
plex basis vectors zlm are assumed to be independent, one
may form an estimate of the unknown pitch frequencies using
the ordinary least-squares (LS) method, minimizing the sum
of squared residuals such that b̂ = (ZHZ)−1ZHyn. How-
ever, such a solution requires knowledge of both the number
of sources and the number of harmonics for each source. To
avoid these assumptions, we define a (large) dictionary matrix
over the considered range of frequencies, ωr ∈ [ωmin, ωmax],
and harmonics, such that the allowed number of harmonics
for the dictionary elements r = 1, 2, · · · , S are limited to
Lr = bπ/ωrc, where b·c denotes the truncation operation to
the nearest lower integer. Accordingly,

yn , Wa + v (3)

where the N × S dictionary matrix is formed as

W =
[
Z1 Z2 . . . ZS

]
(4)

where S � M . The spectral amplitudes of the Lext =∑S
r=1 Lr sinusoids of the dictionary, i.e.,

a =
[
aT1 aT2 . . . aTS

]T
(5)

are exceedingly sparse, containing only Ltot non-zero val-
ues. Then, for the problem of multi-pitch estimation, we
form an estimate of the pitch frequencies by maximizing
the likelihood of the spectral amplitude estimates, â, of the
corresponding frequencies, such that

Ω̂ = arg max
Ω

P
({
‖âr‖2

}S
r=1

∣∣Ω) (6)

where Ω =
[
ω1 ω2 . . . ω

M̃

]T
, for a given M̃ , which

may differ from the true number of sources, M .
Under the assumption of circularly symmetric Gaussian

noise, the spectral amplitude estimates may be formed using
the maximum likelihood (ML) method, such that

âML = arg max
a

logP (yn
∣∣a, σv) (7)

where

P (yn|a, σv) =
1

(2πσ2
v )N/2

exp
(
− 1

2σ2
v

‖yn−Wa‖22
)

is the likelihood function, with ‖ · ‖2 denoting the `2-norm.
Given that the additive noise is assumed to be white, the re-
sulting ML estimate coincides with the standard LS estimate,
and may thus be efficiently formed accordingly. However, in
order to avoid over-fitting, one often instead forms the regu-
larized LS estimate (see, e.g., [16]). The least absolute shrink-
age and selection operator (Lasso) [17] is a well known regu-
larized LS estimator that shrinks the sum of absolute values of
the amplitudes toward zero. Imposing a Laplace distribution
on the amplitudes, the likelihood for those may be expressed
as [14]

P (ar,lr |τr,lr , σv) =
τr,lr
2σv

exp
(
−
τr,lr
σv
|ar,lr |

)
. (8)

Interpreting the Lasso as a Bayesian posteriori estimator, we
express the probability of the spectral amplitudes, given
the observations, and using the parameter vector Ψ ={⋃S

r=1

⋃Lr

lr=1 τr,lr
}

, as

P (a|yn,Ψ, σv)∝
S∏
r=1

Lr∏
lr=1

P (yn
∣∣ar,lr , τr,lr , σv)P (ar,lr

∣∣τr,lr , σv)
∝ exp

(
− 1

2σ2
v

‖yn−Wa‖22
) S∏
r=1

Lr∏
lr=1

exp
(
−
τr,lr
σv
|ar,lr |

)
.

As noted in [8], one may further include the group sparsity
constraint to restrict the number of variable solutions (see also
[18,19]). Therefore, we extend on this notation by expressing
the probability of the grouped variables, using the parameter
vector Ψr =

{⋃Lr

lr=1 τr,lr
}

, as

P (a|yn,Ψ, σv)∝exp
(
− 1

2σ2
v

‖yn−Wa‖22
) S∏
r=1

P (ar
∣∣Ψr, σv)

where P (ar
∣∣Ψr, σv) ∝ exp

(
−‖Ψr‖2

σv
‖ar‖2

)
. Herein, we

take into consideration the spectral neighborhood as it evolves
over time, such that

â = arg max
a

logP (a
∣∣yn,Ψ, σv)

= arg min
a

1

2
‖yn−Wa‖22 + J (9)



where J denotes the imposed constraints, formed as

J = ‖ψL� a‖1 +

S∑
r=1

‖ψGL,r‖2‖ar‖2 (10)

and with � denoting the element-wise matrix product. To al-
low for the required sparsity constraints [8], the penalty term
J involves both the `1-norm penalty for the ordinary Lasso
and the `2-norm penalty for the group-Lasso. The real-valued
and non-negative regularization coefficients

ψL =
[
ψTGL,1 ψTGL,2 . . . ψTGL,S

]T
(11)

ψGL,r =
[
ψGL,r,1 ψGL,r,2 . . . ψGL,r,Lr

]T
(12)

are assigned to the individual and grouped sinusoids, respec-
tively, to make a trade-off between the residual and penalties.
In [8], the PEBS estimator was formulated using common
regularization coefficients for the two norms, such that

J = λL‖a‖1 +

S∑
r=1

λGL,r‖ar‖2 (13)

where λL = τσv and λGL,r = τσv
√
Lr with the common

shrinkage coefficient τ .
As shown in [8], the resulting minimization may suffer

from spurious estimates for weak signals and/or onsets, oc-
casionally resulting in an overestimation of the model order.
To reduce the occurrence of such spurious estimates, and to
allow for a smooth spectral evaluation over frames, we in the
following expand on the penalties in (13) to instead allow for
more flexible penalty terms. In order to do so, we introduce
adaptive weighting of the penalty terms in PEBS, using the
notation of an adaptive Lasso, as introduced in [13], such that

‖ψGL,r‖2 =
σ̂v

(‖ãr‖2)k
(14)

ψGL,r,lr =
σ̂v

(|ãr,lr |)k
(15)

where k > 0 is a user defined parameter, and with the noise
variance being estimated as σ̂v u ‖yn−Wã‖2, and ã =
E{a

∣∣Ψ, σv}, with E{·} denoting the expectation. The result-
ing adaptive penalty thereby offers a more flexible trade-off
between the mean-squared error (MSE) and the bias. The in-
troduced penalty is reminiscent of the iterative re-weighting
adaptive Lasso [13], wherein the bias is similarly reduced by
applying less shrinkage to the important predictors.

As the frequency content of most audio signals are piece-
wise smooth [20, 21], it is reasonable to model the dominant
components in each frame as being close to those in the ear-
lier and the following frames. Thus, the neighboring frames
can be expected have nearly the same expectation of the ab-
solute values, i.e., E

{
|a(n+t)|

∣∣Ψ, σv
}
' E

{
|a(n)|

∣∣Ψ, σv
}

.
In practice, one may apply time averaging over 2T+1 initial
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Fig. 1. Normalized MSE of the spectral amplitude estimates
versus the sample lengthN , at SNR = 10 dB (top), and versus
SNR, using N = 150 (bottom).

estimates of a(n) to find an estimate of the expectation at the
time instance n, such that

E{a(n)
∣∣Ψ, σv} ≈

1

2T+1

T∑
t=−T

â(n+t)� h(t) (16)

where h(t) is a phase shift vector depending on the specific
frequencies of the dictionary with unit absolute values, and
where â(n) denotes the estimated amplitude vector at time
n, as obtained from the initialization or the earlier processed
frames. For fast varying spectral content, as well as for
poor initial or earlier spectral estimates, we include a spec-
tral smoothing, formed using kernel regression. Here, we
make use of the Nadaraya-Watson method introduced in [22],
which use a monotonic decay over spectral neighborhood of
the considered centroid, such that

ār,lr =

∑S
g=1

∑Lg

lg=1KΣ(xg−xr) ãg,lg∑S
g=1

∑Lg

lg=1KΣ(xg−xr)
(17)

where the kernel function is defined as

KΣ(xg−xr) = exp
(
− 1

2
(xg−xr)

TΣ−1(xg−xr)
)

with Σ denoting the diagonal covariance matrix, giving
more weight to the amplitudes ãg,lg at the data point xg =
[ωg, lgωg]

T that has a smaller Euclidean distance to xr =
[ωr, lrωr]

T .

4. EXPERIMENTAL RESULTS

To investigate the performance of the extended PEBS method,
we conducted simulations using both synthetic and real audio
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Fig. 2. Spectrogram of the examined speech and trumpet sig-
nals (top), and the resulting multi-pitch estimates (bottom).

signals. Since the PEBS method preferably outperforms most
stat-of-the-art methods, such as Capon, ANLS, and ORTH
[8], we here only compare the found results with the PEBS
method. In these simulations, we solved the convex mini-
mization in (9) using the Matlab CVX package [23].

In the first experiment, we estimate the spectral ampli-
tudes of a single-source synthetic signal for varying number
of samples and signal-to-noise ratio (SNR). The synthetic sig-
nal was generated using the signal model in (2). The funda-
mental frequency of these signals were uniformly drawn on
ω1∈ [160, 290]× (2π/fs), with a uniformly distributed num-
ber of harmonics L1 ∈ U{5, bπ/ω1c}, unit amplitudes, and
sampling frequency fs = 8.0 kHz. The used dictionary con-
tained S = 130 candidate pitches. The expectation in (14)
and (15) was approximated using (16) with k = 0.5. Fig. 1
shows the resulting normalized MSE as obtained from 100
Monte-Carlo simulations. As comparison, the figure shows
the amplitude estimates of the PEBS method with the adap-
tive penalties, âAGL, using different initiation estimates: the
PEBS amplitude estimates with common penalties (ã = âGL),
the Tikhonov1 amplitude estimates (ã = âTikh), and the ac-
tual amplitudes (ã = a). Here, the user parameters have been
set as δ = 0.1, λL = 0.12, and λGL,r = 0.12

√
Lr. As is

clear from the figure, the extended PEBS method offers an
improved performance as compared to the regular PEBS al-
gorithm, over all considered data lengths (except for the initial
estimates using the Tikhonov estimator) and SNRs.

We proceed to examine a real audio signal consisting of
a mixture of a female voice and a trumpet signal, corrupted

1The Tikhonov estimator is formed as a regularized LS estimate such that
âTikh = (WHW+ δI)−1WHyn, where δ ≥ 0 is the regularization coef-
ficient, and I ∈ RLext is an identity matrix.
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â
ℓ,
A
G
L
‖
2

Spurious

Bias error

Bias error

Fig. 3. The `2-norm of spectral amplitude estimates using the
common PEBS method (left), and the extended PEBS method
(right).

by an additive white noise, with SNR = 10 dB, using N =
150 samples per frame. We apply 2T + 1 = 3 initial esti-
mates in (16), using the regular PEBS estimates, and with
Σ = diag{6.25, 0.01} × (2π/fs)

2 in the kernel smoother,
where diag{·} denotes a diagonal matrix formed from a vec-
tor argument. Fig. 2 shows the spectrogram of the exam-
ined signal, together with the resulting pitch estimates of the
two audio sources. As can be seen from the figure, the ex-
tended PEBS method estimates and tracks the audio sources
smoothly, whereas the PEBS method suffer from some over-
shoots. For instance, at time 0.09 sec, the PEBS estimate finds
the pitch of one of the sources close to the other, clearly mis-
takenly the spectral sidelobes of the first source for the pitch
of the other signal source (see also Fig. 3). As can be seen
from the Fig. 3, the spectral amplitude estimates using the
common PEBS method have some spurious non-zeros, and
bias in comparison with the extended PEBS method.

5. CONCLUSION

In this work, we have presented a method for multi-pitch es-
timation and tracking of audio signals such as voiced speech
and harmonic musical instruments, without assuming detailed
prior knowledge about the signal sources. We have applied
a general dictionary consisting of a set of groups for feasi-
ble fundamental frequencies and harmonics. Using `1-norm
penalties is a well known solution for such the sparse signal
formulation for both the individual and grouped sinusoids.
We have shown that the regularization coefficients of the
penalty terms should not be identical for all components of
the dictionary, and assigned data-dependent regularization co-
efficients incorporated with an expectation on individual and
grouped sinusoids. Experimental results have confirmed that
the data-dependent regularization coefficients have a lower
bias in comparison with the fixed ones. To track the pitch val-
ues smoothly over time, we have also applied a low-pass filter
on the expected values to assign monotonic regularization co-
efficients regarding the spectral and temporal neighborhoods.
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