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Fair Scheduling in Common-Pool Games by Aspiration Learning

Georgios C. Chasparis Ari Arapostathis Jeff S. Shamma

Abstract—We propose a distributed learning algorithm for
fair scheduling in common-pool games. Common-pool games
are strategic-form games where multiple agents compete over
utilizing a limited common resource. A characteristic example
is the medium access control problem in wireless communi-
cations, where multiple users need to decide how to share a
single communication channel so that there are no collisions
(situations where two or more users use the medium at the same
time slot). We introduce a (payoff-based) learning algorithm,
namely aspiration learning, according to which agents learn
how to play the game based only on their own prior experience,
i.e., their previous actions and received rewards. Decisions are
also subject to a small probability of mistakes (or mutations).
We show that when all agents apply aspiration learning, then
as time increases and the probability of mutations goes to
zero, the expected percentage of time that agents utilize the
common resource is equally divided among agents, i.e., fairness
is established. When the step size of the aspiration learning
recursion is also approaching zero, then the expected frequency
of collisions approaches zero as time increases.

Keywords: Aspiration learning; Common-pool games; Re-

source allocation; Medium-access control

I. INTRODUCTION

Lately, there has been considerable research interest in

distributed optimization techniques as a means of efficient

coordination in multiagent systems for efficient resource

allocation. We are particularly interested in problems in

which limited resources need to be shared in a distributed

manner among several users, namely common-pool problems.

For example, in wireless communication networks, multiple

users often need to allocate fairly the time slots at which they

utilize a shared communication channel (see, e.g., packet

radio multiple-access protocols such as the ALOHA protocol

[2]). The question that naturally emerges is the following:

Can fair scheduling emerge as the outcome of a distributed

learning algorithm?

In this paper, we approach this question by following

a noncooperative game-theoretic formulation, where each

agent is acting myopically trying to maximize its own utility.

This paper is an extension of [1].
G.C. Chasparis is with the Department of Automatic Control, Lund

University, 221 00-SE Lund, Sweden (georgios.chasparis@control.lth.se).
http://www.control.lth.se/chasparis. This author’s work was supported by
the Swedish Research Council through the Linnaeus Center LCCC.

A. Arapostathis is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, 1 University Station,
Austin, TX 78712 (ari@mail.utexas.edu). http://www.ece.utexas.edu/˜ari.
This author’s work was supported in part by the Office of Naval Research
through the Electric Ship Research and Development Consortium.

J.S. Shamma is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 (shamma@gatech.edu).
http://www.prism.gatech.edu/˜jshamma3. This author’s work was supported
by ONR project #N00014-09-1-0751 and AFOSR project #FA9550-09-1-
0538.

There have been several efforts which model common-

pool problems in communications in a similar manner, e.g.,

[3], [4]. Although the notion of Nash equilibrium emerges

naturally in this framework, Nash equilibria (if exist) might

not be fair solutions to a common-pool game. This is due

to the fact that in these games fair solutions are usually

represented as probability distributions in the joint strategy

space of all agents, also discussed in [4]. For example, when

two users need to share the same communication channel,

a fair allocation could be as follows: with probability 1/2

the first user uses the channel, and with probability 1/2 the

second user uses the channel. However, such an allocation

cannot be represented by any Nash equilibrium, since it is

defined in the joint strategy space.

Other equilibrium concepts defined on the joint strategy

space, such as correlated equilibria [5], seem more appro-

priate. This work is also related to learning dynamics for

convergence to correlated equilibria [6], however our goal

is more specific, that is to develop a distributed learning

scheme which will “converge” (in a sense to be defined) to

fair outcomes in the joint strategy space. These outcomes

may or may not correspond to correlated equilibria, however

this is a question we do not answer in this paper.

In this paper, we analyze the asymptotic behavior of a

(payoff-based) learning algorithm, namely aspiration learn-

ing, in common-pool games. Aspiration learning is based

on a simple rule of “win-stay, lose-shift” [7], according to

which a successful action is repeated while an unsuccessful

action is dropped. Agents’ decisions are also subject to

small mistakes (or mutations). Prior analysis in aspiration

learning [1], [8], [9] has focused only on characterizing

the set of possible outcomes of aspiration learning, and

the asymptotic behavior is usually stated in the form of

weak convergence arguments. In this paper, we extend prior

work by [1] to common-pool games and we characterize

explicitly the expected frequency with which the possible

outcomes of the process appear as time increases. In fact,

we show that in common-pool games fairness is established,

i.e., the expected percentage of time that users are utilizing

the common resource is divided equally among the users,

as the mutation probability approaches zero and time goes

to infinity. Furthermore, when the step size of the aspiration

learning recursion also approaches zero, the expected number

of collisions approaches zero as time increases.

The remainder of the paper is organized as follows.

Section II introduces common-pool games and discusses a

few examples drawn from medium-access control in wireless

networks. Sections III–IV present background material in

aspiration learning and finite Markov chains. Section V



discusses the asymptotic behavior of aspiration learning in

common-pool games and the establishment of fairness. The

results are illustrated through simulations in Section VI.

Terminology: We consider the standard setup of finite

strategic-form games. There is a finite set of agents/players,

I = {1, ..., n}, n ≥ 2, and each agent has a finite number of

actions, denoted by Ai. The set of action profiles (or joint

actions) is the cartesian product A , A1× ...×An; αi ∈ Ai

denotes an action of agent i; and α = (α1, ..., αn) ∈ A
denotes an action profile of all agents. We will also denote

|A| the cardinality of the set of A. The payoff/utility function

of player i is a mapping ui : A → R.

II. COMMON-POOL GAME (CPG)

A. Definition

Common-pool games refer to strategic interactions where

two or more agents need to decide unilaterally whether or not

to utilize a limited common resource. In such interactions,

each agent would rather use the common resource by itself

than share it with another agent, which is usually penalizing

for both of them.

Definition 2.1 (CPG): A common-pool game (CPG) is a

strategic-form game such that, for each agent i ∈ I, the
action space is Ai = {p0, p1, ..., pm−1}, for some m ≥ 2
and 0 ≤ p0 < p1 < ... < pm−1, and the utility function is:

ui(α) ,






1 − cj αi = pj , αi > maxℓ 6=i αℓ,
−cj + τj αi = pj , ∃s ∈ I\i s.t. αs > maxℓ 6=s αℓ,
−cj αi = pj , ∄s ∈ I s.t. αs > maxℓ 6=s αℓ,

where

0 ≤ c0 < ... < cm−1 < 1,

−c0 < −cm−2 + τm−2 < ... < −c0 + τ0 < 1 − cm−1

and τj > 0 for all j = 0, ..., m − 2.
This definition of a CPG can be considered as a finite-

action analog of continuous-action CPG’s defined in [10].

Table I presents an example of a two-player and three-action

CPG.

p0 p1 p2

p0 −c0,−c0 −c0 + τ0, 1− c1 −c0 + τ0, 1− c2

p1 1− c1,−c0 + τ0 −c1,−c1 −c1 + τ1, 1− c2

p2 1− c2,−c0 + τ0 1− c2,−c1 + τ1 −c2,−c2

TABLE I

A CPG OF 2 PLAYERS AND 3 ACTIONS.

We will characterize by “success” any action profile in

which one player’s action is strictly greater than any other

player’s action. Accordingly, any other situation will corre-

spond to a “failure.” More specifically, in any CPG, we define

the set of “successful” action profiles as

Ā , {α ∈ A : ∃i ∈ I s.t. αi > max
ℓ 6=i

αℓ}.

For example, this set of joint actions will correspond to the

off-diagonal action profiles in Table I. It is also evident that

the set Ā payoff-dominates the set A\Ā.

According to Definition 2.1, a player is rewarded when

it “succeeds,” i.e., when its action is higher than everyone

else’s action. On the other hand, all players are penalized

when there is a “failure.” However, the penalty for the players

who “fail” is smaller when there is a “success.”

B. Example: Medium Access Control in Wireless Networks

In packet radio multiple-access protocols (cf., [11, Chap-

ter 5]), there are multiple users which compete for access to

a single communication channel. Each user needs to decide

whether or not to occupy the channel in a given time slot

based only on local information. If more than one user is

occupying the channel at a given time slot, then a collision

occurs and the user needs to resubmit the data. The base

station can send signals to the users indicating a successful

or unsuccessful transmission.

An example of such multiple-access protocols is the

ALOHA protocol [2], where users transmit a packet accord-

ing to a probabilistic pattern. Another example is the carrier-

sense multiple-access protocol (CSMA) and its variations

(cf., [11, Chapter 5]), according to which the users first

detect whether the channel is occupied and then transmit.

For example, in the p-persistent CSMA, if the medium is

idle, users transmit with probability p. In CSMA/CA instead,

if the medium is occupied, each user waits a random time

(also known as backoff factor) before resubmission of the

packet.

Due to the distributed nature of the problem, the multiple

access problem can be formulated as a strategic-form game.

In fact, there has been a large amount of research efforts

discussing such possibilities including [3], [4], [12]. Some

of the proposed strategic-form games can be formulated as

a CPG, as the following discussion will reveal.

In particular, in [3], a random access game is considered,

where users decide on whether to submit a packet or wait.

The users receive the hishest payoff when they succeed on

transmitting a packet, while they receive a penalty each time

there is a collision, i.e., when there are two or more users

transmitting at the same time slot. It is shown that the game

with two users exhibits three Nash equilibria two of which

are pure. A similar framework is considered in [4], where

the action space of each user consists of multiple power

levels of transmission. If a user transmits with a power level

that is strictly larger than the power level of any other user,

then it is able to transmit successfully, otherwise a collision

occurs and the transmission is not possible. This game can

be formulated in a straightforward manner as a CPG, where

the action profile of each user is defined as the power level

of transmission and the utilities are defined according to

Definition 2.1. It is noted, as expected, that for such a random

access game, the Nash equilibria do not achieve a socially

optimum solution. As also shown in [4], socially optimum

solutions can be achieved through correlated strategies (i.e.,

probability distributions in the joint action space). However,

implementing correlated strategies requires the presence of

a referree.



It is worth mentioning that there has been several other

approaches for addressing the same problem. For example,

in [12], users have discretion over the size of the waiting

time in a CSMA/CA framework which is assumed to evolve

in a finite set. Again, it is noted that Nash equilibria will

not be fair since users have the incentive to set a waiting

time which is as small as possible. As a result, at a Nash

equilibrium either only one user is occupying the channel,

or more than one user is occupying the channel leading to

a collision. Nash equilibria, as in [4], do not correspond to

socially optimal solutions, thus reference [12] addresses this

problems through a Nash bargaining framework from the

theory of cooperative games.

The above formulations of packet radio multiple-access

protocols reveal the necessity for distributed schemes that

will guarantee fair use of the common medium among

several users. Similarly to the model of [4], we wish to

address this question through a noncooperative game for-

mulation, where actions correspond to the power level of the

transmission and utilities are given by Definition 2.1. We

will also demonstrate how fair solutions can be established

when users learn over time through a distributed learning

rule, namely aspiration learning.

III. BACKGROUND ON ASPIRATION LEARNING

In this section, we present a (payoff-based) learning algo-

rithm developed and analyzed in [1].

For some constants ζ > 0, ǫ > 0, λ ≥ 0, c > 0, 0 < h <
1, and ρ, ρ ∈ R, such that

−∞ < ρ < min
α∈A,i∈I

ui(α) ≤ max
α∈A,i∈I

ui(α) < ρ < ∞,

the aspiration learning iteration initialized at (α(0), ρ(0))
is described by Table II. According to this algorithm, each

agent i keeps track of an aspiration level, ρi, which measures

player i’s desirable return and is defined as a discounted

running average of its payoffs throughout the history of play.

Given the current aspiration level, ρi(t), agent i selects a new
action αi(t + 1). If the previous action, αi, provided utility

higher than ρi(t), then agent i is “satisfied” and selects the

same action, αi(t + 1) = αi. Otherwise, the new action

is selected randomly over all available actions, where the

probability of selecting again αi depends on the level of

discontent measured by the difference ui(α) − ρi(t) < 0.
Define the state-space as X , A× [ρ, ρ]n, i.e., pairs of i)

joint actions α and ii) vectors of aspiration levels, ρi, i ∈ I.
We assume the standard notation of continuous-space

Markov chains [13]. Let also:

− B(X ): the Borel σ-algebra on X .

− P(X ): the set of probability measures on B(X ) en-

dowed with the topology of weak convergence.

− T : X × B(X ) → [0, 1] is a transition probability

function if i) T (x, ·) is a probability measure for all

x ∈ X and ii) T (·, B) is measurable on X for all

B ∈ B(X ).
− For µ ∈ P(X ) and transition probability function T ,

µT ∈ P(X ) is the probability measure defined by

µT (B) ,
∫

X µ(dx)T (x, B).

At any instance t = 0, 1, ...,

1) Agent i plays αi(t) = αi and measures utility ui(α).
2) Agent i updates its aspiration level according to

ρi(t + 1) = sat[ρi(t) + ǫ[ui(α) − ρi(t)] + ri(t)]

where

ri(t) ,

{

0, w.p. 1 − λ

rand[−ζ, ζ], w.p. λ
,

and

sat[ρ] ,







ρ, ρ > ρ

ρ, ρ ∈ [ρ, ρ]

ρ, ρ < ρ

.

3) Agent i updates its action:

αi(t + 1) =

{

αi w.p. φ(ui(α) − ρi)
rand(Ai\αi) w.p. 1 − φ(ui(α) − ρi)

where

φ(z) ,

{

1 z ≥ 0
max(h, 1 + cz) z < 0

.

4) Agent i updates the time and repeats.

TABLE II

ASPIRATION LEARNING

− µ ∈ P(X ) is an invariant measure for the transition

probability function T if µ = µT .

− For transition probability functions T1 and T2, the

transition probability function T1T2 is defined by

T1T2(x, B) ,
∫

X T1(x, dy)T2(y, B).
− δx: the Dirac measure defined by x ∈ X .

Aspiration learning defines an X -valued Markov chain.

Let Pλ(x, ·) denote the corresponding transition probability

function. We will refer to this process with λ > 0 as the

perturbed process. Let also P (x, ·) denote the transition

probability function of the unperturbed process.

The analysis of the asymptotic behavior of aspiration

learning can be related to the pure strategy states:

Definition 3.1 (Pure strategy state): A pure strategy state

is a state x = (α, ρ) ∈ X such that for all i ∈ I, ui(α) = ρi.

We denote the set of pure strategy states by S. The set S
is isomorphic to A and can be identified as such.

Let also Q(x, ·) denote the transition probability function

induced by the aspiration learning algorithm where exactly

one player trembles. For some s ∈ S define the sets Nε ,

[αs, [ρs−ε, ρs+ε]), ε > 0, where (αs, ρs) denote the action
and aspiration level of s. For any two pure strategy states,

s, s′ ∈ S, define also

P̂ss′ , lim
t→∞

QP t(s, Nε(s
′))

for some ε > 0 sufficiently small. As we showed in

Proposition 3.2 in [1], P̂ss′ is independent of the selection

of ε. It can be interpreted as the probability that under

the dynamics QPP... with initial condition s the process

has been “captured” by s′, i.e., action αs′ is being played



repeatedly after some time t.
Define also the stochastic matrix P̂ , [P̂ss′ ]. By Proposi-

tion 3.5 in [1], P̂ is irreducible and aperiodic. The following

proposition relates the asymptotic behavior of aspiration

learning with the unique invariant distribution of P̂ as λ → 0.
Proposition 3.1 (Theorem 3.1 in [1]): There exists a

unique probability vector π = (π1, ..., π|S|) such that

for any collection of invariant probability measures

{µλ ∈ P(X ) : µλPλ = µλ, λ > 0}, we have

lim
λ↓0

µλ(·) = µ̂(·) ,
∑

s∈S

πsδs(·),

where convergence is in the weak∗ sense. Furthermore, π is

the unique invariant distribution of P̂ .

Using Proposition 3.1 and Birkhoff’s individual ergodic

theorem, e.g., [13, Theorem 2.3.4], the expected percentage

of time that the process spends in any set B ∈ B(X ) such

that ∂B ∩ S 6= ∅ is µ̂(B) as λ approaches zero and time

increases (see [1, Theorem 3.1]). Thus, µ̂ and, therefore, π
characterizes the asymptotic behavior of aspiration learning.

IV. BACKGROUND ON FINITE MARKOV CHAINS

In order to compute the invariant distribution of a finite-

state, irreducible and aperiodic Markov chain, we are going

to consider a characterization introduced by [14]. In par-

ticular, for finite Markov chains an invariant measure can

be expressed as the ratio of sums of products consisting

of transition probabilities. These products can be described

conveniently by means of graphs on the set of states of the

chain. In particular, let S be a finite set of states, whose

elements will be denoted by sk, sℓ, etc., and let a subset W
of S.
Definition 4.1: (W-graph) A graph consisting of arrows

sk → sℓ (sk ∈ S\W, sℓ ∈ S, sℓ 6= sk) is called a W-graph

if it satisfies the following conditions:

1) every point k ∈ S\W is the initial point of exactly one

arrow;

2) there are no closed cycles in the graph; or, equiva-

lently, for any point sk ∈ S\W there exists a sequence

of arrows leading from it to some point sℓ ∈ W .

We denote by G{W} the set of W-graphs; we shall use the

letter g to denote graphs. If P̂sksℓ
are nonnegative numbers,

where sk, sℓ ∈ S, define also the transition probability along

path g as

̟(g) ,
∏

(sk→sℓ)∈g

P̂sksℓ
.

The following Lemma holds:

Lemma 4.1 (Lemma 6.3.1 in [14]): Let us consider a

Markov chain with a finite set of states S and transition

probabilities {P̂sksℓ
} and assume that every state can be

reached from any other state in a finite number of steps.

Then, the stationary distribution of the chain is π = [πs],
where

πs =
Rs

∑

si∈S Rsi

, s ∈ S

where Rs ,
∑

g∈G{s} ̟(g).

V. FAIR SCHEDULING IN CPG’S

In this section, using Proposition 3.1 and Lemma 4.1 we

establish fairness in CPG’s.

First, define the subset of pure-strategy states that corre-

spond to “successful” states for agent i:

S̄i , {s ∈ S : αi > αj , ∀j ∈ I\i},

i.e., S̄i corresponds to the set of pure-strategy states in which

the action of agent i is strictly larger than the action of

any other agent j 6= i. Let also S̄ ,
⋃

i∈I S̄i, which is

isomorphic to the set of successful action profiles, Ā.

For any two states s, s′ ∈ S, we define the following

equivalence relation, denoted by ∼.

Definition 5.1 (State equivalence): In any CPG and for

any two pure-strategy states s, s′ ∈ S such that s 6= s′,
let α and α′ denote the corresponding action profiles. We

write s ∼ s′ if there exist i, j ∈ I, i 6= j, such that

1) α′
i = αj ,

2) αi = α′
j , and

3) α′
k = αk for all k 6= i, j.

Note that the equivalence relation ∼ defines an isomor-

phism among the states of any two sets S̄i and S̄j for any

i 6= j. An immediate implication of the above equivalence

property is the following:

Claim 5.1: In any CPG, let s, s′ ∈ S be such that s ∼ s′.
Let also α and α′ be the corresponding action profiles of s
and s′, respectively. Then, there exist i, j ∈ I, i 6= j, such
that:

1) uj(α
′) = ui(α),

2) ui(α
′) = uj(α), and

3) uk(α′) = uk(α) for all k 6= i, j.
Proof: This is a direct consequence of the symmetry

in the payoff function of the CPG and the definition of the

state equivalence property (Definition 5.1).

Lemma 5.1 (Fairness): For any CPG, πS̄1
= ... = πS̄n

.

Proof: (sketch) Let i ∈ I and s ∈ S̄i. Consider also

the set of G{s}-graphs according to Definition 4.1. We can

define a sequence of pure strategy states in S, {s1, ..., sL}
such that sL ≡ s and

g =

L−1
⋃

ℓ=1

(sℓ → sℓ+1) ∈ G{s},

for some L ∈ N. Consider any other agent j 6= i and a

state s′ ∈ S̄j such that s′ ∼ s. For any path g ∈ G{s} of

length L, there exists a unique path g′ ∈ G{s′} consisting

of a sequence of states of length L, {s′1, ..., s
′
L}, such that

s′ℓ ∼ sℓ, for all ℓ ∈ {1, ..., L}. Lastly, due to the symmetry

of any CPG and Claim 5.1, we have that

P̂sℓsℓ+1
= P̂s′

ℓ
s′

ℓ+1

for any ℓ ∈ {1, ..., L − 1}. Hence, we conclude that

̟(g′) = ̟(g). In other words, there exists an isomorphism

between the graphs in the sets G{s} and G{s′}, such that any

two isomorphic graphs have the same transition probability.

Accordingly, we have that πs = π′
s for any two states



s, s′ such that s ∼ s′. Since any two sets S̄i and S̄j are

isomorphic with respect to the equivalence relation ∼, we

further conclude that πS̄1
= ... = πS̄n

.
Lemma 5.2: For any CPG and for sufficiently small ζ > 0,

πsi
→ 0 as ǫ → 0, for all si /∈ S̄.
Proof: (sketch) The proof follows from a generalization

of Theorem 4.1 in [1] derived for strict coordination games

to the case of CPG’s.

Theorem 5.1 (Fairness for small ǫ): For any CPG and

for sufficiently small ζ > 0,

πS̄i
→ 1/n as ǫ → 0,

for all i ∈ I.
Proof: First, recognize that the sets {S̄i} are mutually

disjoint, and
⋃n

i=1 S̄i = S̄. Then, by Lemma 5.2, we have

that πS̄ =
∑n

i=1 πS̄i
→ 1 as ǫ → 0. Thus, according to

Lemma 5.1 the conclusion follows.

In other words, we have shown that the invariant distri-

bution π puts equal weight on either agent “succeeding.”

Furthermore, it puts zero weight on states outside S̄ (i.e.,

“failures”) as ǫ → 0.

VI. SIMULATIONS

We may combine Proposition 3.1 with Lemma 5.1 and

Theorem 5.1 to provide a characterization of the asymptotic

behavior of aspiration learning in CPG’s as λ and ǫ approach
zero. In fact, according to Proposition 3.1 and Lemma 5.1,

the expected percentage of time that the aspiration learning

spends in any one of the pure strategy sets S̄i should be

equal to each other as λ → 0 and t → ∞ (i.e., fairness

is established). Furthermore, according to Theorem 5.1, the

expected percentage of “failures” (i.e., states outside S̄)
approaches zero as ǫ → 0 and t → ∞.

We consider the following setup for aspiration learning:

λ = 0.001, ǫ = 0.001, h = 0.01, c = 0.05, ζ = 0.05.

Also, we consider a CPG of 2 players and 4 actions, where

c0 = 0, c1 = 0.1, c2 = 0.2, c3 = 0.3 and τ0 = τ1 =
τ2 = τ3 = 0.8. Under this setup, Figure 1 demonstrates the

response of aspiration learning. We observe, as Theorem 5.1

predicts, that the frequency with which either agent utilizes

the common resource approaches 1/2 as time increases.

Furthermore, the frequency of collisions (i.e., the actions

in which neither agent utilizes the resource successfully)

approaches zero as time increases.

VII. CONCLUSIONS

We proposed a distributed learning scheme for establishing

fair scheduling in CPG’s. Agents make decisions based only

on their own prior experience of the game, i.e., actions played

and received rewards. We showed analytically and demon-

strated through simulations that aspiration learning provides

a fair solution to CPG’s. In fact, as time increases, the

expected frequency with which agents utilize the common

resource is equally divided among agents, while the expected

frequency of collisions approaches zero.
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Fig. 1. A typical response of aspiration learning in a CPG with 2 players
and 4 actions.

REFERENCES

[1] G. Chasparis, J. Shamma, and A. Arapostathis, “Aspiration learning
in coordination games,” in IEEE Conference on Decision and Control,
Atlanta, GA, 2010.

[2] N. Abramson, “The Aloha system - another alternative for computer
communications,” in Proc. 1970 Fall Joint Computer Conference,
A. Press, Ed., 1970, pp. 281–285.

[3] H. Inaltekin and S. Wicker, “A one-shot random access game for
wireless networks,” in International Conference on Wireless Networks,

Communications and Mobile Computing, 2005.
[4] H. Tembine, E. Altman, R. ElAzouri, and Y. Hayel, “Correlated

evolutionary stable strategies in random medium access control,” in
International Conference on Game Theory for Networks, 2009, pp.
212–221.

[5] R. J. Aumann, “Correlated equilibrium as an expression of bayesian
rationality,” Econometrica, vol. 55, pp. 1–18, 1987.

[6] S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, pp. 1127–1150, 2000.

[7] M. Posch, A. Pichler, and K. Sigmund, “The efficiency of adapting
aspiration levels,” Biological Sciences, vol. 266, no. 1427, pp. 1427–
1435, July 1999.

[8] R. Karandikar, D. Mookherjee, and D. Ray, “Evolving aspirations and
cooperation,” Journal of Economic Theory, vol. 80, pp. 292–331, 1998.

[9] I. K. Cho and A. Matsui, “Learning aspiration in repeated games,”
Journal of Economic Theory, vol. 124, pp. 171–201, 2005.

[10] H. Meinhardt, “Common pool games are convex games,” Journal of

Public Economic Theory, vol. 1, no. 2, pp. 247–270, 1999.
[11] Z. Han and K. R. Liu, Resource Allocation for Wireless Networks.

Cambridge University Press, 2008.
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