
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Implementation of a Graphical Modelica Editor with Preserved Source Code Formatting

Sten, Jon; Mattsson, Tobias; Bergdahl, Tove; Mattsson, Jesper; Åkesson, Johan

Published in:
Proceedings of the 9th International Modelica Conference

DOI:
10.3384/ecp12076375

2012

Link to publication

Citation for published version (APA):
Sten, J., Mattsson, T., Bergdahl, T., Mattsson, J., & Åkesson, J. (2012). Implementation of a Graphical Modelica
Editor with Preserved Source Code Formatting. In Proceedings of the 9th International Modelica Conference
(pp. 375-384). The Modelica Association. https://doi.org/10.3384/ecp12076375

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://doi.org/10.3384/ecp12076375
https://portal.research.lu.se/en/publications/3ca5c125-afe5-4382-9bb9-32fe4a28e552
https://doi.org/10.3384/ecp12076375


Implementation of a Graphical Modelica Editor
with Preserved Source Code Formatting

Tobias A. Mattssona Jon Stena Tove Bergdahlc Jesper Mattssonc Johan Åkessonb,c

aDepartment of Computer Science, Lund University, Sweden
bDepartment of Automatic Control, Lund University, Sweden

cModelon AB, Sweden

Abstract

When an Integrated Development Environment (IDE)
is developed, the support for multiple views of the
same document is often essential. An example of this
is Modelica models, where it should be possible to
view and edit the same model in both its textual and
graphical representation.

One implementation of Modelica is the open source
platform JModelica.org. It contains the Eclipse-based
JModelica.org IDE, providing a text editor for Model-
ica code based on the Eclipse platform.

In this paper, we present an implementation of a
graphical editor for the JModelica.org IDE. Several
challenges arising when implementing a graphical ed-
itor for Modelica models are discussed. Amongst
others, the difficulties in rendering Modelica dia-
grams and how to interact with existing frameworks
in Eclipse are covered. Also, a method for preserving
the formatting of a modified source code file is pre-
sented, which is essential when the model is altered in
the graphical editor.

The presented implementation is compared to other
open source software (OSS) implementations of Mod-
elica editors.

Keywords: AST; JModelica.org; Eclipse; GEF;
Graphical Editing; Icon Rendering; Preserved File
Formatting; Pretty Printing

1 Introduction

Simulation and optimization of dynamic systems is be-
coming a standard tool in several industrial branches.
The trend is mainly driven by the demand for de-
creased product time to market and shortening the de-
velopment time, by substituting system prototyping
for simulation. Modelica is one of many domain spe-

cific languages developed with the goal to meet the
demand of such model-based design languages.

One implementation of the Modelica language is
the JModelica.org platform [1]. It contains a Mod-
elica compiler as well as an Integrated Development
Environment (IDE) for Modelica code. Currently, a
comprehensive text editor for editing Modelica source
code is available in the JModelica.org IDE [2], allow-
ing the developer to define new models based on equa-
tions and existing models. The JModelica.org IDE is
implemented using the Eclipse framework1 which is a
modular, extensible application framework for IDEs.

In this paper, we present an implementation of a
graphical editor for Modelica in the JModelica.org
platform which will complement the textual editor, al-
ready available in the JModelica.org IDE. The editor is
implemented as an Eclipse plugin using the Graphical
Editing Framework (GEF)2 which is a framework for
creating graphical editors, developed for the Eclipse
platform. The graphical editor communicates and
modifies Modelica models through an abstract syntax
tree (AST). It also features preserved file formatting
in the JModelica.org IDE. The work presented in this
paper is the result of two master’s theses [3, 4], con-
ducted at Modelon AB.

This paper is outlined as follows. In Section 2,
a brief background of the JModelica.org platform is
given and the compiler construction framework Jas-
tAdd [5] is introduced. The Eclipse project and the
Graphical Editing Framework (GEF) are also intro-
duced in this section. In Section 3, a comparison to
similar OSS tools is presented. The implementation
of the graphical editor is discussed in Section 4 and
Section 5 summarizes this paper.

1http://eclipse.org
2http://eclipse.org/gef

http://eclipse.org
http://eclipse.org/gef


2 Background

2.1 JModelica.org

JModelica.org is an open source project for optimiza-
tion and simulation of complex dynamic systems. The
JModelica.org platform includes compilers for Mod-
elica and the Modelica language extension Optim-
ica [6], as well as an integration to the simulation pack-
age Assimulo [7]. An interface to the compilers and
simulation and optimization algorithms is available in
Python, which enables scripting of the typical model-
ing and optimization activities.

Also part of the JModelica.org platform is an IDE
for Modelica. The JModelica.org IDE is implemented
as a plugin in Eclipse using the JModelica.org compil-
ers and the JastAdd framework. The IDE provides tex-
tual editing support such as syntax highlighting, code
folding, code outline, brace matching and error check-
ing of models.

2.2 Eclipse

The Eclipse Foundation is an open source community
whose aim is to produce open development platforms
with comprehensive extension frameworks3. The IDE
is heavily modularized so that it is possible to add, re-
move and extend functionality with a small amount of
code and without altering any core source files. The
modularization also makes it possible to create dif-
ferent bundles, including different editors and views.
For instance, there is the Eclipse Software Develop-
ment Kit (SDK) that includes a comprehensive Java
Development Tool (JDT) for Java development and
also the C++ Development Tool that is an IDE for C
and C++. These are two different development envi-
ronments with different functionality, yet they still use
the same base IDE and base functionality.

2.3 GEF

The Graphical Editing Framework (GEF) is one of
the most popular frameworks for graphical editing in
Eclipse and it is also the one used for the editor in this
paper4. GEF is a rather complicated system with many
design patterns and classes. When developing graphi-
cal editors using GEF, the developer has to define two
types of classes, EditParts and EditPolicies.

EditParts is the most basic part of GEF. These
classes join the document model with the view. There

3http://eclipse.org
4http://eclipse.org/gef

Model EditParts Figures
Domain Specific GEF Domain Draw2D Domain

Figure 1: View of the document model, EditPart and
figure tree and their linkage.

is usually a one to one representation between doc-
ument model nodes and EditPart classes. The view is
represented by figures. Normally, figures also map one
to one with EditParts, see Figure 1.

EditPolicies handle the interaction with the user, the
Eclipse framework and the underlying model. For ex-
ample, the graphical editor specifies an EditPolicy that
determines what should happen when the user tries to
move a component. If the move is valid, it will cre-
ate a move command that alters the model component
definition.

An EditPolicy specification usually only handles a
single task or a group of related tasks. Using this pat-
tern means that the user interaction is separated from
the EditParts. Instead, the interaction is handled by
EditPolicies installed on EditParts. This enables dif-
ferent EditParts with similar behavior to use the same
EditPolicies, which reduces code complexity. It is also
convenient for the developer, since it allows for grad-
ually extending the functionality with new features.

2.4 JastAdd

JastAdd5 is an open source meta-compilation system
that is used for compiler generation and other pro-
grams that have the need to analyze code. It provides
means to define attribute grammars [8], and introduces
the possibility to use aspect-oriented programming
(AOP) when constructing a compiler. With aspects,
the source files describe a certain behavior or function-
ality, rather than objects in object-oriented program-
ming (OOP). In other words, the behavior for several
different objects may be defined in the same aspect.

JastAdd code is organized in abstract grammar files
and aspect files. These source files are collected and
the functionality from the aspects is woven into Java
files before they are finally compiled.

The JastAdd project provides a framework for sup-
porting IDEs based on Eclipse [2]. It consists of a
generic IDE plugin with supporting classes and default

5http://jastadd.org

http://eclipse.org
http://eclipse.org/gef
http://jastadd.org


aspects for attributes. The attributes provide common
services such as code folding and code outline. The
main parts of the generic IDE plugin are the builder
and the registry. When the Eclipse framework needs a
build, it triggers the builder. The builder then delegates
the work to a compiler. When the compiler is done, it
provides an AST for files or projects. These ASTs are
cached in the registry.

2.5 Graphical Annotations

In this paper, Modelica annotations, or more specifi-
cally graphical annotations, will play an important part
since they are used for representing a model and its
components graphically. A graphical editor uses the
information in the graphical annotations when render-
ing icons and diagram. The editor also modifies anno-
tations when the user makes changes in the graphical
editor.

Listing 1: Code example of graphical annotations in
the three different locations permitted.
model LowPass

. . .
Analog . B a s i c . R e s i s t o r R1
a n n o t a t i o n ( P l acemen t ( t r a n s f o r m a t i o n (

e x t e n t ={{−25 , −25} ,{25 , 25}} ,
o r i g i n ={−25 , 50}

) ) ) ;
. . .

equat ion
. . .
connect ( R1 . n , p2 )
a n n o t a t i o n ( L ine ( p o i n t s = . . . ) ) ;
. . .
a n n o t a t i o n (

I con (
c o o r d i n a t e S y s t e m ( e x t e n t = . . . ) ,
g r a p h i c s = { . . . }

)
) ;

end LowPass ;

There are three locations where graphical annota-
tions may appear:

(a) Directly after a component definition. If specified,
it will define how that component should be ren-
dered, size and origin.

(b) Directly after a connect statement. If specified,
it will define how the connection should be ren-
dered, line points and its color.

(c) At the end of a model definition. If specified, it
will define how the icon and diagram of the model
should be drawn.

Examples of the three different locations are illustrated
in Listing 1.

3 Related Work

There are several approaches to formatting preserva-
tion and graphical Modelica editing. In this section, a
comparison will be given to some of the popular open
source alternatives.

3.1 Formatting Preservation

OpenModelica6 is another open source initiative based
on Modelica. The OpenModelica environment also
has procedures for preserving formatting. Peter Fritz-
son et al. describes these procedures as an initiative to
preserve comments and indentation when refactoring
Modelica code [9].

OpenModelica stores the text representation of the
code in a separate tree, which has the same structure
as the original AST. In this way, they are able to avoid
cluttering the AST with text positions. The text rep-
resentation is created piece-wise when needed. The
nodes in this separate tree stores the text positions and
have a one-to-one mapping with the nodes in the AST.

While the solution for preserving formatting pre-
sented in this paper also aims to do most of the work
when it is actually needed, it does more work in the
parsing process. The position of the nodes and the ac-
tual formatting text and type is extracted during pars-
ing. This data is then associated to the source AST.
This makes the AST slightly more memory consum-
ing at first, compared to the OpenModelica solution.

The most significant difference between the two so-
lutions is that in JModelica.org, the formatting always
resides in the source AST while OpenModelica stores
it in a separate tree. Although this makes the source
AST in JModelica.org more verbose, the advantage is
that modifying the source AST does not require any
synchronization with a second tree.

Maartje de Jonge and Eelco Visser have also pre-
sented an algorithm for preserving the original layout
of source code when modifying an AST [10]. Their al-
gorithm relies on text reconstruction and origin track-
ing. The algorithm stores a reference to the leftmost
and rightmost token in the stream for each node in the
AST, which in turn holds the corresponding start and
end offset. When the AST is to be modified, the nodes
and their positions in the new tree are traced back to

6http://openmodelica.org

http://openmodelica.org


their origin. The text can then be reconstructed from
this origin.

The algorithm also comes with an intelligent heuris-
tic for associating comments with the correct node.
Cases such as block comments, comments before and
after a line of code, inside comma separated lists, code
removed by commenting and multi-line comments be-
side multiple statements are discussed. Suggestions
how to handle most of these cases are also described.

The solution presented in this paper is less involved
than the algorithm by de Jonge and Visser, but still
covers the realistic cases threated in this paper. All
comments in the source code that are located on the
right-hand side of a node, but before a line break or
the next node, are associated with that node. Any com-
ments that follow are considered to belong to the next
node, and so forth. It is important to remember that
comments are meant for people, not machines, to read
and interpret. Thus, there are no predefined rules for
how to relate comments to code and it is practically
impossible to perfect such an algorithm.

As the JModelica.org IDE is an Eclipse plugin it
is worth mentioning how the Eclipse Java Develop-
ment Tools (JDT) handles changing the AST. The
Eclipse JDT has an API for refactoring code using the
AST [11]. When AST nodes are added, removed or
replaced in JDT, these operations are translated into
text edits which can then be applied to the original
source. This is a very different approach than ours,
as this means that the original AST is never touched
by JDT. Instead the source text is edited and the AST
is then updated from that source. In JModelica.org,
such an approach would require a total recompilation
of the code with every AST modification as there is
currently no way to incrementally compile the source
code. This would thus not be an adequate solution, as
it would most likely make the editor very slow.

3.2 Graphical Modelica Editors

OMEdit is an editing front-end to the OpenModelica
compiler. It contains tools for model creation, diagram
editing, icon editing, simulation, plotting, documenta-
tion view and text editing mode. The editor was de-
veloped as part of a thesis by Asghar, Syed Adeel and
Tariq, Sonia in 2010 [12, 13].

OMEdit uses the CORBA interface to communicate
with OpenModelica. CORBA is supplied by Open-
Modelica and allows for interaction between an appli-
cation and its AST. OMEdit uses it to retrieve and store
information such as: model structure, annotation, doc-
umentation, simulation and graph plotting.

OMEdit is mainly developed in C++ and relies on
QT7 for graphical UI handling and rendering of graph-
ical primitives. QT is an cross platform framework that
allows the developer to rapidly develop Graphical User
Interface (GUI) based applications that work on mul-
tiple platforms. It also has support for multiple target
languages like C++ and JavaScript.

Compared to the graphical editor presented in this
paper, OMEdit is more comprehensive. It defines a
complete IDE with text editor, parameter view, simu-
lation view and graphical editor.

There are some significant differences between the
two graphical editors, besides the programming lan-
guage. OMEdit uses QT to generate a GUI, as op-
posed to GEF that is used for the graphical editor in
this paper. GEF and QT provide the same basic func-
tionality but for different programming languages and
platforms. However, QT has more extensive support
for the graphical features that are specified in Model-
ica than GEF. QT also takes care of all transformation
and rendering of graphical primitives.

Performance wise there are some small differences
between the two graphical editors. When adding and
removing components a noticeable lag is present in
OMEdit editor while it happens instantly in JMod-
elica.org editor. This is most likely a result of the
CORBA interface and the fact that OMEdit does not
operate directly on the AST.

OMEdit also lacks some basic features like an undo
and redo stack. This is likely due to that support for
this is missing in QT. This feature is something that
was supported by GEF and is one of the essential fea-
tures in the graphical editor described in this paper.

SimForge8 is another open source toolkit that is
abased on OpenModelica. It offers similar features as
the JModelica.org IDE and OMEdit. It has a text editor
as well as a graphical editor that allows for both dia-
gram and icon editing. Additionally it has a parameter
editor that allows for modification of component val-
ues. The SimForge project has been inactive for some
time and there is also a lack of information about the
implementation and the frameworks used. Therefore,
no thorough comparison is given in this paper.

7http://qt.nokia.com
8http://trac.ws.dei.polimi.it/simforge/

http://qt.nokia.com
http://trac.ws.dei.polimi.it/simforge/


4 Implementation

4.1 Compiler Architecture

The JModelica.org compiler is divided into two parts,
front-end and back-end. The front-end is responsible
for parsing, AST building, error checking and flatten-
ing of Modelica models. The front-end builds three
ASTs, the source AST, the instance AST and the flat
AST.

Source Tree Instance Tree Flat Tree

Instantiate FlattenCompile

Figure 2: The three ASTs and the different compila-
tion stages.

Source AST is the first AST that is built. It is almost
a direct translation of the Modelica model into a
tree. The source AST is necessary when calculat-
ing the instance tree.

Instance AST is instantiated from the source AST.
All component declarations has been resolved
and expanded with the contents of their classes.

Flat AST is the flattened version of the model. It is
reduced from the instance tree and consists of a
list of equations and variables.

A brief overview of the three ASTs can be seen in Fig-
ure 2.

4.2 Graphical Editor

Graphical 
Editor

JastAdd IDE

JModelica.org 
Compiler GEF

Eclipse

Figure 4: An overview of the interaction between the
graphical editor and the other components.

An overview of the design and the different com-
ponents that the graphical editor relies on is shown in
Figure 4. The graphical editor communicates with the
JModelica.org compiler to retrieve graphical annota-
tions as well as Modelica class structure. All editing is
saved back into the source and instance AST and the

icon structure. The icon structure is an abstraction of
the structure that is used when representing Modelica
annotations in the source AST. It is built to resemble
the structure of a graphical annotation as it is defined
in the Modelica specification. GEF is an obvious com-
ponent that the editor relies heavily on. GEF helps the
editor with synchronization between the EditParts and
icon structure in the compiler. It is also responsible for
interaction with the Eclipse framework and low level
rendering of graphics in the editor. The graphical edi-
tor also has some direct interaction with Eclipse, such
as the ability to open a component for modification
of parameters on sub components. The JastAdd IDE
framework is used as an interface to the JModelica.org
compiler when compiling classes.

4.2.1 EditParts

When constructing a GEF editor, it is important to
make a good design between EditParts and the under-
lying document model. Normally, there is one Edit-
Part class for each document model node. The graph-
ical editor presented in this paper is no exception and
uses one EditPart class for each icon structure node.
For example, the icon structure node Rectangle is rep-
resented by a RectangleEditPart. The RectangleEdit-
Part handles all the rendering and interaction with the
graphical user interface (GUI). By using EditPolicies,
it is possible to alter the behavior and control what
happens when the rectangle is moved or resized. Sim-
ilarly, there will be one EditPart class for each node
type in the icon structure, specifying the behavior of
that node.

4.2.2 Rendering

Once an EditPart has been produced from the icon
structure, it creates an appropriate figure and populates
it with the correct attributes from the icon structure.
For example, the rectangle mentioned in Section 4.2.1
will populate its figure with width, height and rotation.
It will also set line color, line pattern and fill color.

It can sometimes be troublesome to render Modelica
models in GEF. Modelica supports both rotation and
scaling of graphics whilst GEF does not support rota-
tion and has limited support for scaling. In the graphi-
cal editor this is solved by transforming the points that
the graphical object consists of. The transformation is
done using Euclidean transformations, that are built hi-
erarchically over the component structure of the Mod-
elica model.



Figure 3: Screen shot of the graphical editor.

y

x

(a) Modelica

y

x

(b) SWT

Figure 5: Difference between Modelica and GEF coor-
dinate system with positive direction indicated by ar-
rows on the axis.

Finally, when rendering models it is important to
convert between the handedness of the coordinate sys-
tems used by Modelica and GEF respectively. Model-
ica uses a right-hand coordinate system, see Figure 5a
while GEF uses left-hand coordinate system, see Fig-
ure 5b. If no consideration is taken to handedness the
resulting image will be upside down. The solution is
simple, once all transformations are done the image is
flipped along the y-axis.

4.3 AST Communication

Changes made by the user in the graphical editor has to
be propagated back into the icon structure and under-
lying source AST. These propagations can be divided
into two categories, annotation editing and structural
editing.

4.3.1 Annotation Editing

Some graphical changes, such as moving or resizing
components, are localized and only affects annotations
in the code. Most of the operations performed while
graphically editing a model falls into this category.
Since this kind of change only affects the source AST,
it is simple to perform.

4.3.2 Structural Editing

Structural editing is a more complicated type of edit-
ing operation which is performed on the AST. It oc-
curs when a component or a connection is added to
or removed from the model. The main challenge is
that both the source and instance tree must be updated
consistently. In the current implementation, the com-
ponent or connection is first added to the source tree.
The instance tree then instantiates a new component or
connection from the source node, resulting in a con-
sistent result for the currently opened model, see Fig-
ure 6. Removing a component is performed in the re-
verse order as opposed to adding. First, the component
or connection is removed from the instance tree and
then in the source tree.

There are, however, side effects that are not handled.
If the edited model is used as a component in another
model and that other model is also open, the latest
changes will not appear until that model is reloaded.
A possible solution is to sense when a structural edit
has occurred and in that case reload the editor. An-
other solution is to propagate any changes in a model
to all instances of the same model.



Source AST Instance AST

B B

AA

(a) Before

Source AST Instance AST

B

a

B

AA

(b) During

Source AST Instance AST

B

a

B

aAA

(c) After

Figure 6: The steps taken when adding a component.

4.4 Preserved Formatting

Consider the graphical editor as currently described
in this paper. When the editor changes the model,
it does so by modifying the source AST. Eventually
these changes need to be displayed in a source code
editor or saved to a file. The source AST would then
have to be printed back to text format. All informa-
tion that is significant to the compiler and the graph-
ical editor resides in the AST. It does not, however,
traditionally carry any knowledge about how the code
was originally formatted. Information that is valuable
for the developer, such as indentation and comments
would effectively be lost if the AST was simply pretty
printed. Somewhere along the way, the information
about the original formatting needs to be gathered and
stored in the AST so that the original source code can
be reprinted.

4.4.1 Scanner and Parser

The scanner is the part of the compiler that finds pat-
terns in the code and converts them to a series of to-
kens given to the parser. Those tokens are then con-

verted to a source AST by the parser using the gram-
mar of the language. The issue about preserving for-
matting, as described in the paragraph above, is solved
by letting the scanner add spaces, line breaks and com-
ments to a data structure. Most parentheses are im-
plicit by the Modelica language, but expressions need
special care regarding this. The developer might sur-
round expressions by parentheses to explicitly mark
precedence. This could, for the sake of readability,
be done even when it would already be implicit. The
parser collects these parentheses and stores them in re-
spective expression.

When the parsing is finished, a reference to the data
structure is added to the nodes in the AST. Later, when
the AST is about to be presented in text format, for ex-
ample, when it should be saved to a file, the informa-
tion in the data structure is propagated downwards in
the AST. At this stage each node gets the formatting
related to the node, as the data structure is emptied.
After this, the AST is finally printed in text format,
where every node has its formatting preserved.

4.4.2 Reading Formatting

As has been mentioned earlier, formatting such as in-
dentation and comments are put in a data structure by
the scanner. Some, but not all parentheses should also
be collected. The parser has, unlike the scanner, the
syntactic information to distinguish which parentheses
are significant. That is, which parentheses belong to
expressions and which do not. However, the parser has
no access to the formatting data structure, so it stores
the parentheses directly in the expressions.

When the data structure has been populated by the
scanner, it contains a list of scanned formatting items.
A formatting item is an object that contains some ba-
sic part of the formatting. It contains the actual string
data that should be output when the AST is printed. A
formatting item also has information about what type
it is, for example line break or comment. When a for-
matting item has been scanned it is called a scanned
formatting item. A scanned formatting item holds the
same information as a regular formatting item, but
with some information about its origin added. This
makes it possible to find its original line and column in
the source code. Table 1 shows some typical scanned
formatting items.

Before the formatting items in the data structure are
used by the AST, some of them are merged. The ones
that are adjacent to each other are merged into new,
larger formatting items of mixed type. As an example,
the two last items in Table 1 would be merged into a



Table 1: The data in some scanned formatting items.

Scanned Formatting Item
Formatting Item

Start End Type Data
(1, 6) (1, 6) WHITE_SPACE ” ”

(1, 19) (1, 19) LINE_BREAK ”\n”
(2, 1) (2, 4) WHITE_SPACE ” ”
(2, 9) (2, 9) WHITE_SPACE ” ”

(2, 13) (2, 13) WHITE_SPACE ” ”
(2, 14) (2, 29) COMMENT ”// Text\n”

mixed formatting item. This way each AST node only
needs to be associated with one formatting item that
can be seen as a prefix, or left-hand side, and one as
suffix, right-hand side.

4.4.3 Storing Formatting in the AST

The formatting items are not added to the AST nodes
during parsing. Instead they are added during an ex-
tra pass when the method for formatted print is called.
This approach naturally comes with its advantages and
drawbacks.

Approach One of the main reasons for the chosen
approach, is to keep the parser as separated from the
implementation of this feature as possible. A parser
can be complicated enough to begin with. Further-
more, if it turns out that there are any special cases
that need to be taken care of, or if parts of the parser
need to be rewritten it could become cumbersome and
expensive to implement and maintain the code.

Initially, another reason for this approach was that
some AST nodes might be rewritten and removed
when the AST is being accessed. This means that they
are replaced with other nodes to make the AST more
suitable for semantic analysis [14]. Their formatting
would then effectively also disappear. However, this
issue is not completely solved by adding the format-
ting to the AST at a later stage. There are some AST
nodes in JModelica.org that are deleted during rewrites
that both can come from an explicit keyword or be im-
plied by the Modelica language specification. As an
example, members of a Modelica class can be spec-
ified to have public or protected visibility9, but their
default visibility type is public [15]. A public visibil-
ity clause is thus an AST node that can come both from
a keyword or the language specification. This clause
is removed during a rewrite, and its child nodes get

9Using the keywords public and protected respectively.

their visibility by assigning them visibility type child
nodes. The fact whether the keyword appeared in the
source code or not, and if so then where it appeared,
still needs to be stored.

The solution presented in this paper comes with a
drawback. It is more intense for the CPU to add the
formatting to the AST on-demand, rather than in the
parser. Firstly, the data structure needs some prepara-
tions. Secondly, all AST nodes need to be associated
with their corresponding formatting items. This means
that the line and column numbers for AST nodes and
formatting items need to be compared. It is worth
noting, though, that the result from this pass can be
cached. This means that consecutive prints of the AST
do not need this pass and no more clock cycles are
used for this.

Figure 7: The process for storing formatting in the
AST.



Preparations Figure 7 shows the main steps of how
the formatting is added to the AST. The first step is to
prepare the formatting information from the parsing to
be propagated downwards in the tree. The parentheses
that were collected to the expressions during parsing
are added to the data structure. After that, the format-
ting items that are adjacent are merged as mentioned
in Section 4.4.2. To have a more logical division be-
tween the formatting items that should be considered
prefix or suffix to an AST node, this algorithm is not
greedy. This lack of greed means that merged format-
ting items that span over multiple lines are split into
two items on the first line break, instead of always be-
ing merged into one. An example of this can be seen
in Figure 8. After these preparations, the AST nodes
can use the data structure to get their formatting items.

Prefix formatting
Suffix formatting
Inside formatting

Legend:

Figure 8: A screenshot highlighting the different for-
matting items with boxes. Note that the comments
regarding r1 and r2 are not merged into one single
mixed item.

Propagation During the propagation, the nodes in
the source AST check so that they do not already have
a cached result. This happens if the AST already has
been reprinted earlier. If they do not have any cached
formatting, their formatting is calculated. This is done
by going through the data structure filled with format-
ting items and checking whether they are adjacent to
the current AST node, that is, whether their end line
and column match the AST node’s starting position
and vice versa. In this way, each AST node gets two
formatting items, one on its left-hand side (prefix) and
one on its right-hand side (suffix).

Special Cases If there for some reason are any for-
matting items left in the data structure when the prop-
agation is done, these still need to find their place in
the AST. This can happen, because the merging of ad-
jacent formatting items sometimes generates two for-
matting items instead of one as described earlier. If

the source code in a file ends with multiple line breaks,
only the first one would be added without an extra step.

There are also some AST nodes that contain format-
ting information inside of them. These nodes usually
contain whitespaces at places where they are atomic.
They are atomic in the sense that they have no child
nodes that can use the whitespace as prefix or suffix
formatting. These final formatting items left in the
data structure are also added.

Finally, a default formatting is set to AST nodes that
have been added through another way than during the
parsing of the code. Currently, this means AST nodes
that have been added by the graphical editor. When
this is done, the rest of the implementation is more or
less a traditional pretty printer, which of course also
prints the formatting information in the AST nodes.

5 Summary and Conclusions

In this paper, an approach for implementing a graph-
ical editor for Modelica built upon the Eclipse frame-
work using GEF, was presented. How GEF can be
used to make a clear, yet extensible design for the
graphical editor has been discussed. Some of the com-
mon pitfalls when integrating systems that describe the
same information in different ways, in this case inte-
grating a graphical editor into an existing source code
editor, were discussed.

This paper also describes a way to store formatting
from an original source in the AST. In the proposed
solution, the formatting information is added to the
source AST after parsing. Then in a later pass, the
information is associated with its corresponding node.
Finally, the modified AST can be reprinted with pre-
served formatting.

The graphical editor in JModelica.org supports ba-
sic model editing such as adding, removing and con-
necting components. Common graphical editing fea-
tures such as rotation of components and grid snap-
ping are also available. Future development include
a parameter dialog for modifying of parameters and
improved graphical editing support such as manhat-
tanized connections.



References

[1] J. Åkesson, K-E. Årzén, M. Gäfvert, T. Bergdahl,
H. Tummescheit. Modeling and optimization
with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic opti-
mization problem. Computers and Chemical En-
gineering, 34(11):1737–1749, November 2010.
Doi:10.1016/j.compchemeng.2009.11.011.

[2] J. Mattsson, The JModelica IDE: Developing an
IDE by Reusing a JastAdd Compiler, Master’s
thesis, Department of Computer Science, Lund
University, Sweden, 2009.

[3] J. Sten, Graphical Editing in JModelica.org,
Master’s thesis, Department of Computer Sci-
ence, Lund University, Sweden, 2012.

[4] T. Mattsson, AST-driven Editor, Master’s thesis,
Department of Computer Science, Lund Univer-
sity, Sweden, 2012.

[5] G. Hedin, E. Magnusson, JastAdd: an aspect-
oriented compiler construction system, Science
of Computer Programming 47 (1) (2003)
37–58. doi:http://dx.doi.org/10.1016/S0167-
6423(02)00109-0.

[6] J. Åkesson. Optimica—an extension of model-
ica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[7] C. Andersson. A new Python-based class for
simulation of complex hybrid DAEs and its in-
tegration in JModelica.org. Master’s thesis, De-
partment of Mathematics, Lund University, Swe-
den, 2010.

[8] G. Hedin, "An Introductory Tutorial on JastADD
Attribute Grammars," in Generative and Trans-
formational Techniques in Software Engineering
III, ser. Lecture Notes in Computer Science, vol.
6491. Springer-Verlag Berlin Heidelberg, 2011,
pp. 166–200.

[9] P. Fritzson, A. Pop, K. Norling, M. Blom,
Comment- and Indentation Preserving Refactor-
ing and Unparsing for Modelica. In 6th Interna-
tional Modelica Conference 2008, pp. 657–665.
Modelica Association, March 2008.

[10] M. de Jonge, E. Visser, An Algorithm for
Layout Preservation in Refactoring Transforma-
tions. Software Language Engineering, pp. 40–
59, Springer, 2012.

[11] Eclipse Documentation: ASTRewrite,
http://help.eclipse.org/indigo/topic/

org.eclipse.jdt.doc.isv/reference/

api/org/eclipse/jdt/core/dom/rewrite/

ASTRewrite.html, 2012.

[12] S. Asghar, S. Tariq, Design and Implementa-
tion of a User Friendly OpenModelica Graphi-
cal Connection Editor, Master’s thesis, Depart-
ment of Computer and Information Science,
Linköping University, Sweden, 2010.

[13] S. Asghar, S. Tariq, M. Torabzadeh-Tari, P.
Fritzson, A. Pop, M. Sjölund, P. Vasaiely, W.
Schamai, An Open Source Modelica Graphic Ed-
itor Integrated with Electronic Notebooks and In-
teractive Simulation. In 8th International Mod-
elica Conference 2011, pp. 739–747. Modelica
Association, March 2011.

[14] T. Ekman, G. Hedin: Rewritable Reference At-
tributed Grammars. ECOOP 2004. LNCS, vol.
3086, pp. 147–171. Springer, Heidelberg (2004).

[15] Modelica Association, Modelica - Lan-
guage Specification 3.2 rev 1, 2012.
http://modelica.org/documents/

ModelicaSpec32Revision1.pdf.

http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/rewrite/ASTRewrite.html
http://modelica.org/documents/ModelicaSpec32Revision1.pdf
http://modelica.org/documents/ModelicaSpec32Revision1.pdf

	Introduction
	Background
	JModelica.org
	Eclipse
	GEF
	JastAdd
	Graphical Annotations

	Related Work
	Formatting Preservation
	Graphical Modelica Editors

	Implementation
	Compiler Architecture
	Graphical Editor
	EditParts
	Rendering

	AST Communication
	Annotation Editing
	Structural Editing

	Preserved Formatting
	Scanner and Parser
	Reading Formatting
	Storing Formatting in the AST


	Summary and Conclusions
	References

