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Regime Switches in Swedish Interest Rates

March 4, 2005

Abstract

This paper examines the forecasting properties of a Markov regime-switching model

applied to Swedish interest rate volatility. A Monte Carlo testing procedure is used to

arrive at a three state specification that is able to capture the high degree of leptokur-

tosis in the data without additional modelling of conditional heteroskedasticity. The

final specification is shown to possess good forecasting properties both in general and

for specific samples and horizons, something that the benchmark processes are unable

to achieve.

Keywords: Regime switching, forecasting, volatility

JEL classification: C22; C52; E43
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Introduction

Models of regime dependence have proven to be adept at capturing the often non-

standard moments of financial and macroeconomic data. In particular, the Hamilton

(1989) model has been applied in the analysis of interest rates, foreign exchange, stock

indices and business cycles in numerous studies (for a survey, see Hamilton and Raj,

2002). One reason for this is to account for excess kurtosis prevalent in some series

even after accounting for standard conditional heteroskedasticity effects, e.g. as is done

in the GARCH family of models. Rather than define observations very far from the

mean of the series as ’outliers’ and remove them from the analysis, one can allow them

to co-exist with more standard parts of the sample by placing them in an additional

regime. For practical purposes, such as Value-at-Risk calculations, correctly depicting

probabilities for rare and extreme events is of great importance.

This paper evaluates the Markov regime switching model with regard to particu-

larly badly behaved data. The data under study is the Swedish 90 day interbank rate

during the 1990s. Similar data for a set of other European countries has been studied

in Dahlquist and Gray (2000). Engsted and Nyholm (2000) research regime shifts in

the Danish term structure in a multivariate context. Our analysis corroborates these

papers’ findinds in terms of modelling the attacks on the European Exchange Rate

Mechanism (ERM); multiple regimes are needed to capture the full dynamics of in-

terest rates both in normal and volatile periods. To validate the model for practical

purposes, we conduct several forecasting experiments. Diagnostic tests on the forecasts

indicate that the chosen regime-switching model offers good predictive capabilities rel-

ative to the competing models.
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Model and Setup

As suggested by Dewachter (1996) and Gray (1996) for similar data, we will consider

the following mean-reverting data generating process:

∆rt = αSt
+ βSt

rt−1 + εt (1)

where E
[
εt|Ωt−1

]
= 0, E

[
ε2t |Ωt−1

]
= σ2

t,St
, and Ωt denotes the information set avail-

able at time t. The variable St = 1, 2, ...N is a state variable following a first order

Markov chain. The conditional variance follows σ2
t,St

= ωSt,1 + ωSt,2
√

rt−1 in line with

Cox, Ingersoll and Ross (1985). This process allows for mean-reversion, which occurs

when the speed-of-adjustment variable β < 0, which in turn reverts to the long-run

mean r = −α
β .

Using maximum likelihood methodology, the estimation procedure reduces to a op-

timization problem with iterative calculations of regime probabilities, as described in

Hamilton (1994). The unconditional (ergodic) state probabilities are used as starting

values for filtered probabilities at t = 1. Since the model is highly non-linear, numerous

local maxima can be expected. To increase the probability of finding the global max-

imum of the likelihood function, we re-estimate the model 100 (N = 2), 200 (N = 3)

and 500 (N = 4) times respectively with randomized vectors of starting values.1

Although laborious, the problem with specifying a Markov switching model does

not lie in the estimation process. Instead, problems arise when deciding on the number

of states to use. Standard testing procedures suggest just calculating a likelihood ratio

statistic since the N + 1 state model nests the N state model. Unfortunately, this is

not valid, since under the null, some of the parameters will not be identified. A number

of solutions, eg. Hansen (1992) and Garcia (1998) involving grid searches have been

proposed, but are difficult to implement in practice when the null hypothesis is more

1For level equation parameters, randomized values are drawn from a N(
∑

x/T, σ2
x) distribution, where

x is the independent variable for which we want a parameter value (for the intercept, we let x = ∆r); for

variance parameters using
√

χ2
1

T−1σ2
∆r

where χ2
1 is a draw for a χ2 distribution with one degree of freedom.

For the transition parameters we use draws from a uniform distribution in the range [0.5 1] for values along
the principal diagonal.
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than one state. To reach a conclusion on the exact number of states, we instead employ

the testing procedure suggested by Rydén, Teräsvirta and Åsbrink (1998), and further

developed in Cheung and Erlandsson (2005). It involves generating a large number

of simulated time series under the null hypothesis, and estimating the model under

the null and the alternative to be able to compute a simulated likelihood ratio. The

large set then represents the empirical distribution functions of the test statistic. To

obtain a probability value for the empirical likelihood ratio, i.e. the one obtained when

estimating the null and alternative using the real data set, one then simply calculates

it by using the empirical distribution.

Empirical Specification

Our data set consists of weekly observations of the Stockholm Interbank Offered Rate

(STIBOR) 90 day lending rate beginning in January, 1987, and ending in May, 2000,

for a total of 690 observations. The series has been calculated using aggregated daily

observations. Several observations in late 1992 show very large movements occuring

on a daily basis, making inference based on just a single day’s closing rate likely to be

misleading for movement over the whole week. Figure 1 depicts the series in levels.

Swedish interest rates underwent several significant events during the time period. ¿Figure

1.Most prominent was the 500% rate level in late 1992, when the financial markets an-

ticipated a floating of the Swedish krona. In our series, this is reflected by a maximum

of 35%2and several days of changes in the rate of more than 5% nominally. This attack

on the SEK was the last of four, which also hit several other European countries during

the period 1990-1992.

After 1992, rates showed a downward trend with a slight peak in the latter part

of 1994, probably caused by the combination of forthcoming general elections and a

runaway government deficit. The period of macroeconomic stabilization after 1994 was

tranquil compared to previous years. All in all, rates went down from an average of

2This ’low’ rate was set at the discretion of Riksbanken to avoid a complete credit crunch; see Dennis
(1998). After averaging out, the series’ maximum is 28.83%.
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13% to 4% with an even more dramatic reduction of average volatility.

Some summary statistics reflect these disparities in the dynamics of the STIBOR

rate. Kurtosis exceeds 100, and a high degree of leptokurtosis and non-normality con-

tinues to persist in the standardized residuals of a GARCH-model, which also has

parameter estimates implying explosive volatility. Estimating the GARCH model with

an underlying Student t distribution yields non-explosive estimates, but the degree of

freedom parameter of 2.77 implies a non-finite fourth moment. Hence, the standard

framework for working with volatility appears inadequate for this data.

Leads on the proper number of regimes can be obtained by estimation of (1) for

N = 1, 2, 3, 4.3 The most general model with four states encompasses the regime

structure revealed in lower state models, and the increases in log likelihood values are

seemingly large as N increases. Whether this holds in the statistical sense or not is

evaluated with the Rydén et al. (1998) procedure. The evidence in Table 1 confirms

the use of a regime-switching structure to model the data. Given the simulated em-

pirical distributions, we are unable to reject three states in favor of four, so our final

specification will consequently be a three state model. To corroborate the results on

the test of one state under the null and two states under the alternative hypothesis,

we have also calculated the Hansen (1992) supremum likelihood ratio statistic which

yields a value of 5.97 and a probability value of < 0.01. Hence, our results of at least

two states in the data does not seem to depend upon the specific testing methodology.

The final specification presented in Table 2 has been reached through a general to ¿Tables

1&2.specific testing approach where several possible exogenous variables were introduced.4

As predicted by the Cox et al. model, the lag of the nominal STIBOR 90 rate contains

important information both for the level and variance equations. Also, the spread be-

tween the STIBOR 30 and 90 day possesses explanatory power in the level equation.

This dependency on the term structure is in line with the results of Engsted and Ny-

holm (2000).

3The estimates and technical details are available in the working paper version of the paper.
4The following variables, in different transformations of levels and differences, have been tested:

DM/Euro/SEK exchange rates, German Tagesgeld rates (equivalent to STIBOR) and STIBOR 30.
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The dynamics of the regimes are in stark contrast to each other, which is further ¿Figure

2.illustrated in Figure 2. A high-volatility regime, with an average standard error of

1.86,5 occurs during the speculative attacks in the early 90s. It is short lived with a

half-life of 2.22 weeks and reverts back to a long-run level of 10.41, although this esti-

mate is imprecise and insignificant. The second regime has an average standard error

of 0.22, implying a 95% confidence band for the new week’s interest rate movement of

±0.4 percentage points. The half-life is 4.88 weeks and the significant long-run mean

is 6.63 percent.

Turning to the third final regime, we observe a calm state with neither much volatil-

ity nor rapid mean-reversion. The average standard error within the state is 0.063 and

the long-run mean is at a relatively high 10.8 percent. This seems inconsistent con-

sidering the frequent occurrence of the regime in the latter part of the sample, where

average interest rates are much lower. Since the reversion speed is so slow, this should

not be considered as great a disparity after all. Movements towards the long-run mean,

because of reversion, are minuscule compared to the magnitude of the random shocks

entering the system.

With this regime-switching structure in place, we are able to reduce auto-correlation

in the squared standardized residuals to non-significant level, as indicated in Table 2. A

Jarque-Bera test of normality of the standardized residuals cannot be rejected (p-value

0.825), indicating that kurtosis has been reduced to insignificant levels.6 In contrast,

the same specification but with only two states fails to reduce excess kurtosis to in-

significant levels.

5Average volatility and long-run means for the states have been calculated using probability weighted
averages of the squared interest rate and spread series.

6In the spirit of Hamilton and Susmel (1994), we have also estimated the model allowing for ARCH effects
with significant results. The resulting model’s parameters do however imply explosive volatility within the
high volatility state, and conditional normality is rejected for the residuals. Since this may be an effect
of over-fitting to the most extreme observations, and in order to retain parsimony, we choose to continue
without ARCH effects.
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Forecasting

To validate the goodness-of-fit of the specified model, we conduct a number of fore-

casting experiments where its predictive power is compared with that of a number of

benchmark processes. Dacco and Satchell (1999) study the forecasting performance

of Markov switching models and conclude that already minor mis-specifications result

in quickly deteriorating predictive performance. This is not surprising considering the

high degree of parameterization and risk of overfitting inherent in the model.

The first observation to be made in this context is that the true volatility is not ob-

served but has to be approximated. We have opted for the realized volatility measure

proposed by Akgiray (1989):

σ2
o,t =

∑
j∈It

(
r̂j − r̂j−1

)2

]It

(2)

where It denotes the set in the series of daily observations r̂ (from Thursday to Wednes-

day) that correspond to the weekly observation at date t. Hence, we use higher fre-

quency information to deduce realized volatility. One advantage of this approach is that

it minimizes the probability for having weekly observations of zero volatility compared

to the more standard squared difference measure σ2
o,t = ∆r2

t . If the Wednesday rate

is the same as the previous Thursday’s, the latter measure will indicate zero volatility

even if there have been large movements in the days in between.7 Figure 1 depicts the

Akgiray realized volatility measure for this data set.

Calculating forecasts from a Markov switching model . Following the notation of

Hamilton (1994), we collect (filtered) probabilities of states occurring at time t in

the vector ξt|Ωt
. We can then find the h step ahead forecast of the states simply as

ξt+h|Ωt
= Phξt|Ωt

.8. In this context, one can then compute a probability weighed sum

7To check the robustness of the results, we have also used the more standard ∆r2
t volatility measure.

Results are similar to those presented here.
8We note that in our case, the forecasts actually exhibit path dependence since rt appears both in level

and volatility equations. Hence, every path that the process can follow in between t and t + h could be
evaluated individually to produce a forecast. However, we choose the more standard procedure of assuming
rt+i|Ωt

= rt for all i ≤ h
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of the individual state forecasts such that σ2
f,t+h|Ωt

=
∑N

n=1 ξk
t+h|Ωt

·σ2
t+1,n, where σ2

t+1,n

is the conditional volatility forecast from equation (1).

The first benchmark model is a random walk in volatility, denoted RW, with fore-

casting equations σ2
f,t+1|Ωt

= σ2
o,t, where the subscript f denotes forecast. We will also

consider an integrated GARCH model, denoted IG, with forecasts σ2
f,t+1|Ωt

= ĥt+1

where ĥt+1 = ν + γε̂2t + δht.
9 The residuals follow ε̂t = ∆rt −

(
α + β1rt−1 + β2dt−1

)

where dt is the interest rate differential at time t. Based on the same equations we

also compute a constant variance benchmark, denoted CV, imposing the constraint

γ = δ = 0 when estimating the model.

We have considered four different samples, three different forecasting horizons (one,

four and eight weeks ahead) and studied the end point forecasts. Out-of-sample fore-

casts have been calculated using parameters from the estimation of all information up

to the start of the forecasts and fixed for the whole forecasting period. These estimates

are quite stable. The different samples have been chosen to represent a number of dif-

ferent situations. In-sample forecasts are produced to see how the model fares overall.

To study the situation where a practitioner has the model and data pre-dating the start

of the spectacular volatility prior to the flotation of the krona, we let one experiment

be based on data up till 1992, and then forecast for the period 1992-2000. In order to

assess the performance of the model in periods where the high volatility regime does

not occur, we let one set of forecasts range over 1994-2000. The last sample, 1997-2000,

is considered to evaluate performance in periods of very small intra-weekly interest rate

movements.

Some broad tendencies based on the results in Tables 3 and 4 can be distin- ¿Table

3&4.guished. First of all, in none of the cases do we reject the general goodness-of-fit test

of the regime-switching (MS) model’s forecasted volatility regressed on realized volatil-

ity, as indicated in the bottom panel and row of Table 3. Contrary to this, both the

random walk and the IGARCH processes are rejected for some subsamples and fore-

9The standard GARCH model with the explosive behavior in volatility yields poor forecasts compared
to the IGARCH specification, as is the case for the non-explosive Student t specification (results available
upon request).
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cast horizons. Second and unsurprisingly, the constant variance model fares badly in

comparison to the dynamic alternatives. There is one exception though, for the 1992

sample it does well both in the mean squared sense and in terms of mean absolute

values. The inference based on the MSE measure must be taken with a grain of salt

though, because it is very sensitive to the outcome of individual observations.

Relating the performance of the MS model to that of the RW model, we find strong

evidence in favor of the former. In terms of MAE, the MS model is never significantly

outperformed by the RW model at the 5% level (probability values are to be found in

the bottom row, second column in the individual panels in Table 4.) For horizons of

four and eight weeks, the MS process always produces lower errors than the RW. At

the one week horizon, we find some superior performance of the RW for the samples

where the speculative attacks are included, albeit the differences are insignificant at

the 5% level and using the MAEs, suggesting that the higher frequency information in

the RW model can be valuable in the short-run.

For the relative comparison of the IGARCH and MS models, the conclusions are

the opposite in terms of in which samples the relative performance of the MS model is

superior. By all measures, the IG model has very large problems capturing the volatile

periods of the data, but does much better in the later, less volatile samples. For the in-

sample and 1992 experiment the MS model outperforms the IG in all instances, albeit

not significantly for the four and eight week forecasts in the in-sample forecasts. For

the later samples, the IG outperforms the MS significantly in some instances (1994,

one week; 1997, four weeks) at the 5% level, but is outperformed in others. It is natural

that the MS fares worse in the periods where one or more states do not occur, since as

long as the probabilities of going there are non-zero, forecasts will be worse than their

single state counterparts.

In the light of these results, although the MS model forecasts compare favorably in

most experiments in absolute terms, its main advantage lies in consistently being able

to perform well unconditional on the forecasting horizon, the forecasted time-period

and the events that occur during it. To verify this claim, we calculate the average mag-
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nitude of the loss measure in excess of the best individual alternative, accumulated over

all the samples and horizons. The results in Table 5 further underlines the consistency ¿Table

5.in the MS model. It produces forecast that are on average 7.4%/15.8% worse than

the best forecast for any individual sample and horizon. With corresponding figures of

28.2%/50.6%, although it is the second best option, the RW is far behind. Admittedly,

the averages could be sensitive to single experiments where performance is very bad.

Our calculations of median values does however not alter the results.

Conclusion

In our analysis, we have garnered strong support for the use of a three state Markov

regime-switching model for analyzing and forecasting Swedish interest rate volatility.

In a framework similar to Cox, Ingersoll and Ross (1985), allowing for three different

states, we find no need for additional modelling of conditional heteroskedasticity and

cannot reject that the model’s standardized residuals are normally distributed. In con-

trast, alternative specification efforts using GARCH effects yield explosive estimates

unless we depart from the assumption of conditional normality.

Via its inferred state probabilities, the model replicates the speculative attacks on

the Swedish krona in the early 1990s letting one regime quite precisely reflect these high

volatility events. The inferred long-run means range approximately between 6.6 and

10.8% but with very low speed of reversion in the latter part of the sample. Parameter

estimates and state probabilities consequently appear consistent with qualitative de-

scriptions of the data. The forecasting properties of the model are attractive compared

to a number of alternative models. Although some of the benchmarks may outperform

it for specific samples and horizons, the MS model is always among the best alterna-

tives for all forecasting experiments. Its forecasts are on average 7.4%/15.8% worse, in

terms of MAE/MSE, than the best forecast in a specific forecasting experiment. This

indicates that for cases where it is not superior in performance, it still does not lag far

behind the better alternative, which is an important aspect for practical applications.
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H0 Halt Max. Median Mean Empirical prob.
N = 1 N = 2 1019.21 364.91 400.63 1619.98 0.02
N = 2 N = 3 1133.67 24.43 65.72 270.86 0.04
N = 3 N = 4 1092.06 29.03 66.50 67.94 0.16

Table 1: Test for Markov switching dynamics. ”Max”, ”Median” and ”Mean” refers to
summary statistics of the simulated likelihood ratio statistics; ”Empirical” refers to the
likelihood ratio test statistic based on the likelihood values from the estimation of N and
N + 1 state models on the empirical data set. ”prob.” is the fraction of simulated statistics
exceeding the empirical ones, interpreted as the probability value to reject H0 in favor of
Halt. The number of simulations M has been set to 250.

Parameters Transition matrix
Value prob. Pij 1 2 3

α1 -7.4100 0.3025 1 0.7320 0.2146 0.0534
β1,1 0.6407 0.2347 2 0.0208 0.8677 0.1115
β1,2 -0.5617 0.0532 3 0 0.0574 0.9426
ω1 0.9381 0.0682
α2 0.1618 0.0037
β2,1 -0.0245 0.0000
β2,2 -0.2558 0.0000
ω2 0.0162 0.0000
α3 -0.0324 0.0000
β3,1 0.0030 0.0014
β3,2 -0.0581 0.0010
ω3 0.0015 0.0000
LL 477.3525

ARCH 4.2850 0.3688

Table 2: Estimates of the final specifications ∆rt = αSt
+ βSt,1rt−1 + βSt,2dt−1 + εt, where

εt ∼ N
(
0, ωSt

√
rt−1

)
. ARCH refers to Engle’s Lagrange Multiplier statistic for ARCH effects

in the standardized residuals to the order of 4. In the transition matrix, italics indicate
insignificance at the 10% level and significance at the 20% level. The remaining coefficient
are significant at the 1% level. Probabilitiy values have been calculated using a Wald test
based on a heteroskedasticity consistent variance-covariance matrix.
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Sample 1987-2000 1992-2000 1994-2000 1997-2000
Steps ahead 1 4 8 1 4 8 1 4 8 1 4 8

MAE CV 0.2212 0.2212 0.2212 0.2566 0.2566 0.2566 0.1393 0.1393 0.1393 0.1524 0.1524 0.1524
RW 0.1620 0.2495 0.2575 0.1623 0.2906 0.2999 0.0692 0.0795 0.0779 0.0435 0.0488 0.0499
IG 0.2980 0.3207 0.3158 0.3676 0.4235 0.4535 0.0573 0.0617 0.0779 0.0365 0.0338 0.0394
MS 0.1884 0.1818 0.1701 0.1974 0.2070 0.2078 0.0685 0.0604 0.0635 0.0379 0.0403 0.0425

MSE CV 0.6555 0.6555 0.6555 0.9895 0.9895 0.9895 0.0259 0.0259 0.0259 0.0249 0.0249 0.0249
RW 0.3528 1.0188 1.1340 0.5031 1.5406 1.7125 0.0142 0.0216 0.0225 0.0043 0.0055 0.0055
IG 2.9840 3.6695 3.2397 1.4339 1.6915 1.7125 0.0135 0.0128 0.0141 0.0037 0.0030 0.0029
MS 0.4581 0.5969 0.6504 0.9879 1.0230 1.0264 0.0157 0.0132 0.0132 0.0037 0.0037 0.0033

F RW 0.0773 0.0383 0.0351 0.0998 0.0477 0.0436 0.0782 0.0537 0.0518 0.0757 0.0615 0.0609
IG 0.0150 0.0141 0.0148 0.0500 0.0439 0.0433 0.1016 0.2787 0.1683 0.1071 0.2204 0.3239
MS 0.3984 0.1990 0.1701 0.0657 0.1443 0.1614 0.0782 0.1591 0.6726 0.1013 0.1085 0.1503

Table 3: Forecast evaluation measures for the different samples and horizons. Notation: CV is the constant variance model,
RW is a random walk in volatility, IG is an IGARCH process and MS is the Markov regime-switching process according to the
final specification in Table 2. The loss measures for the h step ahead forecast (subscripted f) for a sample t = 1...T are Mean
Squared Error MSE = T−1 ∑T

t=1(σo,t − σf,t|Ωt−h
)2 and Mean Absolute Error MAE = T−1 ∑T

t=1 |σo,t − σf,t|Ωt−h
|, where subscript

o denotes observed volatility. F-test probability values for rejection of the joint hypothesis θ1 = 0, θ2 = 1 in the regression
σo,t+h = θ1 + θ2σf,t+h|Ωt

are reported in the bottom panel of the table.
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In-sample (1987-2000)
Steps 1 4 8
Model CV RW IG MS CV RW IG MS CV RW IG MS
CV . 0.9950 0.0723 0.9941 . 0.2430 0.2138 0.9998 . 0.1821 0.2320 1.0000
RW 0.0050 . 0.0082 0.0889 0.7570 . 0.2168 0.9422 0.8179 . 0.2536 0.9858
IG 0.9277 0.9918 . 0.9754 0.7862 0.7832 . 0.8631 0.7680 0.7464 . 0.8681
MS 0.0059 0.9111 0.0246 . 0.0002 0.0578 0.1369 . 0.0000 0.0142 0.1319 .

Out-of-sample (1992-2000)
Model CV RW IG MS CV RW IG MS CV RW IG MS
CV . 0.9961 0.0018 1.0000 . 0.2958 0.0268 1.0000 . 0.2424 0.0692 0.9994
RW 0.0039 . 0.0000 0.1592 0.7042 . 0.0213 0.9199 0.7576 . 0.0579 0.9600
IG 0.9982 1.0000 . 1.0000 0.9732 0.9787 . 0.9957 0.9308 0.9421 . 0.9731
MS 0.0000 0.8408 0.0000 . 0.0000 0.0801 0.0043 . 0.0006 0.0400 0.0269 .

Out-of-sample (1994-2000)
Model CV RW IG MS CV RW IG MS CV RW IG MS
CV . 1.0000 1.0000 1.0000 . 1.0000 1.0000 1.0000 . 1.0000 1.0000 1.0000
RW 0.0000 . 0.9980 0.5633 0.0000 . 0.9934 0.9982 0.0000 . 0.5010 0.9618
IG 0.0000 0.0020 . 0.0000 0.0000 0.0066 . 0.7025 0.0000 0.4990 . 0.9999
MS 0.0000 0.4367 1.0000 . 0.0000 0.0018 0.2975 . 0.0000 0.0382 0.0001 .

Out-of-sample (1997-2000)
Model CV RW IG MS CV RW IG MS CV RW IG MS
CV . 1.0000 1.0000 1.0000 . 1.0000 1.0000 1.0000 . 1.0000 1.0000 1.0000
RW 0.0000 . 0.9824 0.9532 0.0000 . 1.0000 0.9954 0.0000 . 0.9861 0.8985
IG 0.0000 0.0176 . 0.0880 0.0000 0.0000 . 0.0012 0.0000 0.0139 . 0.0331
MS 0.0000 0.0468 0.9120 . 0.0000 0.0046 0.9988 . 0.0000 0.1015 0.9669 .

Table 4: Significance of forecast improvements. Probability values for the modified Diebold-
Mariano statistic as in Harvey, Leybourne and Newbold (1998) testing the null hypothesis
MAEr = MAEc versus the alternative MAEr < MAEc where r and c denote rows and
columns respectively. Note that a p-value in excess of 0.5 means that MAEr > MAEc.
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Mean(W ) Median(W)
MAE CV 128.5 88.7

RW 28.2 29.1
IG 51.7 49.5
MS 7.4 1.9

MSE CV 212.1 94.0
RW 50.6 69.6
IG 166.2 38.9
MS 15.8 3.6

Table 5: Average and median decrease in forecasting performance versus the best alternative,
in percentages, calculated over all samples and horizons. Denoting the loss-measure as LM ,
it has been calculated as W =

∑C
c=1

LMc−LMbest

LMbest
, where c refers to columns in Table 3, and

LMbest denotes the lowest loss measure in the corresponding column c.

Figure 1: Stockholm Interbank Offered Rate (percent, left axis) and the Akgiray volatility
measure (standard deviations of ∆rt, right axis).
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Figure 2: Smoothed state probabilities ordered from state 1 (top row, highest average volatil-
ity) to 3 (bottom row, lowest average volatility).
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