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Abstract. The problem of computing the stress field around cracks with many
corners or branches is considered for a planar linearly elastic material. One
can formulate the problem as an integral equation of Fredholm second kind.
To resolve the stress field around corners, implementations with basis func-
tions based on a Williams expansion have been tested. Large scale numerical
examples are presented for cracks with up to a thousand corners. Typically,
the number of points needed for a given accuracy is decreased by 80% and
the number of iterations by 30% when the present algorithm is compared to
an algorithm without basis functions. Convergence tests indicate that the im-
plementation with basis functions achieves relative errors for stress intensity
factors of less than 10~7 even for the largest geometries.

Introduction

The present paper is concerned with computing stress intensity factors for
cracks with corners. Crack geometries with corners are common in engineering
structures. In the literature many different techniques to solve the problem
have been investigated, see references in [1, 2].

A common approach in linear elasticity is to use an integral equation for-
mulation. In the present paper a Fredholm integral equation of the second
kind is used. Such an equation can be very stable. It is possible to achieve
linear complexity both in memory and time with the help of the fast multipole
method. Since some of the involved integrals in the integral equation must
interpreted in a Cauchy principal value sense, care must be taken. See Ref. [1].

It has been known for a long time how the stress field behaves asymptot-
ically around a corner of a linearly elastic specimen. Due to the difficulty of
implementation, this fact has only been used with partial success by earlier
authors. In the present paper Williams’ theory in combination with analytic
function theory is used successfully. For a detailed description of how to use
Williams’ results, see [2].



Theory

The Equation. Consider a linearly elastic infinite region, D, containing a
single crack L. In the elastic region, Airy’s stress function W(z,y) can be
represented as W (z,y) = Re{Zp(2) + x(z)}, where ¢(z) and x(z) are analytic
functions of the complex variable z = z + iy. Introduce ®(z) = ¢'(z) and
U(z) = x"(z) and represent them as the Cauchy type integrals

8(z) = %/LWJF% €D\ L,
V() = —%AW—%A%M, 2eD\I,

where a is a real constant and b a complex constant determined by the ap-
plied external forces. The function p(z) is a weight, on L given by p(z) =
(v/(z = 75)(z — 7e))~1/2, where ~, is the starting point and +, the endpoint of
L. With the representation used above it is possible to rewrite the elastostatic
differential equation as the integral equation

{ (Mip— M3)Q2) =2b—a z€L, (1)

where n = n(z) is the unit normal to L. Zero traction along the crack, and
continuity of traction across L is implied by (1). The operator M; is defined
by

1 [ Qr)p(r)dr
Ml(Qp)(z)—ﬂ_i/L DT, zel 2)
The operator M3 is a compact integral operator. For a definition see [1]. The
second equation of (1) contains the closure condition and says that the integral
of Q(z)p(z) along L should be equal to zero. The function Q(z)p(z) has the
physical interpretation Q(z)p(z) = —d/dz(du + iév). The system in (1) is not
optimal from a numerical point of view. Fortunately it is easy to reduce the
original system of equations into a single equation which is of Fredholm second
kind [1]

(I — Myp~ ' M3)Q(2) = Myp~? (Zl‘) - a) , z€L. (3)

From the solution of (3) it is easy to compute the normalized stress intensity
factors F' = F] + iF7y, see [1].



Williams Expansion. On the crack, the function Q(z)p(z) can be expressed
as the difference between the right and the left limiting value of the analytic
function ®(z). Elementary jump relations give

Q2)p(z) = @%(2) —27(2), z€L, (4)
Mi(Qp)(2) = 2%(2)+2 (2)—a, z€L, ()

where &7 (z) is the limit from the left and ®~(z) is the limit from the right
relative to the orientation of the crack. Using (1), and (5) one can see that

Izl

M;3Q(z) + l_) dt(2)+ @ (2), z€L, (6)

and that solving Eq. (3) is formally equivalent to solving

(Q(z) — Mp~? (M3Q(Z) + Z?})) = _—Mip~ta, z€lL. (7)

In the work by Helsing and Jonsson [2], ®T(z) is expanded with the help of
variable separation (which might be called a Williams expansion) around the
wedge of a notched specimen. This makes it possible to represent ®*(z) with
certain basis functions. In the present paper the idea of [2] is utilized and
extended to geometries with cracks. A crack with a corner can be seen as a
combination of an inward and an outward notch. One should therefore expand
both &*(2) and & (z). In what follows we have disregarded the limit of ®(z)
belonging to the smaller of the angles between two consecutive crack legs. For
the geometries treated here this limitation will only have a small impact.
Now, consider the action of M3. From (4) it is clear that Q(z)p(z) can be
expanded using a Williams expansion. This has the consequence that we can
use exactly the same approach here as in [2] when applying M3. From (6) one
sees that the quantities that M;p ! operates on in (7), left-hand side, also can
be expanded using that same Williams expansion. From the right-hand side
of Eq. (7) it is clear that one also has to include a constant basis function.

Placement of Panels. The integral equation (3) is discretized using a
Nystrom scheme. In this scheme composite quadrature is used. In order to
improve accuracy, an adaptive approach is taken. The corner quadrature pan-
els extend across the corner, and the adaptive refinement is shown in Fig. 1.
The panels closest to a corner panel are split into new, shorter panels. Let
N, be the total number of subdivisions of the panels closest to a corner. De-
note the length of a panel not close to a corner by k. Each leg of a corner
panel is placed so that it has length k/2Vs»=2. Panels closest to a corner panel
are subdivided Ny, times. This procedure makes the corner panel small in



comparison to the whole crack. It also makes sure that the distance from the
corner to a non-corner panel is at least as long as the length of the non-corner
panel.
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Figure 1: The left image shows panel placement close to a corner when Ny, =
5. The right image shows an example of the general geometry investigated in
this paper. The crack in the figure has five corners.

Action of M;p~!. The operator M;p~! operating on basis functions is pre-
computed using an adaptive algorithm. The integrals are computed in a local
coordinate system. Once these integrals have been computed, a mapping from
the local coordinate system to the global coordinate system gives the values
of Myp~1(M3Q(z) +nb/n). For details concerning the mapping and the local
coordinate system see [2]. Using the parameter s for z and parameter ¢ for 7,
we have the following relations in the local coordinate system: z = isn, and
7 = itn,. In the local coordinate system, n, denotes the unit normal at z and
n, the unit normal at 7. Integrals of the following type are needed for all basis
functions z*» 1

0 gl —ghn=lgt 1 Dypt*n=! — DypsPn—tdt
/0 p(itn,)(t — e #Bs) '
(8)
where Dy, = exp{i(8/2 — 7)(A, — 1)} and Do, = exp{—if(A, — 1)/2}. By 8
is meant the angle on the left of the crack (relative to the orientation) between
two consecutive crack parts.

In the integrals above p(z) appears in the integrand. Because of the adap-
tive algorithm used for the computation of the integrals we need to evaluate
p(z) at many different points of a corner panel. This is done by polynomial
interpolation of degree eight.

Computing the integrals of Eq. (8) is costly. Therefore we will take another
approach when z is far away from the corner, where the integrand is smoother.
For such points we use temporary interpolation, and integration is performed

Mlpfl,r)\nfl(z) = D1, ‘/_1 p(ltn‘r)(t — 5)



on the temporary mesh. With the exception that we have to include p(z), this
procedure is identical to the one used in [2].

Numerical Results

All numerical experiments have been performed an a SunBlade 100 worksta-
tion. All codes were written in Fortran and compiled using Sun’s f77 compiler.
The system of equations from the Nystrom scheme was solved using the it-
erative solver GMRES with the residual tolerance set to 8 - 10716, On all
quadrature panels, except for the corner panels and the panels at the end-
points of the crack, 8-point Gauss-Legendre quadrature has been used. On
the end-panels Gauss-Jacobi quadrature with exponent —1/2 was used. In all
experiments load of magnitude unity was applied in the direction indicated in
Fig. 1. Eight basis functions from the expansion of the limit of ®(z) were used
in the calculations.
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Figure 2: Left: a convergence test for a crack with one corner. Right: for a
crack with 199 corners.

Convergence tests were made for cracks with different numbers of corners, see
Fig. 2 and Table 1. The geometry used is the same as shown in Fig. 1. The
geometry dependent factor of the normalized stress intensity factor was chosen
as half the length of a line connecting the endpoints of the crack. The slope of
the line between 500 and 3000 discretization points in the left part of Fig. 2 is
close to one. The reason for this is that the absolute value of A, for the first
term of the Williams expansion not included in the algorithm is equal to one.

Two typical examples of the improvements with the present algorithm
compared to an algorithm without basis functions [1] will now be given. For
one corner the algorithm in [1] needed about 30 iterations for convergence
compared to 20 now. The present algorithm converges to eight digits for one
corner using only 168 discretizations points. The same accuracy using the
algorithm without basis functions needed about 1000 points. Furthermore,



the present algorithm increases the achievable accuracy for one corner with at
least two digits. Another example is for a crack with 1999 corners. The present
algorithm converged to five digits in 25 iterations, using 2.5-10 discretization
points. The algorithm without basis functions converged to five digits in 40
iterations using 8.5 - 10° discretization points.

Table 1: Stress intensity factors for the left crack tip of a crack with the shape
shown in Fig. 1

Number of corners Fy Fir Number of iterations
1 0.5207675522 0.6411159455 20
19 0.697413839  0.417375537 34
199 0.76539692 0.34303978 34
1999 0.7883016 0.3188449 31
Conclusions

The use of a Williams expansion has been shown to improve a simpler algo-
rithm without basis functions [1]. To achieve a certain accuracy the needed
number of discretization points and iterations is decreased. The maximum
achievable accuracy is increased.

The fact that the approach with basis functions around corners works for
kinked cracks indicates that it also works for branched cracks. A corner of a
branched crack is then simply viewed as a combination of three notches. An
investigation of branched cracks is in progress.

Acknowledgements This work was supported by the Swedish Research Sci-
ence Council under contract 621-2001-2799.

References

[1] J.Englund, Engineering Fracture Mechanics, 70, 355-364(2003).

[2] J.Helsing and A.Jonsson, International Journal for Numerical Methods in Engineering,
53, 433-453(2002).



