
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Electrostatic Interactions In and Between Biomolecules

Lund, Mikael

2006

Link to publication

Citation for published version (APA):
Lund, M. (2006). Electrostatic Interactions In and Between Biomolecules. [Doctoral Thesis (compilation),
Computational Chemistry]. Theoretical Chemistry, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9bad7d3f-2d4c-49be-93af-0c3a52fbdd1a


Electrostatic Interactions
In and Between Biomolecules

Mikael Lund
Department of Theoretical Chemistry

Lund University – Sweden

Repulsion between oppositely charged
surfaces

Master Thesis by: Martin Trulsson

Supervisors: Bo Jönsson and Torbjörn Åkesson
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Preface

This text represents the formal work of my doctoral studies at the Department of Theo-
retical Chemistry at Lund University in the period 2002–2006. The structure of this
document more or less follows the “standard” procedure with an introduction followed
by some scientific papers, describing the research results in a fairly concise manner.
Since the important findings are described in these latter articles the initial sections
shall be used to elaborate mostly on general concepts and themes not covered explicitly
in the papers. Occasionally I will – briefly – relate to the papers but these will not be
the main center of attention. Reading through this thesis as well as the attached papers,
it will become apparent that a major theme revolves around molecular coarse graining.
That is, to transform a complex system into something more simple, yet realistic, that
can be investigated using clear physical methods – preferably with a minimal set of
operational parameters. This approach is in sharp contrast to an increasing amount
of biophysical research with the mantra “more detail”. While such undertakings are
valiant one should always weigh input versus output and the paramount measure of
scientific quality must be the gain in physical insight.

Interactions between molecules of biological origin are important not only for pro-
cesses taking place in living cells, but can also be utilized in a number of more technical
applications. Proteins are complex molecules and their mutual interactions can be pre-
dicted only if a solid foundation of the basic, physical mechanisms is established. For
example, why does a protein solution precipitate upon addition of multivalent salt?
And why is this precipitate sometimes crystalline, other times amorphous? The an-
swers to these questions are important not only to crystallographers, attempting to
produce protein crystals, but also many diseases are connected with malicious protein
aggregation. For example, the formation of amyloid fibrils, as evident in Alzheimer’s
disease, is known to be enhanced by high valency metal ions and attempting to intelli-
gently design a suitable cure, knowledge of the underlying mechanisms is indispensable.
Designing new drugs typically involves a large number of candidate compounds tar-
geting bio-molecules such as enzymes or membranes. Probing the binding affinity
via theoretical means requires a description of the intermolecular interactions that, in
many cases, are profoundly influenced by electrostatics. For example, the protein net
charge is sensitive to the solution pH and if the targeting molecule is also charged, long
ranged electrostatic interactions can significantly affect binding properties. A related
in vivo example is hisactophilin binding to a lipid membrane. Here, the stability of the
protein-membrane complex is governed mainly by electrostatic interactions and even
small intracellular pH changes can influence this equilibrium.

Another area where bio-molecular interactions enjoy much attention is in food sci-
ences. Proteins are essential constituents of our diet and properties such as solution
stability, viscosity, emulsions etc. are important when designing food products. In
contrast to biological systems, there is a reasonably large degree of freedom in which
the solution conditions can be varied – i.e. pH, salt concentration and valency, tem-
perature, and addition of other macro-molecules such as polymers. While the physical
properties can be measured via thermodynamic techniques, it is from these results
difficult to decipher what is taking place at the molecular level. This gap between
macroscopic and microscopic properties, is accounted for by statistical mechanics and
as shall be shown in this thesis, this is a very useful tool for studying molecular mech-
anisms.

Now, during the past four to five years a number of fine people have – in one way or
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another – contributed to this outcome and I will now spend a few (Danish) words ack-
nowledging these. Med udsigt til mange års ekstra studier, kurser og svensk valuta, var
det med tvivlende skridt, jeg indtog skrivebordet i Svinestien for 4 1/2 år siden. Trods
den mærkelige dialekt man talte her, blev det dog hurtigt klart, at de svenskere nu ikke
var helt s̊a slemme endda. Faktisk, har det været en udsøgt fornøjelse at færdes p̊a b̊ade
Teoretisk- s̊avel som Biofysisk kemi, hvilket her fjernet enhver tvivl om mit valg, og
endda opvejet de ca. 2000 timer ens luksuslegeme er blevet udsat for Øresundstogenes
tvivlsomme komfort. Tak for det! Af mere videnskabelig karakter, har b̊ade vejleder Bo,
samt Torbjörn, Cliff og Hr. Forsman(n) været uvurderlige kapaciteter, og altid udvist
stor velvilje samt p̊ag̊aende kritik. Herunder skal naturligvis ogs̊a nævnes alle andre
fra statmek gruppen: Martin T & Martin T, Gunnar, Magnus U, Fernando, Asbjørn,
Daniel, Monsieur Labbez og laboratorievennerne Sara, Tonu og Ingemar. Jeg takker
for alle kaffepointene, ophold i “T̊aget” og p̊a “Filippa In”, indføring i tykmælkens
lyksaligheder, “kemisk potatis”, gode r̊ad om træhusets finurligheder og alt muligt
andet stort, som småt. Ogs̊a en stor tak til min tidligere vejleder og køkkenkemiker,
Thorvald Pedersen, som er den egentlige årsag til at jeg havnede i Lund. Udenfor
universitetets mure har familie og trofaste venner altid ventet med behageligt og til
tider lummert selskab. Tak er kun et fattigt ord. Last, but definitely not least I wish
to thank Miss Forecast, Wonkeun, Chinmayee, Bianka, Juliette, Dan and of course
Cliff for making my six months in Canberra feel more like six weeks.

M.L.
November 2006
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Dansk sammenfatning

Elektrostatiske vekselvirkninger mellem biomolekyler er vigtige, ikke bare i biologiske
systemer, men ogs̊a i flere tekniske sammenhænge. I denne afhandling studereres en
række forskellige egenskaber, relevant for særligt proteiner. S̊aledes har vi ved hjælp af
molekylær simulering undersøgt hvorledes proteiner vekselvirker med protoner, salte,
andre peptider og proteiner, ladede membraner samt polymerer. Som det fremg̊ar af
titlen er der lagt vægt p̊a elektrostatik, dvs. vekselvirkninger mellem ladede partikler,
men andre afledede former – van der Waals vekselvirkninger mfl. – er ogs̊a behandlet.

En særlig egenskab ved proteiner og andre bio-molekyler, er at de indeholder titrer-
bare grupper, hvis protoniseringstilstande afhænger ikke bare af opløsningens pH vær-
di, men ogs̊a af det elektriske potential genereret af omkringliggende, ladede makro-
molekyler. Dette indebærer, at n̊ar et protein for eksempel nærmer sig at andet
protein, et DNA molekyler, eller en ladet membran, vil dets elektriske ladning æn-
dres. Denne mekanisme kaldes ladningsregulering, og bidrager til en sænkning af sys-
temets frie energi. Denne mekanisme er studeret vha. Monte Carlo simuleringer af
proteinopløsninger, og vi har endvidere udarbejdet en tilnærmet model, baseret p̊a
statistisk termodynamik. Ud fra disse teoretiske betragtninger, har vi udledt en ny
protein egenskab – ladningskapacitansen – som er helt p̊a linje med mere velkendte
egenskaber som den totale ladning og dipolmomentet. Kapacitancen kan findes ved at
differenciere den målte, eller beregnede protein titreringskurve, og kan anvendes til at
estimere hvordan proteinet p̊avirkes af andre ladninger i systemet.

Derudover har vi undersøgt hvorledes protein-protein vekselvirkninger p̊avirkes af
pH, salt koncentration og ikke mindst salttype. Ved at beregne den frie energi som
funktion af den indbyrdes afstand mellem proteinmolekylerne, kan vi opdrive den anden
virial koefficient, B2, som er en velkendt indikator for den overordnede vekselvirkning.
B2 kan måles eksperimentelt vha. lysspredning, og s̊adanne målinger (udført af andre
forskningsgrupper) er derfor anvendt til at verificere vores modeller; oftest foreligger
glimrende overensstemmelse. Ved tilsætning af trivalente ioner, kan makromolekyler af
samme (høje) ladning bringes til at aggregere. Ifølge vores studier er dette pga. ion-ion
korrelationer, der ikke lader sig beskrive med gængse Poisson-Boltzmann metoder, men
kræver istedet en eksplicit saltbeskrivelse.

I udarbejdelsen af de teoretiske modeller, er der lagt vægt p̊a at disse skal være
s̊a simple som mulige, men samtidig beskrive systemet i en s̊adan grad af detalje,
s̊a alle væsentlige egenskaber bibeholdes. S̊adanne molekylære forenklinger – coarse
graining p̊a engelsk – reducerer ikke bare antallet af justerbare parametre, men kræver
ogs̊a væsentlig mindre regnekraft og bidrager med et klart billede af de basale fysiske
mekanismer.
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Symbols and Abbreviations

A, w Free energy or effective potential
β 1/kT
B Virial coefficient
cx Concentration of the component x
C Charge capacitance
e Electron unit charge
ε0 Permittivity of vacuum
εr Relative dielectric constant
φ Electric potential
γ Activity coefficient
g(R) Radial distribution function
k Boltzmann’s constant
K∗ Stoichiometric equilibrium constant
κ Inverse Debye screening length
lB Bjerrum length
µ Electric dipole moment
µex Excess chemical potential
Mw Molecular weight
Q, q Charge
R, r Distance
RN Coordinate space i.e. [r1 . . . rN ]
σ Particle diameter
S Entropy
T Temperature
U, u Energy
Z, z Charge number or valence
〈...〉x Statistical mechanical average over x

DH Debye-Hückel
DLVO Derjaguin, Landau, Vervey and Overbeek
MC Monte Carlo
MD Molecular Dynamics
NMR Nuclear Magnetic Resonance
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1 Concerning Proteins

1.1 Various Views

This first part shall be used to describe proteins as seen from different perspectives and
even through somewhat blurry glasses. I will point out and identify essential features
that can be quantified using a well tested toolbox of physical methods. So, what is
a protein? A chemist would merely call it a big molecule as it consists of one or
more sequences of amino acid residues, linked through covalent peptide bonds[1]. This
backbone has side chains and due to different chemical properties of the individual
amino acids, the chain(s) can coil to form a well defined macromolecular structure. In
hydrophilic, globular proteins the structure is constructed so that non-polar parts of
the chains are well hidden in the protein interior, while more polar groups are solvated
– i.e. exposed to the (aqueous) solvent at the protein surface. Polar or hydrophilic
groups can be small parts of the macromolecule where electronic displacements create
local dipole moments or actual charges on (de)protonated acidic or alkaline amino acid
residues. Furthermore, various multivalent metal ions can be incorporated. By now it
should be clear that a protein is full of (partial) charges and it seems only reasonable
to assume that electrostatics may play an important role in biological systems[2,3].

Of similar importance is the surrounding solvent and other solutes that may signif-
icantly influence the electrostatic behavior of the protein. In the living cell, proteins
are solvated in an aqueous salt solution containing roughly 0.15 M salt as well as an
appreciable amount of other macromolecules. The proton concentration or pH is an
essential property of the solution as it can be used to control the protonation status
– and hence the charge – of acidic and alkaline (titratable) groups in the protein. In
fact, for certain proteins even small intracellular pH variations can change the sign of
the overall charge (Paper 3). How the protein charge varies with pH is illustrated by
the titration curve as normally measured electrochemically in a titration experiment
or constructed from individual dissociation constants (pKa) of the titratable sites. The
latter approach is more elaborate as the determination of individual pKa values require
extensive NMR studies.

Now that we have an idea of what a protein is, we should be able to draw one.
And this is where the different points of view become evident. Scientists from different
fields tend to come up with their own interpretations and Figure 1 illustrates how
the same protein may look in various disciplines. What is shown is in fact a kind
of coarse graining [4] where the most detailed model (quantum level) is transformed
into more simple alternatives, tailored to capture only properties of interest. This is
a powerful technique as the mathematical complexity can be drastically reduced (or
even removed) yet it still provides useful insight. It can also be a pitfall, though. It is
not uncommon to see coarse graining applied to problems where it is not suitable. For
example, it would be silly to measure protein aggregation using the “cartoon model”
as it provides no controlled way of quantifying intermolecular interactions. Likewise

[1] T. E. Creighton. Proteins - Structures and Molecular Properties. W.H. Freeman, New York,
2nd edition, 1993.

[2] Jonathan P K Doye, Ard A Louis, and Michele Vendruscolo. Inhibition of protein crystallization
by evolutionary negative design. Physical Biology, 1(1):P9–P13, 2004.

[3] I. Gitlin, J. D. Carbeck, and G. M. Whitesides. Why are proteins charged? networks of charge–
charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew.
Chem. Int. Ed., 45:3022–3060, 2006.

[4] W. C. K. Poon. Soft Condensed Matter Physics In Molecular And Cell Biology, chapter 1. Taylor
and Francis, New York, first edition, 2006.
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Figure 1: A protein as seen from three different scientific view points: The “cartoon” model
(left) showing secondary structure, the ball-and-stick model (middle) illustrating individual
atoms and chemical bonds, and finally a space filling model (right), where each atom is
presented by a sphere.

it would seem excessive to use a full quantum mechanical model as we deal with long
range interactions and a detailed description of internal electron densities is not really
needed (nor tractable for that matter). The trick is to find the right level of detail for
the problem at hand, and at the same time ensure that the results are not artificially
modulated by an excessive number of input parameters.

1.2 More Coarse Graining

The “biologist”, “chemist”, and “physicist” models shown in Figure 1 all illustrate –
some better than others – that proteins have a detailed surface topology and indeed
occupy a volume from which other molecules are excluded. This gives rise to significant
intermolecular interactions and any quantifying model should capture this effect. From
a computational point of view it is appealing to coarse grain as much as possible yet
preserve dominant physical properties – in this case the excluded volume. The “colloid
scientist” would (possibly) replace the protein with a sphere matching the protein
volume so as to reduce the number of particles from thousands to merely one[5,6].
For certain properties this might be a reasonable approximation but obviously it is a
poor description for more elongated molecules. Another important disadvantage of the
spherical model is that the detailed charge distribution is usually replaced by a single
point charge, thus neglecting possible electric multipole moments. Figure 2 shows other
alternatives; in particular we note the amino acid model where all amino acid residues
in the protein are replaced by a sphere. This method was scrutinized in Paper 1 and –
while seemingly crude – it captures many details of the protein and is advantageous for
several reasons: 1) the surface topology is well preserved (see Figure 3), 2) the detailed
charge distribution is maintained, 3) it allows for angularly dependent short range
interactions (van der Waals, for example), and 4) the number of particles is reduced by
one order of magnitude compared to the atomistic representation, allowing even large
proteins to be handled, 5) and finally, the calculated potential of mean force between
proteins seems to be identical to that of the all-atom model – see page 44 (Paper 1).

[5] B. V. Derjaguin and L. Landau. Theory of the stability of strongly charged lyophobic sols and of
the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. URSS,
14:633–662, 1941.

[6] E. J. W. Verwey and J. Th. G. Overbeek. Theory of the Stability of Lyophobic Colloids. Elsevier
Publishing Company Inc., Amsterdam, 1948.
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thousands      hundreds         tens            one

Figure 2: Various protein models and the number of particles involved. From left to right:
1) Atomistic model where all atoms are represented by spheres. 2) Amino acid model where
entire amino acid residues are approximated by spheres. 3) Point charges in an encapsulating
sphere. 4) A sphere with a point charge in the middle (DLVO type).
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Figure 3: Cross section of the protein ribonuclease using both an atomistic- and an amino
acid representation.

1.3 Rigidity

The models proposed so far all neglect structural degrees of freedom within the protein
molecule. Clearly this is an approximation as side chains do have some flexibility and
certain proteins are known to function via structural perturbations. To incorporate
this we need a set of energy functions for the stretching, twisting and bending of
intra-molecular bonds in the protein. Such force fields [7,8] are typically constructed
in a semi-empirical manner and may contain hundreds of parameters where some are
suitable for certain molecules, some are not. This is an important matter and one
should thoroughly make sure that a given set of parameters do not artificially influence
the final results.

In cases where structural fluctuations are minor or irrelevant for the properties of
interest the molecule can be kept rigid. For a number of proteins NMR studies indicate
that the structure is invariant to even large changes in solution conditions (pH, salt).

[7] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
Charmm: A program for macromolecular energy, minimization, and dynamics calculations. J.
Comp. Chem., 4(2):187–217, 2004.

[8] D.A. Case, T. Cheatham, T. Darden, H. Gohlke, R. Luo, Jr. K.M. Merz, A. Onufriev, C. Sim-
merling, B. Wang, and R. Woods. The amber biomolecular simulation programs. J. Computat.
Chem., 26:1668–1688, 2005.
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In theoretical calculations the (fixed) structural coordinates are acquired from either
NMR or X-ray crystallography, but these are only partly experimental: After the data
collection the experimental constraints are – together with a force field – used in a
simulation, so as to obtain the most probable structure. Therefore the “experimental”
structure does hold a reminiscence of theory and should be regarded as an average
structure. This is especially true for solution NMR structures where the flexible side
chains can appear in a multitude of conformations and are often averaged to merely
one. These facts support the usage of a rigid but likely structure. Nevertheless it is
important to recall that a rigid model may becomes less appropriate at denaturating
conditions – pH extremes etc.

1.4 Protonation State

A number of amino acid side chains contain titratable groups such as -COOH, –NH2,
and –SH with proton affinities covering most of the pH-range (Table 1). Since a protein
is just a sequence of amino acid residues, with perhaps hundreds of titratable groups,
it can be viewed as a large polyampholyte where the degree of protonation for each
site is given by

α =
1

10pH−pKa + 1
(1)

The protonation state of one group will influence the state of a neighboring group, which
will effect another and so on. Nearby solutes such as salt and charged macromolecules
will have a similar effect and the real, average protonation state is an asymmetric
function as shown in Figure 4 which is also found experimentally[9]. Using a stoichio-
metric dissociation constant in eq 1 will only cause the titration curve to shift along
the pH-axis. A better fit may be obtained by introducing a factor in the exponential
so as to flatten the curve. Still, such a “Hill-parameter” of course fails to describe the
asymmetry.

Table 1: Acid dissociation constants for “isolated” amino acid residues - i.e. their intrinsic
values, unaffected by nearby charges and other solutes.

Residue Abbreviation pKa
[1]

C-terminal Ctr 3.8
Aspartic acid Asp 4.0
Glutamic acid Glu 4.4
Histidine His 6.3
N-terminal Ntr 7.5
Tyrosine Tyr 9.6
Lysine Lys 10.4
Cysteine Cys 10.8
Arginine Arg 12.0

In a statistical mechanical framework the problem can be formulated as an average
protonation state, π for a site, i by an average over all particle positions and protonation

[9] T. Kesvatera, B. Jönsson, E. Thulin, and S. Linse. Ionization behaviour of acidic residues in
calbindin D9k. Proteins, 37:106–115, 1999.
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Figure 4: Average protonation state of one of the glutamic acid residues in calbindin, calcu-
lated using Monte Carlo simulations. The “ideal” curve is the best fit to Equation 1 – that
is pK∗

a=pH for 〈zi〉 = 0.5.

states,

〈πi〉π,R =

∫
πie

−βU(πM ,RN )dπMdRN∫
e−βU(πM ,RN )dπMdRN

(2)

Multidimensional integrals like this must be solved numerically, but as a prerequisite
we need an energy function for (de)protonating a given site. Starting out with a single
site, we shall now use thermodynamic arguments to derive equations for just that. For
any given monoprotic acid one can write the dissociation process

HA 
 H+ + A−

where the thermodynamic equilibrium constant is defined as

Ka =

Γ︷ ︸︸ ︷
γH+γA−

γHA

·

K∗
a︷ ︸︸ ︷

cH+cA−

cHA

⇔ pKa = − log Γ− log
cH+cA−

cHA

(3)

If we now define pH as the negative logarithm of the proton concentration1 we get that

− log
cA−

cHA

= log Γ− (pH − pKa) (4)

The fraction cA−/cHA is nothing but the probability of deprotonating the acid and can
immediately be transformed to a free energy change,

β∆AHA→A− = − ln
cA−

cHA

= ln Γ− (pH − pKa) · ln 10 (5)

The first term on the right hand side is identified as the sum of excess chemical poten-
tials (µex = ln γ) for the three species HA, A−, and H+ and thus accounts for all effects
not captured in the reference state - i.e. the intrinsic or thermodynamic dissociation
constant, Ka. This is an important observation and implies that:

1Note the deviation from the formal definition, − log aH+ , done solely to conform with later Monte
Carlo simulations – see section 3.2.
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• The excess chemical potentials should contain only the difference between the
model compound2 and the residue in the protein (solution).

• Changes in charge solvation can most likely be neglected as these are approx-
imately the same in the protein and in the model compound. Exceptions are
deeply buried groups.

• Γ is a function of pH and salt.

The last point – that Γ and hence the stoichiometric dissociation constant is a function
of pH – is the origin of the asymmetric nature of the single-site titration curve. Single-
site titration behavior will be picked up again in Section 3.2 where we will use the
above findings to construct a Monte Carlo simulation method for evaluating eq 2.

1.4.1 Total Charge

Now, the total protein charge is just the sum of all single-site charges which are – as
we have just seen – governed by factors such as pH, other solutes as well as protein
structure and sequence. This is of great importance for the solution stability – it is
for example well known that proteins aggregate when pH approaches the iso-electric
point3 or when mixed with multivalent ions. The overall protonation state of a protein
is usually measured electrochemically[10], while individual sites can be observed using
NMR.
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Figure 5: The average net-charge number of ribonuclease as a function of pH as measured
using electrochemical methods[10] and calculated using Monte Carlo simulations and a non-
interacting model (“ideal”).

2Intrinsic dissociation constants for amino acid side chains are usually measured for small peptides
– model compounds – in a dilute aqueous solution (the reference state). Neighboring groups are chosen
so as to disturb as little as possible.

3The iso-electric point, pI is defined as the pH value where the overall protein charge Z is zero –
that is when all negative and positive charges balance.

[10] C. Tanford and J. D. Hauenstein. Hydrogen ion equilibria of ribonuclease. J. Am. Chem. Soc.,
78:5287–5291, 1956.
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1.4.2 Dipole Moment

The protonation state of the individual sites not only control the overall protein charge,
but also the electric dipole moment defined as

µ̄ =
∑

i

r̄izi. (6)

Due to the large size of proteins, dipole moments of several hundred Debye4 is not
un-common and as shown in Figure 6 the pH variation can be substantial. For the
elongated “Fab” fragment (PDB entry 3HFL) going from pH 3 to 7 µ increases by a
factor of three. In turn this will affect interactions with other multipoles (proteins etc.)
and in the case of “fab” it is noteworthy that this happens at physiological pH.

However, there is an issue with eq 6 since if
∑

qi 6= 0 the dipole moment will rely
on the choice of origin. While this is unfortunate, it rarely poses a problem when esti-
mating protein-protein interactions using a multipole expansion. In this approximation
(see section 2.4.1), the distance between the two interacting charge distributions ideally
should be much greater than the individual charge vectors (R >> ri ∧ rj in Figure 8).
This condition is favored by placing origin at the center-of-charge which – for globular
proteins – roughly coincides with the center-of-mass.
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Figure 6: Calculated electric dipole moments for three different proteins at various pH values.

1.4.3 Charge Capacitance

So far we have studied two average protein properties, the total charge and the dipole
moment. Since a titratable site can be found in two states these averages will fluctuate
around their mean values, leading to interesting physical mechanisms. As for the
protein charge the fluctuation is 〈

Z2
〉
− 〈Z〉2 = C (7)

41 D(ebye) = 3.336·10−30 C·m = 0.208 eÅ.
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Assuming that there is no salt and that the protein is rigid we can write the net charge,
Z as an ensemble average over all protonation states,

〈Z〉 =

∫
Ze−βU(pH,πM )dπM∫
e−βU(pH,πM )dπM

(8)

If we disturb the system by some small perturbation quantified by α, the response in
〈Z〉 is given by,

∂ 〈Z〉
∂α

= 〈Z〉
〈

∂βU

∂α

〉
−
〈

Z
∂βU

∂α

〉
(9)

For example, exposing the protein to an external potential, φext the energy function
for a given configuration is

βU =
∑

i

βezi[φi + φext] (10)

Taking the derivative with respect to the external potential: ∂βU/∂βeφext =
∑

zi = Z
and inserting into eq 9 we arrive at the following relationship which shows that C in
fact is a capacitance,

− ∂ 〈Z〉
∂βeφext

=
〈
Z2
〉
− 〈Z〉2 = C. (11)

This is a general result from linear response theory[11] and states that the response
function for a small perturbation is related to spontaneous equilibrium fluctuations.
This interesting outcome provides a theoretical basis for the charge regulation mecha-
nism as studied in several of the included papers. The relation can be further expanded
by realizing that each site in the protein is affected not only by the local electrostatic
environment, but also there is a contribution from the intrinsic pK0-value as discussed
earlier. Viewing this as an external potential, Eq. 10 can be rewritten into,

βU =
∑

i

βezi [φi + ln 10(pH − pK0)] (12)

and performing the above analysis once again we get that,

C = − ln 10
∂Z

∂pH
. (13)

There are a number of observations related to charge fluctuations:

• C is an intrinsic protein property in league with the total charge and the dipole
moment.

• C is a function of the solution conditions as well as protein structure and sequence.

• C can be used to estimate intermolecular interactions. More on this in Sec-
tion 2.4.1.

• Knowing C we can estimate how an external potential (another protein, DNA
etc.) influences the protonation state of the protein. i.e. we can calculate the
induced charge.

• C can be measured experimentally as the derivative of the protein titration curve.

[11] D. A. McQuarrie. Statistical Mechanics. Harper Collins, New York, 1976.
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The fluctuation ability for a single titratable site peaks when pH=pKa and hence
the overall capacitance increases when many of such sites are present in the protein.
For example, in hisactophilin 26% of the residues are histidines (pKhis ∼ 6.3) resulting
in a capacitance maximum close to pH 7 as seen in the top-right figure on page 56.
This particular example is unusual as the capacitance for most proteins peaks at high
and low pH, corresponding to a majority of basic and acidic groups.

2 Interactions in the condensed phase

2.1 Effective Potentials

As we have just seen, proteins are complex molecules with a multitude of charge dislo-
cations and they can even exist in many protonation states depending on the solution
conditions. Still, interactions with and within proteins can be quantified using classical
(as in non-quantum) methods for small molecules and colloids. One obvious but impor-
tant feature of an aqueous solution is that the particle density is high; the concentration
of water in water is roughly 55 mol/l and we can expect this to significantly influence
any interaction taking place. From a computational point of view this is challenging
as one must consider thousands of solvent molecules and their mutual interactions
throughout coordinate space. This is manageable by “averaging out” some variables,
leaving us with effective potentials that have the characteristics of free energies and
can be derived in a step wise manner,

βA(xn−1) = − ln

∫
e−βU(xn)dxn

βA(xn−2) = − ln

∫
e−βU(xn)dxndxn−1

= − ln

∫
e−βA(xn−1)dxn−1

For example, for polar fluids structural degrees of freedom can be integrated out to
reduce the effect of the enormous number of solvent molecules to a single, macroscopic
number, namely the relative dielectric constant, εr. Very appropriately, the solvent is
now referred to as a dielectric continuum, indicating that structural detail is nonexis-
tent. The (effective) interaction energy between two charges, i and j in the solution is
now given by Coulombs law, reduced by a factor of 1/εr:

〈βwij〉solv ≈
1

εr

qiqj

4πε0rijkT
=

lBzizj

rij

(14)

In a similar fashion we can average over salt particles (Figure 7) so as to arrive at the
classic Debye-Hückel result[12],

〈βwij〉solv,salt ≈
lBzizj

rij

e−κrij (15)

where the inverse Debye screening length, κ is proportional to the square root of the
ionic strength. Equations 14 and 15 are valid for spherical symmetric charges, but for

[12] P. Debye and E. Huckel. Z. Physik, 24:185, 1923.
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dipolar molecules – such as proteins – angular averaging produces additional terms –
dipole-dipole interactions for example:〈

βwdip−dip
ij

〉
solv,angles

≈ −(lBµiµj)
2

3r6
ij

(16)

Deriving such expressions, assumptions and mathematical approximations are almost
always applied which of course has consequences. For example, in the Debye-Hückel
theory correlations between ions are partly neglected and unphysical results usually
appear for strongly coupled systems. At a later stage I will go into further detail about
multipole expansions, but at this point it suffices to say that effective potentials reduce
computational costs significantly – usually at the expense of molecular detail.

A somewhat camouflaged feature of effective potentials is that they are tempera-
ture dependent. For example, in the expression for the solvent screened potential εr

really should be εr(T ) but is seldom written so. This has some counter-intuitive con-
sequences and for example, in water the interaction energy between two like charged
ions is attractive according to the dielectric continuum model[13]. Within the primitive
model it is possible to perform a simple partition of the potential of mean force into
contributions from energy and entropy (see bottom-left figure on page 46, Paper 1) but
to obtain the true system energy, including the solvent, a more subtle approach must
be taken. This is given in paper 6 where we show that the driving force behind ion-ion
correlations in fact stems from entropy and not energy as has been argued for more
than twenty years.
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Figure 7: Simplifying an aqueous protein solution using statistical mechanical averaging
results in faster and faster calculations.

2.2 The Simple Model of Electrolytes

We have now seen how molecular detail can be implicitly encompassed in effective po-
tentials. Many classical theories for electrolyte solutions are based on the dielectric as-
sumption – i.e. that charge-charge interactions can be quantified by a solvent screened

[13] D. F. Evans and H. Wennerström. The Colloidal Domain - Where Physics, Chemistry, Biology
and Technology Meet. VCH Publishers, New York, 1994.
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Coulomb potential (eq 14). In this description solutes such as ions and molecules must
be explicitly accounted for, while the solvent is an “invisible” continuum. It is clear
that any solute will occupy a volume inaccessible to other solutes and for ions and
other small molecules this volume can be fitted well using non-overlapping (charged)
spheres of diameter σ. This is achieved by the following conditional pair-potential,

βwij =

{
lBzizj

rij
rij ≥ (σi + σj)/2

+∞ rij < (σi + σj)/2
, (17)

known as the “simple model of electrolytes”. Larger, more complex molecules can be
constructed by collections of spheres using various levels of coarse graining (Figure 2,
page 13). The predictive success of this simple model has been proven in numerous
applications, including the well-known Debye-Hückel theory for determining excess
chemical potentials5. For concentrated systems or when multivalent ions are present the
DH theory becomes less applicable but this is not due to the dielectric assumption but
rather connected with the underlying approximations. Using explicit ion Monte Carlo
simulations combined with a particle insertion method[14,15], ion activity coefficients
can be estimated up to molar concentrations. This is illustrated in Table 2 where
we have calculated mean activity coefficients for salts in sea water solutions[16,17,18].
Note that this is a concentrated (I ≈ 0.8 mol/l), multicomponent system consisting of
several ions: Na+, K+, Mg2+, Ca2+, Cl− and SO2−

4 . Despite this complexity, excellent
agreement is found with experimental data.

salt T (K) S (‰) γExp. γMC γPitzer

Na2SO4 298 35 0.374±0.016 0.374 0.364
25 0.405±0.016 0.399 0.394
15 0.435±0.016 0.445 0.444
5 0.620±0.016 0.560 0.564

288 35 0.385±0.016 0.381 0.369
K2SO4 298 35 0.352±0.018 0.360 0.344
NaCl 298 35 0.672±0.007 0.664 0.667

15 0.730±0.001 0.699 0.709
KCl 298 35 0.645±0.008 0.645 0.639
CaSO4 298 35 0.136 0.152 0.150
s 0.023 0.021

Table 2: Mean activity coefficients in sea water measured and calculated using MC simulations
and the semi-empirical Pitzer model[17,18]. S is the salinity.

This success is in part due to the fact that we have fine tuned ionic sizes to experi-
mental data for single electrolyte systems – NaCl, KCl etc. In principle the ion radius

5Extended DH: − ln γ = lBκz2

2(1+κσ)

[14] B. Widom. Some topics in the theory of fluids. J. Chem. Phys., 39:2808–2812, 1963.
[15] B. R. Svensson and C. E. Woodward. Molec. Phys., 64:247, 1988.
[16] M. Lund, B. Jönsson, and T. Pedersen. Activity coefficients in sea water using monte carlo

simulations. Marine Chemistry, 80:95–101, 2003.
[17] K.S. Pitzer. Thermodynamics of electrolytes. 1. theoretical basis and general eq uations. J.

Phys. Chem., 77:268–277, 1973.
[18] K.S. Pitzer, editor. Activity coefficients in electrolyte solutions, chapter 6. CRC-Press, 2 edition,

1991.

21



should reflect the size of the hydrated ion and this is also the trend found when fitting
to experimental data (Table 3) but most likely it will also cover model deficiencies
such as a possible breakdown of the continuum assumption at short separations. In
addition, ions are not hard and the Pauli repulsion could be better described using a
smooth function. Finally, we have neglected dispersion interactions that – for certain
ions – can be significant; the Hofmeister series is a good example[19,20]. Still, Table 2 in-
deed is encouraging and illustrates well a practical application of the continuum model,
providing clear physical insight with a minimal set of operational parameters.

rmc rstokes rcryst

Na+ 1.8 1.8 1.2
K+ 1.5 1.3 1.5
Mg2+ 3.0 3.5 0.7
Ca2+ 2.8 3.1 1.1
Cl− 1.7 1.2 1.7
SO2−

4 1.6 2.3 2.4
NH+

4 1.5
H+ 2.5

Table 3: Hard-sphere radii of individual ions fitted to experimental data for a single simple
salt.

2.3 Dielectric Boundaries

Averaging out solvent degrees of freedom can drastically reduce the complexity when
simulating liquids. However, this continuum approach brings about another concern:
The deep interior of proteins consists mainly of non-polar matter, while the surround-
ing solvent is highly polar. The effect of this can be captured by solving the Poisson(-
Boltzmann) equation taking into account the dielectric boundary between the low and
high dielectric regions. However, this boundary is not well defined nor sharp; surface
groups of water soluble proteins are partially charged, polar and polarizable, stemming
from proton fluctuations, structural flexibility of amino acid side chains and backbone
dipole moments. Further, since the dielectric constant is a macroscopic property influ-
enced by distant molecules, setting up boundaries within a few nanometers may push
the model too far. Note that it is not uncommon (in fact it is normal) to include
charges in the low dielectric protein interior even though the Born energy suggests
costs of ∼10-100 kT per charge relative to positions just a few Ångströms away. This
is typically remedied by partly solvating charges using surface accessible areas and by
doing so good agreement can be obtained with experimental data for properties such
as side-chain pKa-values and overall titration behavior.

The above complications suggest a different and simpler approach. If we can prove
that surface charges are established in regions with a relatively high dielectric response,
electrostatic interactions between them can be conveniently estimated using a uniform

[19] F. W. Tavares, D. Bratko, and J. M. Prausnitz. The role of salt-macroion van der waals
interactions in the colloid-colloid potential of mean force. Current Opinion in Colloid & Interface
Science, 9(1-2):81–86, 2004.

[20] M. Bostrom, F.W. Tavares, D. Bratko, and B.W. Ninham. Specific ion effects in solutions of
globular proteins: Comparison between analytical models and simulation. Journal of Physical
Chemistry B, 109(51):24489–24494, 2005.
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dielectric constant equal to that of water. Mathematically, this is trivial as the pair
interaction between any two charges will be of the type shown in eq 14 and hence,
many-particle systems can be studied relatively easily. Using this approach a number
of researchers[21,22,23,24,25,9] have obtained good agreement with experimental data – even
though effects from the low dielectric interior have been ignored. This indicates that the
uniform dielectric approximation is suitable for the overall electrostatic environment
but may become less applicable for deeply buried charges. In Paper 5 we embedded a
low dielectric sphere in a protein (illustrated on page 75) and studied how this affected
the protonation behavior of several proteins. Electrostatic pair potentials must now
include a truncated Legendre polynomial as derived in Appendix A and as such is not
as easily handled as in the uniform dielectric model.

2.4 Two-body Interactions

For molecules in solution it is convenient to create an effective pair-potential averaged
over all degrees of freedom save the distance between them. For two proteins this is an
involved computation as the average is over all salt and solvent positions and orienta-
tions, protonation states and inter-protein orientations. This potential of mean force,
w(R) can be obtained theoretically and experimentally using scattering techniques.
The interaction free energy is directly related to the probability of finding the two
molecules at a certain separation,

βw(R) = − ln g(R) = − ln
ρ(R)

ρbulk

(18)

where ρ is the particle density, g(R) is the radial distribution function. Although
possible, the latter microscopic property is difficult to obtain experimentally and further
averaging is often required for proteins. Since w(R) implicitly incorporates the effects
from the liquid surroundings we can – assuming a low protein concentration – express
the interaction using the virial expansion for an imperfect gas[26]. The effective second
virial coefficient is thus given by,

B2 = −2π

∫ ∞

0

(
e−βw(R) − 1

)
R2dR (19)

[21] A. Warshel, S. T. Russel, and A. K. Churg. Macroscopic models for studies of electrostatic
interactions in proteins: Limitations and applicability. Proc. Natl. Acad. Sci. USA, 81:4785–
4789, 1984.

[22] T. Kesvatera, B. Jönsson, E. Thulin, and S. Linse. Binding of Ca2+ to Calbindin D9k: Structural
Stability and Function at High Salt Concentration. Biochemistry, 33:14170–14176, 1994.

[23] E. Demchuk and C. Wade. Improving the continuum dielectric approach to calculating pKa’s of
ionizable groups in proteins. J. Phys. Chem., 100:17373–17387, 1996.

[24] T. Kesvatera, B. Jönsson, E. Thulin, and S. Linse. Measurement and modelling of sequence-
specific pKa values of calbindin D9k. J. Mol. Biol., 259:828, 1996.

[25] R. Penfold, J. Warwicker, and B. Jönsson. Electrostatic models for calcium binding proteins. J.
Phys. Chem. B, 102:8599–8610, 1998.

[9] T. Kesvatera, B. Jönsson, E. Thulin, and S. Linse. Ionization behaviour of acidic residues in
calbindin D9k. Proteins, 37:106–115, 1999.

[26] T. L. Hill. An Introduction to Statistical Thermodynamics. Dover Publications Inc., New York,
1986.
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which is a macroscopic entity6 readily obtainable via various techniques[27,28]. If posi-
tive, B2 indicates that repulsive interactions dominate and if negative the net-effect is
an attraction. In fact, it has been observed[29] that if a protein’s B2 is within a certain
range – the so-called crystallization window – the protein is likely to form crystals.
When even more negative, amorphous aggregates are built.

At this stage it is pertinent to point out that B2 does not depend on the protein
concentration as it accounts for the interaction between two molecules only. Many
body effects in more dense protein solutions are captured by higher order virials even
though these are sometimes incorporated into the second virial[30] in an attempt to
better conform with experimental conditions.

2.4.1 Multipole Expansion

A protein can be viewed as a set of spatially distributed charges defined by [ri, zi] where
ri defines the vector from the center-of-mass to the charge, zi. The potential of mean
force between two such charge distributions (Figure 8) can be evaluated in a multipole
expansion where one averages over all possible angular orientations and protonation
states. This is shown for the salt-free case on page 49 (Paper 2) and the resulting
interaction free energy becomes,

βw(R) ≈

Ion−ion︷ ︸︸ ︷
lBZaZb

R
−

Ion−induced︷ ︸︸ ︷
l2B

2R2

(
Z2

aCb + Z2
b Ca

)
−

Induced︷ ︸︸ ︷
l2BCaCb

2R2

− l2B
6R4

(
Z2

aµ
2
b + Z2

b µ
2
a

)︸ ︷︷ ︸
Ion−dipole

− (lBµaµb)
2

3R6︸ ︷︷ ︸
Dipole−dipole

+ . . . (20)

where we identify the familiar intrinsic protein properties, Z = 〈
∑

zi〉, µ = 〈|
∑

rizi|〉
and C = 〈Z2〉 − 〈Z〉2. The induced terms are often left out under the assumption
that the molecular charge state is constant – i.e. that 〈Z2〉 = 〈Z〉2. For proteins this
is of course not the case, which was recognized by Kirkwood and Shumaker[31] and
also by Phillies[32]. However, they did not interrelate charge fluctuations and the pro-
tein titration curve (eq 11) and so had little means of quantifying the fluctuation term.

6Note the dimension of volume which is commonly converted into ml·mol/g2 by the factor NAvM−2
w

or to a unit-less entity by division with the hard-core term, Bhc
2 = 2πσ3

3 where σ is the distance of
closest approach.

[27] O. D. Velev, E. W. Kaler, and A. M. Lenhoff. Protein interactions in solution characterized
by light and neutron scattering: Comparison of lysozyme and chymotrypsinogen. Biophys. J.,
75:2682–2697, 1998.

[28] J. Bloustine, V. Berejnov, and S. Fraden. Measurements of Protein-Protein Interactions by Size
Exclusion Chromatography. Biophys. J., 85(4):2619–2623, 2003.

[29] A. George and W. W. Wilson. Predicting protein crystallization from a dilute solution theory.
Acta Cryst., D50:361–365, 1994.

[30] S.R. McGuffee and A.H. Elcock. Atomically Detailed Simulations of Concentrated Protein
Solutions: The Effects of Salt, pH, Point Mutations, and Protein Concentration in Simulations
of 1000-Molecule Systems. Journal of the American Chemical Society, 128(37):12098–12110,
2006.

[31] J. G. Kirkwood and J. B. Shumaker. Forces between protein molecules in solution arising from
fluctuations in proton charge and configuration. Proceedings of the National Academy of Sciences,
38:863–871, 1952.

[32] G. D. Phillies. Excess chemical potential of dilute solutions of spherical polyelectrolytes. J.
Chem. Phys., 60:2721–2731, 1974.

24



St̊ahlberg and Jönsson[33,34], however, showed that the charge regulation interaction be-
tween a protein and a charged surface is controlled by the slope of the protein titration
curve, i.e dZ/dpH. The range of interaction for the multipole terms in eq 20 becomes
increasingly short ranged for higher order terms and we note that the ion-induced and
induced-induced interactions are more long ranged than both ion-dipole and dipole-
dipole interactions. This is important for the solution stability since the contribution
to virial coefficients and binding constants can be significant as long ranged, attractive
interactions are favored c.f. eq 19.

The multipole expansion shown is valid in the limit of no or very little salt. Rather
often we need to go beyond this limitation and can proceed in at least two ways:
the correct way or the not-completely-wrong way! Phillies[32] and Bratko et al.[35]

made a rigorous analysis of the interaction between two charged, low dielectric charge
distributions in a high dielectric salt solution at the Debye-Hückel level. This takes
into account the salt-excluded volume taken up by the macromolecules and is similar
to the Tanford-Kirkwood model[36], but for two spheres instead of one. The superficial
alternative is to argue in terms of salt screened potentials which will immediately yield
an approximate solution. For example, regarding protein a as a fluctuating monopole
interacting with some potential, φb generated by another protein, b, the energy is eZaφb

and we get that,

βw = − ln
〈
e−βU

〉
≈ β 〈U〉 − β2

2

[〈
U2
〉
− 〈U〉2

]
≈ βeφb 〈Za〉 −

(βeφb)
2

2

[〈
Z2

a

〉
− 〈Za〉2

]
Thus applying a Debye-Hückel potential, βeφb = lBZb

R(1+κa)
e−κ(R−a) we get the following,

βw(R) =

Ion−ion︷ ︸︸ ︷
lBZaZb

R
· e−κ(R−a)

(1 + κa)
−

Ion−induced︷ ︸︸ ︷
l2BZ2

b Ca

2R2
· e−2κ(R−a)

(1 + κa)2 . (21)

In this context the size parameter, a defines the closest distance between the “central-
ion” (protein b) and surrounding ions which is approximately the protein radius. How-
ever, salt-exclusion is not considered for the fluctuating monopole and as such a is
arguably best treated as an adjustable parameter. This approximate procedure is
equivalent to the analysis made in Paper 3 (see page 57) for the interaction between
a protein and a charged surface. Qualitatively, no difference was seen between these
estimates and explicit MC simulations. Equation 21 can be more thoroughly tested
by comparison with a potential of mean force as simulated using explicit mobile ions.
This is shown for the ion-ion term in Figure 12 on page 31 where it is found that
the best agreement between theory and exact numerical simulations is obtained when

[33] J. St̊ahlberg, U. Appelgren, and B. Jönsson. J. Coll. Inteface Sci., 176:397–407, 1995.
[34] J. St̊ahlberg and B. Jönsson. Anal. Chem., 68:1536–1544, 1996.
[32] G. D. Phillies. Excess chemical potential of dilute solutions of spherical polyelectrolytes. J.

Chem. Phys., 60:2721–2731, 1974.
[35] D. Bratko, A. Striolo, J. Z. Wu, H. W. Blanch, and J. M. Prausnitz. Orientation-averaged pair

potentials between dipolar proteins or colloids. J. Phys. Chem., 106:2714–2720, 2002.
[36] C. Tanford and J. G. Kirkwood. Theory of protein titration curves. I. General equations for

impenetrable spheres. J. Am. Chem. Soc., 79:5333, 1957.
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a ' σmacroion/2. Similarly in Paper 2 (top right figure on page 53) we compared the
ion-induced term with results obtained from detailed MC simulations of the lysozyme-
calbindin interaction. Again, the multipole expansion seems to capture the electrostatic
interaction remarkably well.

This success is in a way surprising, since that in the multipole expansion we assume
that −1 < βU 5 1 and thus, for highly coupled systems this approach is expected to
become less applicable. To get around this problem one needs to perform the average
without the above mentioned assumption7 so as to account for specific coupling between
the multipole terms. This has been examined by Bratko et al.[35] who showed that this
coupling reduces the dipolar terms, compared with independent averaging as outlined
here. However, in this work they exemplified the theory using a dipole moment of 400
Debye and a radius of 10 or 20 Å which for real proteins may be a bit drastic; for more
moderate conditions the coupling effect is less dramatic.

Figure 8: Two interacting, non-overlapping charge distributions.

2.4.2 Protein-Protein Interactions

We have now seen how electrostatic two-body interactions can be approximated by
a multipole expansion. However, proteins are not idealized spheres and a number of
other mechanisms may come into play,

• Hydrophobic effects.

• Molecular crowding.

• Non-spherical surface topology.

• van der Waals interactions.

Hydrophobicity. The concept “hydrophobic effect” is loosely formulated but shall
in this context be used to cover attractive interactions related to correlations between
non-hydrophilic surface groups on two interacting proteins. The origin is intimately
connected with solvent-solvent and solvent-solute interactions[13,37] and as such difficult
to capture within a continuum model. One possible way to incorporate hydrophobic

7That is eq 1 → 2 in Paper 2.

[13] D. F. Evans and H. Wennerström. The Colloidal Domain - Where Physics, Chemistry, Biology
and Technology Meet. VCH Publishers, New York, 1994.

[37] J. Forsman, B. Jönsson, and C. E. Woodward. Computer simulations of water between hy-
drophobic surfaces: the hydrophobic force. J. Phys. Chem., 100:15005, 1996.
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Figure 9: Calbindin represented using the amino acid model with its two strands marked
as red (1-45) and blue (46-75), respectively. Left: the X-ray structure of intact calbindin.
Right: dominant close-contact configuration obtained from a Monte Carlo simulation of the
two fragments (pH 7 and low salt).

interactions will be to specify an effective, short ranged pair-potential between suppos-
edly non-polar residues in the proteins. The choice of such a potential is not obvious
and ideally it should capture the effect of salt which is known to enhance hydrophobic
interactions[38,39]. Throughout this work we have assumed that hydrophobic interac-
tions are of minor importance for hydrophilic, charged proteins[40]. However, we have
made a few preliminary investigations of the association of cleaved calbindin, where hy-
drophobic residues are exposed to the solvent. To capture the hydrophobic attraction
we have invoked a −1/r9 potential between non-polar sites (approx. 1 kT at contact).
As shown in Figure 9 the two fragments come together in a configuration very close to
the original structure.

Another interesting and possibly related feature is that interactions between certain
proteins, often with hydrophobic surface “patches”, are known to be influenced by the
type of salt, following a Hofmeister series[41].

Crowding. Proteins in the living cell are under the influence of other intra-cellular
solutes which may take up as much as 40% of the available volume[42,43] and will
inevitably have an impact upon inter-molecular interactions. To a first approximation
we will assume that the extra solutes, or crowding agents, are neutral and that their
contribution will be a volume excluding effect only. As seen in Figure 10, by increasing
the volume fraction of the crowding agent, the attraction between oppositely charged
macroions is increased and at dense conditions structural oscillations appear. Since
the crowding causes further population of close-contact configurations this may impact
dipolar correlations as well as interactions related to surface complimentarity. We could

[38] R. A. Curtis, C. Steinbrecher, M. Heinemann, H. W. Blanch, and J. M. Prausnitz. Hydrophobic
forces between protein molecules in aqueous solutions of concentrated electrolyte. Biophysical
Chemistry, 98(3):249–265, 2002.

[39] M. Jönsson, M. Skepö, and P. Linse. Monte carlo simulations of the hydrophobic effect in aqueous
electrolyte solutions. Journal of Physical Chemistry B, 110(17):8782–8788, 2006.

[40] J. Dzubiella and J. P. Hansen. Reduction of the hydrophobic attraction between charged solutes
in water. J. Chem. Phys., 119:12049, 2003.

[41] M. Boström, D. R. M. Williams, and B. W. Ninham. Specific ion effects: Why the properties of
lysozyme in salt solutions follow a hofmeister series. Biophys. J., 85:686–694, 2003.

[42] A P Minton. The effect of volume occupancy upon the thermodynamic activity of proteins: some
biochemical consequences. Mol Cell Biochem, 55(2):119–40, 1983.

[43] R J Ellis. Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci,
26(10):597–604, 2001.
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Figure 10: MC simulation of the interaction free energy between two charged spheres, a and
b of opposite charge (Za=+5, Zb = −5, σ=30 Å) in the presence of n spherical crowding
agents of radius r. No salt added.

also imagine charged or dipolar crowding agents – the list can be made long – which
could bring about further mechanisms. But this is for another research project and we
will now leave molecular crowding altogether and consider protein-protein interactions
under more idealized conditions.

Topology. Proteins come in many shapes and their space filling properties will influ-
ence interactions with the solvent as well as other solutes. In particular, the effective
interaction between two proteins involves an angular average and the surface topology
here contributes with a non-symmetric, repulsive interaction. For small nearly spher-
ical molecules the interaction range is relatively short, whereas for elongated proteins
it will decay more slowly. Figure 11 illustrates how overlapping configurations create a
repulsion that fades out only after 6 nm. In this particular example we have used the
very elongated protein, “fab”.

van der Waals. In this context van der Waals interactions is the combined contribu-
tion from dispersion-, averaged electronic dipole- and induced dipole interactions. For
atoms or small molecules this attractive interaction decays as 1/r6 but when added
up for large spheres the decay varies approximately as 1/r[44]. The latter is uti-
lized in the DLVO theory traditionally used for colloids but has also been applied
for proteins[45]. This assumes a spherical symmetric molecule and as just seen, this
is not always a good approximation. The natural extension is to use the amino acid
model (see Figure 2) and apply an attractive potential between the residues. As the
individual amino acids are treated as relatively small spheres we assume a potential of
the type βuvdW = −CvdW /r6. The constant, CvdW , depends on the solvent as well as

[44] J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press, London, UK., 2nd
edition, 1992.

[45] Martin Muschol and Franz Rosenberger. Interactions in undersaturated and supersaturated
lysozyme solutions: Static and dynamic light scattering results. The Journal of Chemical Physics,
103(24):10424–10432, 1995.
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Figure 11: The interaction between two neutral fab molecules (pH=pI) with and without
attractive van der Waals interactions.

other solutes[46] and its numeric value is naturally up for discussion. In this work we
have generally chosen a value of CvdW =25000 Å6 which, for two normal sized residues,
corresponds to an interaction strength of ∼ 0.2 kT at contact – see Appendix C.

that for most proteins are in the range 3-10 kT . For example, Returning to the
“fab” example in Figure 11 it is seen that van der Waals interactions can significantly
reduce the overlap repulsion, mainly due to a large contact area as also indicated by
the reduction in the closest protein-protein separation.

Dispersion interactions between ions and the macromolecules can also be important;
it is well known that protein aggregation is influenced not only by ion valency and
concentration, but also by the type of ion. In a crystallographic context this is exploited
when producing protein crystals. This ion-specificity is believed to be connected to the
polarizability of ions, the solvent and the macromolecules as discussed by a number of
workers[19,20,47].

3 Monte Carlo Simulation

Throughout this text a not too small number of multidimensional integrals are listed
and their solutions can be found only through numerical integration. This can be
performed in various ways – Monte Carlo simulation8 being one of them.

8All simulations in this thesis have been performed using a personal MC simulation suite written
in C++. See Appendix B. Interested readers are welcome to contact the author.

[46] R.R. Netz. Static van der waals interactions in electrolytes. Eur. Phys. J. E, 5:189—205, 2001.
[19] F. W. Tavares, D. Bratko, and J. M. Prausnitz. The role of salt-macroion van der waals

interactions in the colloid-colloid potential of mean force. Current Opinion in Colloid & Interface
Science, 9(1-2):81–86, 2004.

[20] M. Bostrom, F.W. Tavares, D. Bratko, and B.W. Ninham. Specific ion effects in solutions of
globular proteins: Comparison between analytical models and simulation. Journal of Physical
Chemistry B, 109(51):24489–24494, 2005.

[47] L. Vrbka, P. Jungwirth, P. Bauduin, Touraud D., and Kunz W. Specific ion effects at protein
surfaces: A molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish
peroxidase in selected salt solutions. J. Phys. Chem. B, 110:7036–7043, 2006.
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Taking a thermal average9 of an observable, x,

〈x〉 =

∫
xe−U(RN/kT )dRN∫
e−U(RN/kT )dRN

(22)

we see that the Boltzmann factor favors low energy configurations, whereas high energy
states contribute with ' 0. Therefore, if we were to integrate through all of coordinate
space a large part of this effort would be spend by adding zeros. To perform the
integration more efficiently Metropolis et al.[48] developed the Monte Carlo method
where non-zero configurations are sampled more frequently. I will not describe this
algorithm in great detail and the reader may instead consult standard text-books on
computer simulations[49,50]. For the canonical ensemble the procedure is as follows:

1. Generate a new, random configuration.

2. Calculate the energy difference, ∆U between the new- and old configuration.

3. If the energy is lowered accept the new configuration and start over from (1).

4. If the energy increases accept the configuration with the probability exp(−β∆U).

5. If rejected, restore the old configuration.

6. Go back to (1).

In this importance sampling10 scheme configurations of low energy are sought out by
staying in the neighborhood of other low-energy states. Averages can now be sampled
directly as 〈x〉 =

∑n
i xi/n since the probabilities of the n-generated configurations

already follow a Boltzmann distribution according to the acceptance rule.
In a normal MC simulation (run within a reasonable amount of time) coordinate

space will be truncated and the statistical basis of high energy configurations will be
poorer than those of low energy. If sufficiently large energy differences divide regions
in configurational space there is a risk that the simulation gets “stuck” in a local
minimum. As a rule, differences of ∼ 10kT is manageable but hereafter it can be
necessary to divide the simulation into two or more regions and combine the results
afterwards. This is known as “umbrella sampling”[49] and one example of its usefulness
is when simulating the interaction between two strongly interacting aggregates. The

9The average is really over all particle positions and momenta and the Hamiltonian is of the form
U = Upot(RN )+Ukin(pN ). The kinetic part can be solved analytically and appears only as a pre-factor
and hence has no influence on static properties.

10Here is a rather silly example: Suppose I want to count all pigs in Denmark, I could visit each and
every home and ask “How many pigs do you have?”. Starting out from my home in Copenhagen, most
of the answers would (conceivably) be “none”. However, I eventually reach more rural regions and
indeed find a pig. Proceeding to a random neighbor to the pig-owner I get “none” and therefore return
to the previous location, since I had so good luck there. In this manner, the counting is intensified in
regions with many pigs, while pig-less areas are visited more sporadically.

[48] N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller. Equation of
state calculations by fast computing machines. J. Chem. Phys., 21:1087–1097, 1953.

[49] D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, San Diego,
1996.

[50] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press,
Oxford, 1989.

[49] D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, San Diego,
1996.
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majority of the generated configurations will be in the deep minima at close contact,
neglecting the more long ranged interactions. We can circumvent this by running
a number of simulations, each restricted to ranges of the inter-molecular separation.
An advantageous feature of this approach is that the division into several simulations
allows for efficient computational parallelization.

3.1 Boundaries

Due to computational limitations a simulation can include only a limited volume of a
macroscopic system – typically a small box or spherical cell, hopefully representative for
the system of interest. The boundary of this container is artificial in that the particle
density here goes from a finite number to zero. In box simulations, this can be partly
remedied by implementing periodic boundaries and the minimum image convention[50].
This, however, is not so easily done in a cell model[51] but staying at a “safe” distance
from the boundary this rarely becomes a problem. Figure 12 shows a calculation of the
potential of mean force between two charged aggregates in the presence of salt. For
inter-aggregate separations, R, below the cell radius the agreement with the Debye-
Hückel result (eq 21) is excellent but beyond, the results are doubtful. When the
charged spheres approach the cell boundary they loose counter ion stabilization as no
ions are allowed outside the hard, impenetrable cell wall. The shown example contains
relatively little salt (10 mM) but further addition will screen electrostatic interactions
and hence reduce effects from the boundary. In turn this means that the cell size can
be reduced so as to decrease the computational load.

0 50 100 150 200
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βw
(R

)

MC
Debye-HückelParticle

collision
Cell boundary

Cell radius

Figure 12: The potential of mean force between two like charged spheres (Z=5, σ=30 Å) in
an aqueous solution with 10 mM 1:1 salt. The Debye-Hückel result is calculated using the
ion-ion term from eq 21 with 1/κ=30 Å and a set to 15 Å. The MC simulation is performed
in a spherical cell with hard boundaries and a radius of 100 Å together with 26 explicit 1:1
ion pairs as well as counter ions.

[50] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press,
Oxford, 1989.

[51] R. A. Marcus. Titration of polyelectrolytes at higher ionic strengths. J. Phys. Chem., 58:621–
623, 1954. delta-pK from nearest neighbour interactions, Bragg-Williams and Ising.
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3.2 pH Titration

In section 1.4 we used thermodynamic arguments to derive the free energy difference
upon deprotonisation of a titratable group. This can be transformed into a MC move[52]

where we will randomly pick a titratable group and try to move its proton to a random
site in the bulk. According to eq 5 the energy difference for such a move has two
contributions,

∆U = ∆U el
HA→A− − ln 10(pH − pKa) (23)

where ∆U el is the electrostatic part and pH−pKa accounts for chemical effects captured
implicitly by the experimental dissociation constant, determined under ideal conditions.
For the protonation process we then have

∆U = ∆U el
A−→AH + ln 10(pH − pKa). (24)

Of special note is that the calculated electrostatic energy will take in the interaction of
the proton and hence pH should not contain γH+ and is therefore – formally incorrect
– defined as − log CH+ . Since γH+ is a function of the distance from the charged
macromolecule, this implies that at constant “pH” the total chemical potential for
protons cannot be constant throughout the simulation cell. While this non-equilibrium
situation is problematic, the effect is diminished for 1) low protein concentrations, 2)
high salt concentrations, and 3) low protein charge. Recently Labbez and Jönsson[53]

proposed a modified scheme that remedies this and showed that this correction can be
important for highly charged systems, such as mineral surfaces.

[52] M. Ullner, B. Jönsson, and P.-O. Widmark. Conformational properties and apparent dissociation
constants of titrating polyelectrolytes: Monte Carlo simulation and scaling arguments. J. Chem.
Phys., 100:3365–3366, 1994.

[53] C. Labbez and B. Jönsson. A New Monte Carlo Method for the Titration of Molecules and
Minerals. Submitted, 2006.
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A Charges Outside a Low Dielectric Sphere

We consider a neutral sphere with the dielectric constant εi and radius a in a dielectric
solvent, εo and stride to calculate the potential φ(r) due to a charge, q located at r0 in
the solvent. Origo is chosen to coincide with the center of the sphere.

The potential inside and outside the sphere must satisfy the Laplace and the Poisson
equation, respectively.

∇2φi = 0 (25)

∇2φo = ρδ (r0 − r) /εo (26)

In our case of spherical symmetry, the general solution to the Laplace equation can be
written as,

φL =
∞∑

n=0

(
Anr

n +
Bn

rn+1

)
Pn (cos θ) (27)

where Pn is the n’th order Legendre polynomial and θ is the angle between r0 and r.
At the surface (r = a) the potential must be continuous while the field will experience
a discontinuity. At large separation the potential must approach zero, which leads to
the following boundary conditions:

φi(r = 0) 6= ∞ (28)

φo(r →∞) = 0 (29)

φi(r = a) = φo(r = a) (30)

εi
∂φi(r = a)

∂r
= εo

∂φo(r = a)

∂r
(31)

One particular solution that satisfies the Poisson equation - but not the boundary
conditions - is the Coulomb potential,

φc =
q

εo|r0 − r|
=

∞∑
n=0

(
r

r0

)n

· q

εor0

Pn(cos θ) (32)

here re-written using a binomial expansion11 that completely converges for r0 > r. To
match the boundary conditions for φo we add to the Coulomb potential a solution to
the Laplace equation (which is perfectly OK, since ∇2φL = 0) and we can now write
the potentials as,

φi =
∞∑

n=0

Anr
nPn(cos θ) (33)

φo =
∞∑

n=0

(
qrn

εor
n+1
0

+
Bn

rn+1

)
Pn(cos θ) (34)

where we have exploited the first two boundary conditions. Next, the potentials and
fields are equated at r = a, yielding

An =
q

εor
n+1
0

(
1 +

εo − εi

εi + εo(1 + 1/n)

)
(35)

Bn =
qa2n+1

εor
n+1
0

(
εo − εi

εi + εo (1 + 1/n)

)
(36)

11The Legendre form is convenient when matching the boundary conditions. See Böttcher p25.[54]
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valid for r0 > a and n 6= 0. The n = 0 term has to be dealt with separately and one
easily finds that A0 = q/(εor0) and B0 = 0.

Remembering that the expanded form of the Coulomb potential is no longer needed
and that - until now - all 4πε factors have been omitted, we arrive at

φi =
q

4πεεo

(
1

r0

+
∞∑

n=1

rnPn(cos θ)

rn+1
0

(1 + ζ)

)

=
q

4πεεo

(
1

|r0 − r|
+

∞∑
n=1

rnPn(cos θ)

rn+1
0

ζ

)

φo =
q

4πεεo

(
1

|r0 − r|
+

∞∑
n=1

a2n+1Pn(cos θ)

(r0r)
n+1 ζ

)

where ζ = εo−εi

εi+εo(1+1/n)
. The scribbles in Figure 13 outline a similar analysis, but with

the charge placed inside the sphere.
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Figure 13: Derivation of the case of a charge located inside the sphere.
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B Object Oriented Programming

The purpose of this appendix is to illustrate some of the advantages offered by an object
oriented programming language, here exemplified using C++. Writing a new computer
simulation program is routinely trivial in the sense that most of the (well tested) code
is available in existing programs. Access to this older code base can be more or less
convenient, but is often simply copied into the new program, i.e. in a “quick-and-dirty”
manner. In the following example for handling particles I will demonstrate a different
approach where data and functions (methods) are abstracted from the main program
and can be directly re-used in other applications.

#include <iostream>
#include <cmath>
using namespace std ;

class point {
public :
double x , y , z ;
double s qd i s t ( po int &a ) {

double dx , dy , dz ;
dx=x−a . x ;
dy=y−a . y ;
dz=z−a . z ;
return dx∗dx + dy∗dy + dz∗dz ;

}
double d i s t ( po int &a ) {

return s q r t ( s qd i s t ( a ) ) ;
}
point ( ) { x=y=z=0; } ;

} ;

class p a r t i c l e : public point {
public :
double radius , charge ;
bool over lap ( p a r t i c l e &a ) {

double d=rad iu s+a . rad iu s ;
i f ( s qd i s t ( a)<d∗d )

return true ;
return fa l se ;

}
p a r t i c l e ( ) { rad iu s=charge =0; }

} ;

// Main program
int main ( ) {

p a r t i c l e a , b ;
a . x=5.5 ;
b . z=−2;
a . r ad iu s =2.5 ;
b . r ad iu s =3;
cout << ”Distance between a and b = ” << a . d i s t (b) << endl

<< ” C lo s e s t a l lowed d i s t ance = ” << a . rad iu s + b . rad iu s << endl
<< ” Pa r t i c l e over lap ? ” ;

i f ( a . over lap (b)==true )
cout << ” yes .\n” ;

else
cout << ”no .\n” ;

}

The output will look something like this:

Distance between a and b = 5.85235
Closest allowed distance = 5.5
Particle overlap? no.

The first class, point has three data members x, y, z describing a three-dimensional
vector. It has methods – or member functions – like sqdist() and dist() used to
calculate the (squared) distance between points. Finally, it has a constructor, point()
called whenever a new instance of the class is created – in this example it zeros the
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coordinates. A “particle” is very similar to a point in that it also has coordinates
but also a radius, a charge etc. Object oriented languages allow inheritance from one
class to another to let the programmer re-use existing code. Thus, we will run off
with everything from point and build particle on top of that. Besides two new data
members, radius and charge it will also contain a new function, overlap() that tests
for hard core overlap between any two particles. The two classes need be written only
once and will normally be kept in a separate file, abstracting as much as possible from
the central program.

Due to the convenient access to data and methods, the main program should be
pretty self-explanatory and can be kept short. Most likely a simulation program will
involve numerous particles and here the C++ STL vector library comes in handy. The
vector class is approximately as fast as hard coded arrays but has a number of conve-
nient member functions to avoid out-of-bound type errors – size() and push_back()

to mention a few.

#inc lude<vector>
. . .
int main ( ) {

vector<pa r t i c l e > p ( 2 ) ;
p a r t i c l e c ;

p [ 0 ] . x=5.5 ;
p [ 1 ] . z=−2;
c . y=0.5 ;

cout << p . s i z e ( ) ; // −> 2
p . push back ( c ) ; // Dynamic p a r t i c l e add i t i on
cout << p . s i z e ( ) ; // −> 3
cout << p [ 2 ] . y ; // −> 0.5
. . .

Generating a vector of a class does not mean that n instances of the binary member
functions are allocated in memory. Generally, member functions exist in only one place
but can be inlined – manually or by the compiler – so as to increase the performance.
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C van der Waals Parameter

The van der Waals interaction between two proteins can be approximated by integrat-
ing all atomic CvdW /r6 terms on the two surfaces. The DLVO theory captures this for
two spheres, describing the strength of interaction via the Hamaker constant,

A = π2ρ1ρ2CvdW (37)

where ρ are the atom densities for the two proteins. Since densities of different proteins
are subject to only small variations, the Hamaker constant is fairly constant; usually
in the range 3-10 kT . In the amino acid model each amino acid is treated as a sphere
and hence corresponds to an ”atom”, albeit larger. To calculate CvdW for two such
residues we therefore use the amino acid number density, which can be easily calculated
from the number of residues and the estimated protein radius. For calbindin with 75
residues and a radius of ∼17 Å a Hamaker constant of 3 kT gives CvdW ∼ 23000 Å6.
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A Mesoscopic Model for Protein-Protein Interactions in Solution
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ABSTRACT Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for
protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote
aggregation. Here we present a computational model describing interactions between protein molecules in solution. The
calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear
magnetic resonance structural data. Both electrostatic and van der Waals interactions are included and the salt particles are
explicitly treated allowing investigations of systems containing mono-, di-, and trivalent ions. For three different
proteins—lysozyme, a-chymotrypsinogen, and calbindin D9k—we have investigated under which conditions (salt concentration,
ion valency, pH, and/or solvent) the proteins are expected to aggregate via evaluation of the second virial coefficient. Good
agreement is found with experimental data where available. Calbindin is investigated in more detail, and it is demonstrated how
changes in solvent and/or counterion valency lead to attractive ion-ion correlation effects. For high valency counterions we have
found abnormal trends in the second virial coefficient. With trivalent counterions, attraction of two negatively charged protein
molecules can be favored because the repulsive term is decreased for entropic reasons due to the low number of particles
present.

INTRODUCTION

Protein-protein interactions in aqueous solution are of

fundamental biological interest and a complete description

of the forces acting between proteins and other biomolecules

is necessary in an attempt to understand the processes taking

place in the living cell. Many of these processes involve

weak noncovalent interactions causing the formation of both

temporary and more permanent supramolecular structures.

The list of examples can be made long: the binding of atomic

ions or small molecule cofactors, signal peptides binding to

receptor proteins, formation of biological membranes, pro-

tein-protein aggregation, etc. In a crystallographic context it

is of particular interest to investigate under which conditions

the proteins associate to form crystals suitable for diffraction

experiments. It is well-known that aggregation can be in-

duced by changes in pH, the salt concentration, valency of

ions, or the polarity of the solvent. Presently these matters

largely rely on experimental findings but as shall be shown

here, valuable information can be derived using computa-

tional methods.

The second virial coefficient, B2, is a useful indicator

of the overall interaction between two molecules and its

importance in describing protein aggregation has been

stressed by several workers (Neal et al., 1999; George and

Wilson, 1994). George and Wilson have shown that B2, to

form crystals suitable for diffraction studies, must lie within

a narrow interval—the so-called crystallization slot. Second

virial coefficients for large molecules can be measured using

light- and/or neutron scattering, but is also readily obtained

from Monte Carlo or molecular dynamics simulations

(Allahyarov et al., 2002). During the years more and more

computing power has become available and simulations of

a single protein in solution has become a standard approach

in theoretical biochemistry. However, to perform a Monte

Carlo or molecular dynamics simulation based on an atom-

istic representation of, say, two proteins in a salt solution,

in an attempt to calculate the second virial coefficient, is

still beyond reach. The problem comes from the fact that B2

requires a sampling of all protein separations and orienta-

tions, which is a time-consuming process compared to the

simulation of one single protein molecule. Thus, to make any

progress one has to resort to more coarse-grained models.

A significant simplification is obtained if the water

molecules are replaced by a structureless dielectric contin-

uum. This means that the only remaining molecules of the

solvent are salt particles. However, systems with high salt

concentration still require substantial computation times and

to overcome this, screened Coulomb potentials are often

utilized (Carlsson et al., 2001). The screened Coulomb

approximation usually works well for weakly charged

macromolecules in monovalent salt solution, but in solutions

with multivalent salt and/or low dielectric permittivity it

becomes less applicable. In such cases, salt particles must

explicitly be taken into account to correctly reflect the

electrostatic interactions in the system.

As for the protein description, it is crucial to capture the

discrete charge distribution originating from (de-)protonated

amino acids. Specific angular orientations are not without

importance for the electrostatic interactions and treating the

protein as an object with a central net charge only has been

shown to fail (Allahyarov et al., 2002). Several workers have

incorporated discreteness by placing point charges within or

on the surface of a large sphere (Carlsson et al., 2001;

Allahyarov et al., 2002). This approach assumes that the

Submitted April 9, 2003, and accepted for publication July 23, 2003.

Address reprint requests to Mikael Lund, Theoretical Chemistry, Chemical

Center, P.O.B. 124, S-221-00 Lund, Sweden. Tel.: 46-46-222-0381; Fax:

46-46-222-4543; E-mail: mikael.lund@teokem.lu.se.

� 2003 by the Biophysical Society

0006-3495/03/11/2940/08 $2.00

Paper 1 – A Mesoscopic Model

41



excluded volume of the protein possesses spherical symme-

try which, even for globular proteins, may be a too-crude

approximation considering that, at short protein-protein

separations, attractive van der Waals interactions can be

highly angular-dependent (Asthagiri et al., 1999). With van
der Waals interactions we mean the sum of quantum

mechanical dispersion forces, thermally averaged dipole-

dipole, and dipole-induced dipole terms (Israelachvili,

1991). Between atoms or small molecules, the van der

Waals term is relatively short-ranged, with a potential

proportional to 1/r6. However, when integrated for large

(spherical) molecules it becomes appreciably more long-

ranged, scaling by;1/r at short and intermediate separations

(Israelachvili, 1991). Thus, when incorporating van der

Waals interactions it is necessary to either include the

integrated term assuming spherical symmetry or explicitly

evaluate the 1/r6 term for all atomic components in the two

proteins.

In this work, we have chosen the latter approach, which

captures the detailed structural properties of the protein but at

the same time is more computationally demanding. The

electrostatic interactions have been evaluated with discrete

charges on all titratable amino acids and explicit salt particles

and counterions in the solution. Three proteins have been

studied: lysozyme, chymotrypsinogen, and calbindin. All

three are structurally well-defined, and for lysozyme and

chymotrypsinogen, experimental data is readily available in

the literature. Calbindin is included as a good representative

of a highly charged protein, and in addition, there exists

a wealth of experimental data for its calcium binding

properties (Linse et al., 1988, 1991; Svensson et al., 1991)

and its ionization behavior is also well-documented

(Kesvatera et al., 1999).

METHODOLOGY

Interactions

We use a dielectric continuum model for the solution assuming that all

charges are uniformly screened by a constant relative permittivity with

a value equal to that of pure water. The protein is modeled as a collection of

hard spheres representing either single atoms or whole amino acids. A

sphere in this model will carry an average charge determined by the pH and

pKa of the particular amino acid. The average charges on the titratable sites

have been determined in separate Monte Carlo (MC) simulations of a single

protein, in which the amino acids are allowed to titrate. Furthermore,

attractive van der Waals interactions between all amino acids are explicitly

taken into account.

The choice of a uniform relative permittivity has been and still is very

much debated (Antosiewicz et al., 1994, 1996), the main argument being

that the charges, at least within the same protein, should be scaled with

a much lower value than that of water. This is in principle true but since most

charges are located in the outer polar regions of the protein, the effect might

be smaller than at first anticipated. Recent experimental and theoretical

studies of the ionization behavior of calbindin does not seem to support the

idea of a low dielectric permittivity of the protein interior (Spassov and

Bashford, 1998; Kesvatera et al., 2001), and the best agreement between

experiment and theory is obtained with a high uniform dielectric

permittivity.

The objective of the MC simulations is to calculate the free energy

change associated with bringing two protein molecules together in an

aqueous salt solution. This free energy of interaction or potential of mean

force, w(r), must take into account changes in energy and entropy

originating from the solvent, the ions, and the proteins. The energy of

interaction can be split into contributions from short-range repulsion (hs),
electrostatics (el), and van der Waals (vdW) terms, and the interaction

between any two sites can be written as

uij ¼ uijðhsÞ1 uijðelÞ1 uijðvdWÞ: (1)

The hard-sphere (hs) term accounts for the repulsion arising when the

electron clouds from two atoms or molecules come into contact. An exact

description of this contribution requires a complex quantum mechanical

treatment, and hence the simpler hard-sphere term is usually applied as

uhsðrÞ ¼ ‘ rij\
si 1sj

2
; (2)

where si is the diameter of site i. The electrostatic term includes Coulombic

interactions between charged sites, and in the dielectric continuum

approximation it can be written as

uelðrÞ ¼
zizje

2

4pe0errij
; (3)

where er is the relative dielectric permittivity, zi the valency of site i, rij the

site-site distance, e the electron charge, and e0 the permittivity of vacuum.

To describe the short-range interaction between two protein molecules

we invoke a van der Waals-type interaction,

uvdWðrÞ ¼ � C

r
6

ij

: (4)

Here C determines the magnitude of the attraction and is related to the

Hamaker constant, A (Israelachvili, 1991),

A ¼ p
2
r1r2C; (5)

where the ri values are particle densities. As a first approximation, we have

decided to use the same C for all amino-acid-to-amino-acid interactions. A

straightforward improvement would be to let the amino-acid size affect the

interaction, hence one would have a different Cij for each pair of amino

acids. Calculation of Hamaker constants can be done using the Lifshitz

theory (Israelachvili, 1991), but detailed knowledge of the electronic

properties is required and as a consequence, A is often treated as an

adjustable parameter. Fortunately, Hamaker constants are not subject to

large variations and for proteins in water, A is ;3–10 kT (Farnum and

Zukoski, 1999) (1 kT ¼ 4.11 3 10�27 J at 298.15 K).

The effects of the described interactions are shown in Fig. 1 and it is to be

noted that the effective hard-sphere contribution, reflecting the nonspherical

shape of the protein, is surprisingly long-ranged. Including the electrostatic

interaction makes the free energy of interaction even more repulsive,

whereas the van der Waals term decreases the repulsion at short separation.

Unless stated otherwise, the calculations presented in this work include all of

the three terms discussed here.

One effect not taken into account here is the hydrophobic attraction

arising at very short separation. As the two protein molecules approach, the

water interactions in between become unfavorable and eventually the

solvent seeks to the bulk. This results in a free energy gain and effectively

creates an attraction. One can view the hydrophobic effect as a correction to

the van der Waals term (Forsman et al., 1997) and the effect can be partially

incorporated into the van der Waals term by adjusting the C coefficient. A

more stringent alternative would be to include another short-range attractive

term into Eq. 1. The argument against these refinements is that the proteins

Model for Protein-Protein Interactions 2941

Biophysical Journal 85(5) 2940–2947

42



treated here are hydrophilic, and the hydrophobic effect is thus less

important.

Model

The simulated model system consists of two protein

molecules built from spheres immersed in a spherical cell

(Fig. 2). To maintain electroneutrality and the desired salt

concentration, mobile salt particles with hard-sphere diam-

eters, s ¼ 4 Å, are added. As for the protein shape, two

models have been utilized—both based on structural data

obtained from the Brookhaven Protein Databank (PDB). In

the first (atomic) model, the protein molecules are mimicked

by replacing each nonhydrogen atom in the protein by a hard

sphere with diameter s¼ 4 Å, which, for chymotrypsinogen,

results in[1800 particles per protein molecule. In addition,

one has to include the salt particles and in a dilute protein

solution with high salt concentration, the total number of

interacting particles can add up to many thousands, which

leads to lengthy simulations. To improve the simulation

efficiency, a slightly simplified mesoscopic model has been

developed. Here the atoms in each amino acid are replaced

by a single sphere located at the amino-acid center of mass.

The size of these spheres are set equal for all residues and

adjusted so that the total excluded volume of the protein is

equal to that of the atomic model. This amounts to a diameter

for the amino-acid spheres of s ¼ 6.8 Å. Average charges

are assigned to the center of each sphere according to the

actual pH. Despite this seemingly coarse description, the

geometry of the surface is found to be remarkably similar to

that of the atomic model (Fig. 3). More important, the

simulated potentials of mean force for mono-, di-, and

trivalent counterions are virtually identical to the more

detailed model as shown in Fig. 4. In the mesoscopic model,

the van der Waals term, �C/rij
6, is evaluated for amino-acid

pairs and the parameter C must reflect this. With a Hamaker

constant of 9 kT, C/kT can be estimated to 25,000 Å�6 for

amino-acid pairs.

The actual charge on an amino-acid residue is pH-

dependent, since acidic and basic amino acids can titrate. To

specify the average charge on an amino acid at a particular

pH, the relevant pKa values must be known—either from

experiment or simulations. The theoretical approach has

been shown to be in good agreement with nuclear magnetic

resonance studies (Kesvatera et al., 1999, 2001). Hence, we

FIGURE 1 Contributions to the interaction free energy, w(r) from hard-

sphere (hs), electrostatic (el), and van der Waals (vdW ) interactions for

lysozyme at pH 9.0.

FIGURE 2 Snapshot from a Monte Carlo simulation of calbindin using

the amino-acid model. The black spheres illustrate ions whereas amino acids

are depicted by white spheres, clustered to form the two proteins. In the

simulations, the proteins are displaced along the z-axis and rotated

independently. Ions are displaced in all three directions.

FIGURE 3 Cross-sections of calbindin using the atomic and amino-acid

models. A small ion (diameter 4 Å) is rolled on the surface so as to define the

minimum distance to the center of mass.
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shall use this method to obtain pH-dependent average

charges on titratable residues in the proteins. The average net

charge of lysozyme, chymotrypsinogen, and calbindin as

a function of pH is shown in Table 1.

Monte Carlo simulations

Most simulations were performed in the canonical ensemble

using the traditional Metropolis Monte Carlo algorithm

(Allen and Tildesley, 1989) supplemented with a few

semicanonical simulations of a single protein allowed to

titrate (Kesvatera et al., 1999). The energy evaluation for

each configuration includes all pair interactions,

U ¼ +
i;j2p;s

u
el

ij 1 u
hs

ij

� �
1 +

i;j2p
u
vdW

ij i 6¼ j; (6)

where s and p mean salt and protein particles, respectively.

During the MC simulation the proteins are allowed to

translate symmetrically along the z-axis and individually

rotate around vectors going through their center-of-mass.

Mobile ions may translate in any direction. By these random

displacements and rotations all possible configurations are

explored; if a move leads to an energy decrease, the new state

is accepted. If the energy increases, the state is accepted with

the probability exp (�DU/kT). Proceeding this way, the

system eventually reaches equilibrium and its properties can

be sampled. The distribution function, r(r), is readily

obtained by sampling the probability of finding the two

proteins at a certain separation. This is directly related to the

change in free energy of interaction,

wðrÞ=kT ¼ �ln
rðrÞ
rð‘Þ 1 const; (7)

where the r(‘) is determined from the asymptote of r(r) and
the constant is set to 0. To represent this in a more convenient

manner, w(r) can be integrated to yield the second virial

coefficient,

B2 ¼ �2p

ð‘

0

ðe�wðrÞ=kT � 1Þr2dr ¼ �2p

ð‘

0

rðrÞ
rð‘Þ � 1

� �
r
2
dr:

(8)

The second virial coefficient comprises the predominant

effect of the interaction between two proteins molecules; if

B2 is positive, then there is a net repulsion; and if negative,

the net interaction is attractive. B2 has some interesting

properties; it is, in general, rather easy to fit experimental

data with a variety of w(r) values with adjustable parameters.

FIGURE 4 Free energy of interaction for calbindin (cp ¼ 0.79 mM) with

different counterion valencies (1I, 1III, and 1III) simulated using the

atomic (solid lines) and amino-acid (dashed lines) models. The van der

Waals interactions are not included.

TABLE 1 Average net charges, Z on calbindin, lysozyme,

and a-chymotrypsinogen at different pH values obtained

from Monte Carlo simulation

Calbindin Lysozyme Chymotrypsinogen

pH Z pH Z pH Z

3.5 3.7 4.5 9.0 3.0 12.9

4.0 1.6 6.0 8.0 4.0 9.2

5.0 �2.2 7.5 6.9 5.3 6.7

6.0 �5.0 9.0 4.9 6.8 5.2

7.0 �6.6 10.0 2.8

8.0 �7.4 10.5 1.5

9.0 �8.0

10.0 �8.8

11.0 �10.6

FIGURE 5 Measured (solid symbols) and simulated (open symbols)

second virial coefficients, B2, for lysozyme as a function of pH at two

different NaCl concentrations—monovalent counterions.
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At the same time, the virial coefficient will be very sensitive

to these parameters. This means that if one is able to produce

a potential of mean force without adjusting parameters and if

this w(r) reproduces experimental B2 values, then the

underlying physics is probably correct.

RESULTS AND DISCUSSION

Lysozyme

To verify our model we have simulated virial coefficients of

lysozyme and compared with experimental data from Velev

et al. (1998), who measured B2 for lysozyme as a function of

pH at 5 mM NaCl concentration. We have used an x-ray

structure of egg-white lysozyme (Ramanadham et al., 1990)

to determine the positions of the amino-acid spheres as

explained above. Monovalent counterions are included to

maintain electroneutrality and an appropriate amount of 1:1

salt to yield 5 mM is added. The amino-acid charges are

assigned for each pH according to simulated pKa values

(Table 1). Each calculation includes 430 million config-

urations corresponding to a simulation time of ;20 h on

a standard PC. As seen in Fig. 5, reasonable agreement is

found considering that we have made no efforts to adjust our

parameters to fit the experimental data. At low pH the

calculated B2 values are found to be somewhat higher than

those obtained from experiments. One possible explanation

is that the ionic strength in the experiment is[5 mM due to

residual salt from the protein preparation or from pH-

adjusting agents. A higher salt content gives rise to a higher

screening of the repulsive protein interactions, which in turn

diminishes B2. This agrees with the observed trend that the

simulated data fits better at high pH values. At pH 10.5 the

electrostatic repulsion is of minor importance and the van der

Waals attraction dominates. Since at this point we perfectly

match the experimental data, it can be concluded that the

chosen C parameter is indeed reasonable. In fact, the virial

coefficient is very sensitive to the C parameter at high pH

whereas at low pH it is essentially negligible. For example,

doubling the C parameter at pH 4.5 changes B2 from 61 to

60 ml 3 mol/g2, whereas at pH 10.5, B2 is decreased from

�0.4 to �149 ml 3 mol/g2. This behavior is also evident

from Eq. 8, where long-range interactions in general have

a larger impact on B2 than those of short-range.

Another possible explanation for the overestimated virial

coefficient at low pH is that the charge distribution on the

two protein molecules is fixed independently of their

separation. It seems reasonable to assume that two positively

charged proteins coming in close contact will release protons

to reduce their net charge. This is, of course, not possible at

all pH values, but if pH is close to the pKa of some amino

acids in the protein, it is certainly a mechanism that will

lower the repulsive interaction leading to a reduction of the

B2 (André et al., 2003, unpublished results).

Chymotrypsinogen

Also measured by Velev et al. (1998) are second virial

coefficients for a-chymotrypsinogen. This protein is—in

a computational context—fairly large, containing 245

residues. The three-dimensional structure (PDB Id: 1CHG)

used in the calculations is obtained by x-ray diffraction by

Freer et al. (1970). Comparing with measured virial

coefficients at 5 mM salt concentration (Fig. 6) shows that

our calculations follow the experimental trend, but are more

repulsive. However, the system is very sensitive to the ionic

strength as illustrated by doubling the salt concentration

from 5 mM to 10 mM, effectively decreasing the repulsion.

This indicates that at low salt concentrations even trace

amounts of residual ions may lower the experimental B2,

making direct comparison with theoretical calculations less

accurate. Another explanation of the difference between

theory and experiment could be that the protein average

charge is set too high. When the two macro molecules come

into close contact the titratable sites are perturbed, effectively

lowering the net charge. This can be remedied by allowing

both proteins to titrate during simulation so as to adjust

charges as a function of protein-protein separation.

It is to be noted that the chymotrypsinogen interactions

are, in general, less repulsive than those between lysozyme,

as also observed by Velev and co-workers. One explanation

could be the high dipole moment of chymotrypsinogen

leading to angular correlations (Velev et al., 1998), but the

importance of such dipole-dipole interactions remain left for

further study.

Calbindin

Currently there is no experimental data available for

calbindin, but we hope to obtain second virial coefficients

FIGURE 6 Measured (solid symbols) and simulated (open symbols)

second virial coefficients, B2, for chymotrypsinogen as a function of pH at

5 mM/10 mM NaCl concentration.
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for calbindin under a variety of conditions in the near future.

Calbindin is considerably smaller than lysozyme and

chymotrypsinogen and is thus suitable for more exploratory

simulations. The structure of calbindin used in the sim-

ulations derives from an x-ray determination of the calcium-

free protein (Szebenyi and Moffat, 1986) and the overall

charge is �7 at neutral pH; compare to Table 1. In a salt-

free environment with only counterions present, we note that

B2 is strongly dependent on the counterion valency. Fig. 7

demonstrates that an increasing valency significantly de-

creases the repulsion between the proteins. This is quali-

tatively in accordance with mean field theories (Derjaguin

and Landau, 1941; Verwey and Overbeek, 1948), and is

a consequence of an increased electrostatic screening from

multivalent ions. Note that in the case of trivalent counter-

ions the electrostatics are completely screened and the van

der Waals term hence leads to an attractive minimum. This

qualitatively explains why proteins are found to precipitate

upon addition of even small amounts of multivalent salts.

It is illustrative to split the free energy, A(r) ¼ U(r) –

TS(r), into the individual contributions from energy and

entropy as shown in Fig. 8. The derivatives of these terms

give the force acting between the two proteins, that is

� @A

@r
¼ � @U

@r
1 T

@S

@r
; or Ftot ¼ Fu 1Fs: (9)

The energetic force component, Fu, is attractive between the

two negatively charged proteins, which at first sight might

seem counterintuitive. However, this is a general result; for

an overall neutral system of charges, the energy will always

favor a compaction. Hence, the origin of repulsion is the

entropy, and not the energy. This means that the reduced

repulsion seen with trivalent compared to monovalent

counterions (see Fig. 7) is a direct consequence of the fact

that the number of particles has been reduced by a factor

of three. Thus, one can favor attractive interactions by

decreasing the entropic term. Similarly, one can also

strengthen the attraction by favoring the energy term. One

simple way to do this is by lowering the solvent polarity and

hence the dielectric constant, which substantially enhances

the energy term. From an experimental point of view,

FIGURE 7 Free energy of interaction for two calbindin molecules, cp ¼
0.79 mM, with various counterions. Graphs both with and without short-

range van der Waals interactions are shown.

FIGURE 8 The interaction free energy (A), energy (U ), and entropy

(�TS) for a solution of calbindin with trivalent counterions. The van der

Waals interactions are not included.

FIGURE 9 Interaction free energy for two calbindin molecules, 0.79 mM,

with trivalent counterions at different dielectric constants, er. The van der

Waals interactions are not included.
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a gradual change of the dielectric constant can be achieved

by addition of methanol which is miscible with water in all

proportions. As a matter of fact, this is a well-known method

for precipitating proteins, although the underlying mecha-

nism has not been fully understood. Fig. 9 shows how the

potential of mean force for a system containing trivalent

counterions can display a net attraction, even though no van

der Waals forces are included. Thus, a moderate reduction of

the solvent polarity leads to a free energy minimum and

eventually to a precipitation of the protein. This is a well-

known phenomenon in colloid chemistry and is usually

discussed in terms of ion-ion correlations (Guldbrand et al.,

1984; Jönsson and Wennerström, 2001). When the electro-

static coupling strength is increased by increasing the

valency or lowering the dielectric permittivity, it is

accompanied by a strong accumulation of counterions close

to the protein. In particular, trivalent counterions will be

found very near the protein surface; however, they will not

be bound in a chemical sense.

Increasing the salt concentration is also known to induce

protein aggregation and in the case of monovalent ions

a relatively high amount is required to effectively reduce the

repulsion. As expected, divalent counterions more readily

support salt-induced aggregation as is illustrated in Fig. 10.

In the monovalent case, a minimum in w(r) occurs at a salt

concentration of ;0.1 M, whereas for divalent counterions,

this minimum is already found at ;0.005 M salt. From the

second virial coefficient, Fig. 11, one can note that even

though an attractive minimum occurs in w(r), B2 still remains

positive.

Proteins with trivalent counterions, however, show

a different behavior. Here the second virial coefficient is

increased when 1:1 salt is added, which is in direct conflict

with predictions from the DLVO theory (Derjaguin and

Landau, 1941; Verwey and Overbeek, 1948). The origin of

this effect stems from a competition of mono- and trivalent

counterions. The latter accumulate close to the charged

protein and give rise to an efficient screening. However,

when more salt is gradually added, the monovalent counter-

ions will replace the trivalent ones with a concomitant

reduction of the protein screening. A similar behavior has

been seen in DNA solutions (Khan et al., 1999).

It is to be noted that in these calbindin simulations a cell

radius of 100 Å is used, which is adequate for systems where

the protein-protein interactions are screened. However, in

cases with no or very low 1:1 salt concentration, an artificial

boundary effect may interfere and change the numerical

results. This can be remedied by increasing the cell radius,

but unfortunately this drastically increases the computation

time. However, the general trends are preserved, and in cases

with di- and trivalent ions, this effect is of no importance.

CONCLUSION

The protein model presented in this article includes

electrostatic and van der Waals interactions, while at the

same time it takes the specific protein structure into account.

Considering the experimental uncertainties, calculated sec-

ond virial coefficients for lysozyme and chymotrypsinogen

are in good agreement with measurements. In the case of low

protein net charge the agreement is actually very good,

indicating that the magnitude of the attractive van der Waals

term is reasonably chosen. The agreement with experiment

can be improved by, for example, including an additional

short-range attraction mimicking the hydrophobic interac-

tion. Also, letting the proteins titrate during simulation

FIGURE 10 Free energy of interaction for two calbindin molecules, 0.79

mM with mono- (top) and divalent (bottom) counterions at various 1:1 salt

concentrations (mM).

FIGURE 11 Second virial coefficient, B2 for calbindin, cp ¼ 0.79 mM, as

a function of counterion valency (1II/1III) and 1:1 salt concentration.
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allows the net-charge to vary as a function of protein-protein

separation, effectively decreasing the electrostatic repulsion.

Calbindin has been simulated more intensively and the

effect of salt concentration and salt valency have been

investigated. Addition of multivalent counterions causes

a dramatic reduction of the electrostatic repulsion between

two proteins. Preliminary scattering experiments indicate

that calbindin self-associates upon addition of small amounts

of lanthane (III) ions. The present simulations predict this

effect to be due to ion-ion correlation and it can be depleted

by addition of monovalent salt. Correlation effects can be

invoked by lowering the solvent polarity, effectively

increasing the electrostatic interactions.
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ABSTRACT: It is known that the overall charge of a protein can change as the molecule approaches a
charged object like another protein or a cell membrane. We have formalized this mechanism using a
statistical mechanical framework and show how this rather overlooked interaction increases the attraction
between protein molecules. From the theory, we can identify a unique property, theprotein charge
capacitance, that contains all information needed to describe the charge regulation mechanism. The
capacitance can be obtained from experiment or theory and is a function of pH, salt concentration, and
the number of titrating residues. For a range of different protein molecules, we calculate the capacitance
and demonstrate how it can be used to quantify the charge regulation interaction. With minimal effort,
the derived formulas can be used to improve existing models by including a charge regulation term.
Good agreement is found between theory, simulations, and experimental data.

Knowledge of the basic intermolecular interactions be-
tween biomolecules is of vital importance for our under-
standing of processes in the living cell. This includes, for
example, the interaction of a protein with small ligands, with
DNA, or with a membrane surface, as well as the interaction
between two or more protein molecules. The interaction of
two proteins, each with a nonzero net charge, is at long
distances dominated by a direct Coulomb interaction. The
protein charges come from ionized amino acid residues and
will vary with pH and other solution conditions. The majority
of models presented in the literature describing protein-
protein interactions, however, implement the protein charge
distribution as afixed set of charges (1-4) or even by a
single-point charge. This is probably still a valid approach
for proteins carrying a significant net charge, but when an
approximately neutral protein, pH≈ pI, is approaching a
charged surface or another highly charged protein, its charge
distribution will change. That is, the protonation state of the
protein not only depends on pH but also on nearby
molecules; the electrostatic potential from a neighboring
molecule will perturb the titrating groups in the protein. This
is of course the same effect as is seen internally in a protein,
where any charged amino acid may affect the apparent pKa

values of all other groups. Our aim is to formally describe
this interaction in mathematical terms and then to numerically
calculate the appropriate response function. For the latter,
we will use Monte Carlo (MC) simulations describing the
protein in atomic detail including all ion-ion interactions
within the protein and with the surrounding salt solution.

Charge regulation for colloidal particles has been discussed
by Kirkwood and Shumaker (5) and later by Carnie et al.
(6, 7) within the Debye-Hückel approximation. Zydney et
al. have used a similar approach and found the regulation
mechanism important for proteins in porous media (8), in
membranes (9), and in capillary electrophoresis experiments
(10). Bowen and Williams (11) solved the Poisson-

Boltzmann equation for a sphere in a Wigner-Seitz cell so
as to mimic bovine serum albumin. They found that inclusion
of a charge regulation term significantly improved the
agreement with measured osmotic coefficients. Ståhlberg et
al. (12-14) have studied the net charge of lysozyme in the
context of ion-exchange chromatography, where they show
how the charge regulation, i.e., the capacitance of a protein,
can be derived from the experimental titration curve.

THEORY AND METHODS

Protein Charge Capacitance: Statistical Mechanical
DeriVation.In this section, we will derive a formal expression
for the capacitance in terms of charge fluctations. The essence
is captured in eqs 5 and 6, and the reader may want to
proceed directly to this part. Let us start by considering two
proteins in a salt solution, each described by the charge
distributions [r i, qi] and [r j, qj], respectively. The mass centra
of the distributions are separated byR, which means that
the distance between two chargesi and j is given byrij )
|R + r j - r i|. The average net charge number of the
distributions does not need to be zero, that is,〈QA〉 * 0, where
〈QA〉 ) 〈∑qi〉. The free energy of interaction can be written
as,

where U(R) is the interaction between the two charge
distributions,â ) 1/kT, with k being the Boltzmann constant
and T being the temperature, and〈...〉 denotes an average
over the unperturbed system, which in the present case is
the single isolated protein in salt solution. The average runs
over all orientations and ionization states of the protein as
well as over the positions of all salt particles. This means
that the calculated averages will depend on both the salt and
protein concentrations and pH. Equation 1 can be expanded
to a second order as ln(1- x) ≈ -x - x2/2 for smallx,

* To whom correspondence should be addressed. Telephone:+46-
46-222 0381. Fax:+46-46-222 4543. E-mail: mikael.lund@teokem.lu.se.

âA(R) ) -ln〈e-âU(R)〉 ≈
-ln[1 - 〈âU(R)〉 + 1

2
〈(âU(R))2〉] (1)
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The interaction energy is simply the Coulomb interaction
between the two charge distributions,

where the Bjerrum length,lB ) e2/4πε0εrkT has been
introduced. We can make a multipole expansion of the
energy, assuming thatR. ri, rj. This expansion will include
an ion-ion interaction, an ion-dipole interaction, a dipole-
dipole interaction, etc. It will also include charge-induced
charge and induced charge-induced charge interactions. Thus,
we can write an approximation to the free energy including
all terms of order up to 1/R2. Note that the ion-dipole
interaction disappears in the first order and that the first
nonvanishing dipole term will be of the order 1/R4.

Note also that〈Q2〉 * 〈Q〉2. We now define a “charge
polarizability” or capacitance,C, that quantifies the charge
fluctuations of the protein,

where linear response theory gives the relation to the
electrical potential,Φ. With this definition of the capacitance,
eq 4 can be rewritten in a more useful form,

The first term is the direct Coulomb term, and the following
terms are theinduced charge-induced chargeand charge-
induced chargeinteractions. If the protein molecules are
identical, that is,〈QA〉 ) 〈QB〉 ) 〈Q〉, the expression then
simplifies to,

and if the proteins happen to be at pH) pI, then〈Q〉 ) 0
and the leading term is the induced charge-induced charge
interaction,

which is equivalent to the findings of Bratko et al. (15) for
the intermolecular interaction between micelles subject to
charge fluctuations of the number of counterions.

The above equations show that the fluctuating charge of
a protein may under certain circumstances contribute sig-
nificantly to the net interaction between two proteins. From

eq 5, we can also write the induced charge asQind )
-Câe∆Φ, valid for small potentials. Note that in the derived
equations we have used an unscreened Coulomb potential
(eq 3) valid for no or very low salt concentrations, only. To
include the effect of salt, it is necessary to use a screened
potential; an example of this is shown in eq 14.

Macroscopic Picture.The capacitance,C, can be derived
from the protein titration curve. For a single titrating acid,
the degree of ionization,R, can be found in any elementary
physical chemistry textbook,

Taking the derivative ofR with respect to pH gives

where in the second step we have identified the capacitance
defined in eq 5. We can obtain an approximate value for the
capacitance in a protein assuming that there is no interaction
between the titrating sites: A protein contains several titrating
groups such as aspartic and glutamic acid, histidine, etc.,
each with an ideal pK0 value. When different titrating groups
are denoted withγ and their number withnγ, the total
capacitance can then be approximated with,

More realistic capacitances, where intramolecular interactions
are included, can be obtained from experimental protein
titration curves, readily available in the literature. As evident
from eq 10, the capacitance can be extracted from the slope,

Thus, we can estimate the magnitude of the regulation
interaction using the 1/R2 terms derived in the previous
section. Where experimental titration data are not available,
one may resort to theoretical models; the Tanford-Kirkwood
theory, MC simulation, etc. This shall be the topic of the
next section.

Simulation Model. In some recent studies, we have
demonstrated how MC simulations can be used to predict
protein-protein interactions in solution (3) as well as the
titration behavior of an isolated protein in salt solution (21).
Here, we shall give a brief introduction to these methods;
for a more thorough survey, the reader may consult the
references mentioned above.

The simulations are based on a simple dielectric continuum
model and exploit the Protein Data Bank to provide a detailed
structural description of the protein. The protein is treated
either in full atomic detail, “atomistic model”, or in a
simplified version, where we represent each amino acid as
a sphere, “the amino acid model”. The aqueous solvent is
treated as a structureless continuum described by the
dielectric constantεr equal to that of pure water. The ions
in the surrounding salt solution are described by charged,
hard spheres allowed to move in any direction within a
spherical cell enclosing the system of interest, see Figure 1.

pK ) pH - log
R

1 - R
(9)

∂R
∂pH

) R(1 - R) ln 10 ) C ln 10 (10)

Cideal ) ∑
γ

nγ

10pH-pK0,γ

(1 + 10pH-pK0,γ)2
(11)

C ln 10 ) - ∂Q
∂pH

(12)

âA(R) ≈ 〈âU(R)〉 - 1
2
[〈(âU(R))2〉 + 〈âU(R)〉2] (2)

âU(R) ) ∑
i
∑

j

lBqiqj

rij

(3)

âA(R) ≈
lB〈QA〉〈QB〉

R
-

lB
2

2R2
[〈QA

2〉〈QB
2〉 - 〈QA〉2〈QB〉2] (4)

C ≡ 〈Q2〉 - 〈Q〉2 ) - ∂Q
∂âeΦ

(5)

âA(R) ≈
lB〈QA〉〈QB〉

R
-

lB
2

2R2
(CACB + CA〈QB〉2 + CB〈QA〉2) (6)

âA(R) ≈ lB〈Q〉2

R
-

lB
2

2R2
(C2 + 2C〈Q〉2) (7)

âA(R) ≈ -
lB

2C2

2R2
(8)
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Some of the simulations are performed fortwo proteins
in a spherical cell. The same type of interactions are included,
but now the two proteins are allowed to translate and rotate
as well. From these simulations, we can calculate the free
energy of interaction between the proteins.

In the amino acid model, each residue is replaced with a
single sphere located at a center-of-mass of the residue
according to the crystal structure and the radius is adjusted,
so that the total protein volume is equal to that of the protein
in full atomic detail. This amounts to an average amino acid
radius of around 3.5 Å. The degree of protonation for each
amino acid is affected by pH and by the potential produced
by all other charges in the system. This has been incorporated
into the simulations via a titration scheme, where protons
are allowed to exchange between sites in the protein and
the surrounding solution. The trial energy for such an
exchange is calculated according to

where∆Uel is the change in electrostatic energy, pK0 is the
dissociation constant of the isolated amino acid, (+) applies
when protonating an amino acid, and (-) applies when
deprotonating an amino acid. Sites on the protein are selected
randomly as is the proton (a positive charge) in the salt
solution, when deprotonating the proton is inserted at a
random position. Thus, during simulation, the protein charge
will respond to changes in the electrostatic surroundings,
which of course will be more important when pH≈ pK0.
Note that, because the ionized residues are located near the
surface, we have assumed a relatively high dielectric response
from the surroundings. This allows us to use a uniform
dielectric permittivity for the whole system equal to the value
of pure water. Naturally, this assumption becomes less
applicable for charges buried in the protein interior where
the dielectric response may be smaller; in such cases, more
sophisticated models should be utilized.

The total interaction energy for the system is written as a
sum of contributions from electrostatics and hard-core
repulsions

where the indexesi and j refer to salt (s) and protein (p)
particles, separated by the distancerij. The hard-core term,
uij

hs is ∞ for rij < σi + σj and zero otherwise.
The model system is solved using the traditional Metropo-

lis MC method (22), performed in a semicanonical ensemble.
This means that the salt particles, positive or negative hard
spheres, are subject to random displacement in the surround-
ing solution, while “protons”, i.e., positive ions, can exchange
between the solution and titrating groups on the protein. The
whole system, including protein(s) and all ions, is electro-
neutral. The results from the simulation are the average
charge on each titrating group and the distribution of co-
and counterions around the protein. To calculate the response
function, i.e., the protein capacitance, we will also calculate
the protein average net charge,〈Q〉, and the averaged squared
net charge,〈Q2〉.

Again, we stress that MC simulation is just one of many
methods that can be used to estimate capacitances; Equation
6 holds for any model.

RESULTS

Using MC simulation, we have calculated the capacitance
for a number of proteins with different characteristics in terms
of number and type of residues (see Table 1). Unless
otherwise stated, we have used a salt concentration of 70
mM and a protein concentration of 0.7 mM. This choice of
conditions allows us to treat very large protein complexes
with more than 1000 residues. Figure 2a shows the capaci-
tance for calbindin D9k derived from the experimental titration
curve (21, 23) as well as from the atomistic and the amino
acid model. The two models give virtually identical results,
and below pH 9, the agreement with experimental data is
very good. The discrepancy at high pH could be due to a
minor unfolding of the protein; this would decrease the
internal electrostatic perturbation and, as seen, shift capaci-
tances toward the ideal curve. The main difference from the
ideal capacitance curve is a strong broadening of two peaks
corresponding to the response from acidic and basic residues,
respectively.

Calmodulin is another calcium-binding protein, and its
capacitance has the same qualitative appearance as calbindin.
Both proteins have a large number of Asp/Glu residues
giving rise to a large capacitance at pH 4. They also have a
large portion of Lys/Arg resulting in a second peak at pH
11-12. Figure 2b shows the capacitance for calmodulin and
for a small positively charged peptide from smooth muscle
myosine light-chain kinase (smMCLK). The capacitance for
the peptide is essentially zero below pH 10, while it peaks

FIGURE 1: Schematic picture of the model system with the protein
and salt solution enclosed in a cell.

Table 1: Titrating Residues in the Investigated Proteinsa

protein residues Asp Glu His Tyr Lys Cysb Arg

pK0 4.0 4.4 6.3 9.6 10.4 10.8 12.0
smMLCK (16) 19 0 0 1 0 2 0 3
calbindin D9k (17) 75 4 13 0 1 10 0 0
calmodulin (16) 142 16 19 1 2 5 0 6
hisactophilin (18) 118 6 7 31 3 9 1 1
M-m-CoA mutase (19) 726 47 51 12 22 36 2 43
lysozyme (20) 129 7 2 1 3 6 0 11

a The dissociation constants for the isolated amino acids are given
in the second line and the corresponding pK0 for C and N termini are
3.8 and 7.5, respectively.b Only cysteines not engaged in sulfide bridges
can titrate.

∆U ) ∆Uel ( (pH - pK0)ln 10

âUtot ) ∑
i,j∈p,s

(lBqiqj

rij

+ uij
hs) i * j (13)
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around pH 12 because of lysine and arginine residues. This
maximum is much smaller than for calmodulin, but for the
specific capacitance, i.e.,Csp ) C/Nres, the situation is
reversed.

The protein hisactophilin is of the same size as calbindin
and calmodulin, but it has a slightly different capacitance
curve, see Figure 3. Hisactophilin contains 31 histidine
residues, which is reflected in a broad maximum forCHisacto

at pH 5-6. Because of the high positive charge of hisacto-
philin at acidic conditions (+28 at pH 3 and+23 at pH 4),

the maximum is shifted downward. The isoelectric point
found from the simulations is 7.3 in perfect agreement with
experimental estimates (24). The relatively high capacitance
of hisactophilin at physiological pH suggests that charge
regulation may be of biological importance, for example,
when coupling actin skeleton to negatively charged plasma
membranes (25). In general, histidine-rich molecules are
likely to have high capacitances around pH 7, thus making
them good candidates forin ViVo charge regulation.

The capacitance increases with protein size or more
correctly with the number of titratable groups. Figure 3 also
shows the capacitance for chain A in methylmalonyl-CoA
mutase, which consists of more than 700 amino acids. The
protein can achieve a very high net charge (+14 at pH 4
and-26 at pH 10) and a significant capacitance at extreme
pH’s. The isolelectric point is 5.2.

Lysozyme is another well-studied protein, and from the
measured titration curve (26), we have extracted capacitances
and, as shown in Figure 4a, agreement with the simulation
is reasonable. Salt particles influence the capacitance (Figure
4b), but it is much less pronounced than the pH dependence.
The salt effect is rather complex because it is governed by
several mechanisms. In general, the effect of salt is to screen
the electrostatic interactions, and hence, capacitances ought
to approach their ideal values. However, the detailed charge
distribution of the protein will modulate this effect. From
this, it is difficult to derive any general statements because
the balance depends not only on pH but also on the protein
sequence and structure.

FIGURE 2: (a) Simulated, ideal, and measured [Kesvatera et al. (21,
23)] capacitances for calbindin D9k as a function of pH. pI for
calbindin is approximately 4.2. (b) Simulated (atomic model)
capacitances for smMLCK, calmodulin (calcium free), and cal-
modulin with four calcium ions bound. pI for calmodulin is
approximately 3.9.

FIGURE 3: Simulated (amino acid model) and ideal capacitances
for hisactophilin and methylmalonyl-CoA mutase (mmAm) as a
function of pH. pI for hisactophilin is 7.3, and pI for methylmalonyl-
CoA mutase is 5.2.

FIGURE 4: (a) Simulated, ideal, and measured capacitances for
lysozyme. Experimental data are taken from Sakakibara and
Hamaguchi (26). (b) Simulated capacitance for lysozyme (atomistic
model) at different pH and salt concentrations.
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The electrostatic interaction between two proteins will, at
long distances, be dominated by the direct Coulomb interac-
tion provided that the net charge,Q, is sufficiently different
from zero. The induced interactions will play an important
role only for protein-protein interactions at pH values close
to the isoelectric point of one of the proteins; this can be
seen from eq 6. We shall now illustrate this with an (artificial)
example, where calbindin is interacting with lysozyme.
Figure 5a shows the simulated free energy of interaction
between the two proteins at pH 4, which is close to the
isoelectric point for calbindin. At contact, there is a difference
in the interaction energy of 1 kT between a model with fixed
charges compared to a situation where the proteins are free
to adjust their charges.

This difference between the two models is mainly due to
the interaction between the induced charge in calbindin and
the permanent charge in lysozyme. This is a typical result,
and significant effects from charge regulation can be expected
when one of the interacting proteins has a large net charge
and the other has a large capacitance. Experimentally, this
is confirmed by Zydney and Pujar (9), who were able to
separate proteins by charge regulation at pH with high
capacitances.

Following eq 6, we can approximate the difference
between the fixed and regulated case as

where we have replaced the Coulomb interaction with a

simple screened version to approximately account for the
effect of salt. Figure 6 shows a perfect agreement between
the simulated free-energy difference and the calculated one
according to eq 14. Therefore, with minimal effort, eq 14
can be applied to existing models, for example, the DLVO
approximation, so as to account for the induced charge
interaction.

An interesting result is that, despite the fact that both
calbindin and lysozyme are positively charged when isolated
at pH 4, there is still an attractive electrostatic interaction
between the two. Such an attraction could of course be due
to charge-dipole and/or dipole-dipole interactions, but in
the present case, the main contribution to the interaction free
energy comes from the induced charges. This is further
demonstrated in Figure 5b, where one can follow how the
net charge of calbindin changes from+1.5 at infinite
separation to-0.5 at contact between calbindin and lysozyme.

DISCUSSION

We have derived an expression for the protein charge
capacitance and showed how it appears as a response to an
externally applied potential. The same capacitance also enters
the expression for the free energy of interaction between two
proteins allowed to regulate their charges. The induced
interaction coming from a charge regulation mechanism can
be important if one of the proteins is close to its isoelectric
point, while the other carries a net charge. Via the presented
formalism, existing models for protein-protein or protein-
membrane interactions can be easily improved to correctly
describe the induction interaction. Predictions of interaction
free energies and induced protein charges are in excellent
agreement with MC simulations that represent the exact
theoretical solution.

The protein charge capacitance,C, can be obtained from
measured titration curves and from any theoretical model
able to predict the protein charge; our simple continuum
simulations for the protein protonation status reproduce the
experiment very well.

The capacitance varies with pH, and its magnitude is
related to the number of titratable groups in a protein.
Typically, C will be large at pH values in the neighborhood
of the pKa values of titrating residues, although the capaci-
tance maximum can be shifted one or two pH units from
the ideal maximum. The capacitance curve will also be

FIGURE 5: (a) Simulated energy (U) and free energy (A) of the
interaction between calbindin and lysozyme at pH 4 for a protein
model with fixed charges and one with charge regulation. The amino
acid model is used, and the salt concentration is 6 mM. (b) Variation
of the net charge of calbindin and lysozyme as a function of their
separation. Circles represent simulated data based on the amino
acid model, and lines are calculated from the induced charge cf.
eq 5. The pH is 4, and the salt concentration is 6 mM.

â(Areg(R) - Afix(R)) ) â∆A(R) )

-
lB

2e-2κR

2R2
(CcalbClys + ClysQcalb

2 + CcalbQlys
2) (14)

FIGURE 6: Difference in the free energy of interaction between
calbindin and lysozyme at pH 4, with 6 mM salt for a protein model
with charge regulation and one with fixed charges. Symbols denote
the simulated difference (see Figure 5), and the solid line is obtained
from eq 14 withQcalb ) 1.46, Ccalb ) 2.23, Qlys ) 9.33, Clys )
0.88, and 1/κ ) 39 Å.
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broadened because of interactions within the protein. This
means that, in a protein with many aspartates and/or
glutamates, the capacitance will have a maxium around pH
4, while a large number of histidines will lead to a maximum
at pH ≈ 6 and similar for the basic residues.
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When a protein molecule approaches a charged surface, its protonation state can undergo dramatic
changes due to the imposed electric potential. This has a large impact on adsorption strengths that may
be enhanced by several kT. Using mesoscopic simulation techniques as well as analytical theories, we have
investigated this regulation mechanism and demonstrate how it is influenced by salt concentration and
solution pH. Using hisactophilin as a test case, we show how the binding to a lipid membrane is governed
by small changes in pH and that this is intimately coupled to the charge regulation mechanism.

Introduction
More than 50 years ago, Kirkwood and Shumaker1 used

statistical mechanical perturbation theory to discuss
charge regulation in bio-molecules, i.e., that the total
protein charge is not constant but affected by nearby
charged objects (other proteins, membranes, DNA, etc.).
Although Hill2 covered this work, today charge regulation
is still considered somewhat exotic and is absent from
most text books. This is in spite of the fact that the
regulation interaction is on line with ion-dipole and
dipole-dipole interactions and can be more long ranged.
Several workers have presented applications of charge
regulation, including its importance for protein-protein
interactions,3-5 protein adsorption to surfaces,6-8 and
pores.9 In particular, Ståhlberg and Jönsson6 noted that
a proteins ability for charge induction is proportional to
the slope of the pH titration curve. In a recent study,5 we
showed that this slope, ∂Q/∂pH, is directly related to charge
fluctuations and that it enters the original expression for
the free energy presented by Kirkwood and Shumaker
back in 1952. In the present work, we shall advance on
this concept and derive expressions valid for a protein
near a charged surface.

Theoretically, a charged planar surface in a salt solution
can be described using the well-known Gouy-Chapman
(GC) theory10 and in the most simple case the protein is

described as a charged sphere. Although this very simple
approach is able to qualitatively account for many
phenomena,11 it neglects several features, namely that
(1) the protein charge distribution is not spherical sym-
metric. and (2) the protein net charge is not constant.
Furthermore, the GC theory fails to describe ion correla-
tion effects, important for multivalent ions. These issues
can be resolved using Monte Carlo simulations that
represent the exact numerical solution to the given
statistical mechanical model. Using a mesoscopic protein
description, the essential physics of protein-protein
interactions can be captured,12,5 and we shall here expand
the model to include a charged wall.

Hisactophilin, a small 13 kDa globular protein rich on
histidines (26%) is used as a test case to demonstrate
charge regulation under different solution conditions. It
binds in vivo to negatively charged membranes, and the
process is governed by small changes in intracellular pH.13

At pH ≈ 7.5, no binding is observed, but as the pH is
lowered to around 6.5, the protein is attached to the
membrane. This conforms with the isoelectric point of 7.1
so that lowering pH will render the protein positively
charged, thus attracting it to the membrane. In addition
to this purely electrostatic interaction, there is evidence
of an anchoring of a myristoyl chain attached to the
N-terminus. We will not penetrate this mechanism, but
concentrate solely on the electrostatic contribution.

Model and Theory

Monte Carlo Simulation. The protein-charged wall
system is investigated using the traditional Metropolis
Monte Carlo simulation method.14 Although atomistic
protein models are tractable within this scheme, coarse
graining the atomic NMR or X-ray structure can reduce
the computational cost significantly. An efficient and
accurate method is to present each amino acid by a single
hard sphere located in its mass center. This simplification
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may seem drastic but in fact the charge distribution as
well as the protein surface is well conserved.12 In this
study, we use the NMR structure of hisactophilin as
determined by Habazettl et al.15 and an amino acid
diameter of 7 Å.

Mobile ions (salt and counterions) and the protein are
immersed in a cubic box of side length 150 Å where one
side is coated with charges so as to mimic a charged wall.
Sampling is done in the NVT-ensemble using the mini-
mum image convention as well as periodic boundary
conditions in two dimensions. The protein molecule can
freely rotate around its center of mass as well as translate
perpendicular to the charged wall. Ions can move in any
direction, except those representing the charged wall;
these are restricted to movements on their box side. Unless
otherwise stated, the wall charge is negative with a density
of 300 Å2 per charge, corresponding to -0.053 C/m2. In a
biological context this value is reasonable.

The solvent is treated as a structure-less medium,
described solely by a temperature-dependent dielectric
constant, εr. Ions and other particles are represented by
hard spheres with diameter σ and charge number q. This
comprises the primitive model of electrolytes and the
energy of a particle, i, interacting with another, j, is
evaluated according to

where rij is the separation, e is the electronic charge, and
ε0 is the permittivity of vacuum. Here we have assumed
a uniform dielectric response throughout the cell. Although
this is a valid description for proteins with charges near
their surfaces, it may be less applicable for proteins with
buried, charged groups. In this study, we concentrate on
electrostatic interactions only and thus ignore dispersion
and hydrophobic interactions.

The ionization states of the titrateable residues are
determined by continuously exchanging protons between
the protein and the salt solution. This is done by randomly
selecting residues and move their protons to the solution,
and visa versa. The proper Boltzmann factor for this
process is16,5

where ∆Uel is the change in electrostatic energy, pKa is
the dissociation constant of the isolated amino acid, (+)
applies when protonating an amino acid, and (-) when
deprotonating. In terms of thermodynamics, the left-hand
sideof theexponential, ∆Uel, corresponds to thesitesexcess
chemical potential or activity coefficient. This semica-
nonical approach allows the protein to respond to changes
in the electrostatic surroundings, i.e., the protonation state
will depend on pH, the protein structure, salt concentra-
tion, and on the protein-wall separation.

To summarize, the simulation model describes the
protein in mesoscopic detail, treats mobile ions explicitly,
and finally lets the protein charge respond to electric
perturbations.

Binding Free Energy. From the simulation, we obtain
the protein-wall potential of mean force, w(r) which can
be represented in a more compact manner via a binding
free energy

where r is the distance from the wall to the proteins mass
center and â ) 1/kT where k is Boltzmann’s constant. The
range [0;τ], defining the protein-wall complex is subject
to an operational definition and should be close to the
range of interaction.17 For salt solutions, this is ap-
proximately the Debye-length, 1/κ and thus we set τ to

From an experimental point of view, τ depends on the
method since different apparatuses have different criteria
for discriminating the bound and nonbound state. Hence,
slightly different binding constants can be expected from
different experiments.

Protein Charge Capacitance. Although charge regu-
lation may be investigated using molecular simulation,
we will here present formal expressions to elucidate the
observed behavior. A key concept in our analysis is the
protein charge capacitance5 that quantifies the proteins
ability for charge fluctuations

C is an intrinsic protein property and can be obtained
experimentally or from theory as the derivative of the pH
titration curve. When pH is close to pKa of a titrateable
site, the protonation status is easily disturbed by elec-
trostatics, thus increasing the capacitance. For example,
for a histidine rich protein (pKa

his ≈ 6.5) C is expected to
peak around physiological pH. Of course this is slightly
modulated by solution conditions as shown in Figure 1.

An important property of the capacitance is that it enters
the expression for the free energy of interaction as shall
now be derived. The interaction energy, u between an
external electric potential, Φ and a protein molecule with
partial charge numbers, qi can be written as

The origin of the external potential may be a charged
surface or another molecule, assuming that the spatial

(15) Habazettl, J.; Gondol, D.; Wiltscheck, R.; Otlewski, J.; Schleicher,
M.; Holak, T. A. Structure of hisactophilin is similar to interleukin-1b
and fibroblast growth factor. Nature 1992, 359, 855-858.

(16) Ullner, M.; Woodward, C. E.; Jönsson, B. A Debye-Hückel theory
for electrostatic interactions in proteins. J. Chem. Phys. 1996, 105,
2056-2065.

(17) Wennerström, H. Organized solutions: surfactants in science
and technology; Marcel Dekker: New York, 1992; p 410.

uij ) { qiqje
2

4πεεrrij

rij g (σi + σj)/2

+∞ rij < (σi + σj)/2
(1)

exp[-∆Uel/kT ( ln 10(pH - pKa)] (2)

Figure 1. Charge capacitance for hisactophilin obtained from
a simulation of a single protein molecule at two different salt
concentrations.

〈w〉 )
∫0

τ
w(r)exp(-âw(r)) dr

∫0

τ
exp(-âw(r)) dr

(3)

τ ) 1/κ + contact

C ≡ 〈Q2〉 - 〈Q〉2 ) - 1
ln 10

∂Q
∂pH

(4)

âu ) eΦ
kT∑ qi (5)
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variation is small compared to the radius of the protein.
From statistical mechanical perturbation theory,18 the free
energy can be approximated with

where 〈...〉 denotes an average over all configurations of
the unperturbed system. Now, combining eq 4-6, we
arrive at the following expression:

The first term is the direct Coulomb interaction between
the protein and the potential and the second term is the
interaction arising from charge fluctuations. To account
for the proteins nonspherical charge distribution, one can
easily add a dipole term to eq 7.

Analytical theories such as that of Gouy and Chapman,
provide distance dependent expressions for Φ and take
into account the effect of salt and counterions. Thus, using
the protein charge and capacitance (as obtained from a
titration curve), eq 7 can be used to estimate the adsorption
free energy at different solution conditions.

Results and Discussion
Often, when estimating protein-wall interactions, the

protein charge is kept constant; that is, no charge
fluctuations are permitted. The free energy of interaction
for such a system is shown in Figure 2 (dashed lines), and
it is clear that the binding is strongly affected by pH and
salt concentration. However, if charge regulation is
included, the attractive interaction is drastically enlarged
(Figure 2, solid lines), especially at low salt concentration.
Comparing with the traditional fixed-charge case at pH
6.5 and 10 mM salt, we have lowered the free energy
minimum from -2 to -7 kT or more than 12 kJ/mol. This
is a difference not to be neglected, and it clearly demon-
strates that charge fluctuations indeed can be crucial. A
similar finding was done by Biesheuvel et al.,7 who, by
solving the Poisson-Boltzmann equation, showed that
lysozyme binds to a negatively charged silica surface for
pH > pI at low salt concentrations and attributed this to
charge regulation.

Increasing the salt concentration rapidly screens elec-
trostatic interactions, but even at 150 mM salt, a free
energy minimum is found for pH 6.5. Again this minimum
is enhanced by charge regulation, this time by around 1
kT/molecule. Figure 3 shows how the binding free energy
varies with pH and salt concentration as well as the effect
of charge regulation. At high pH, there is a net repulsion
due to the negative protein charge and the effect of charge
regulation seems insignificant. As pH is lowered, the
protein goes through its isoelectric point, and at pH 6.5,
the charge is around +5. Simultaneously, charge regula-
tion becomes increasingly more important.

This is further demonstrated by following the induced
charge as a function of protein-wall separation in Figure
4. At long distances, the protein is unaffected by the wall
potential, but at shorter separations, it becomes increas-
ingly more protonated. This strengthens the electrostatic
attraction, especially at pH 6.5 where the protein charge
has doubled at contact.

Another interesting mechanism when a protein adsorbs
to a surface is the polarizability of charged headgroups in
the lipid membrane. In Figure 5, we show the variation
in average surface charge density, calculated around the
perpendicular axis connecting the protein and the surface.
In the case of a fixed protein charge, no change in surface
charge density is observed, but when charge regulation
is included, we see a narrow band where the surface charge
density has been increased by more than six times. As
shown in Figure 4 the induced charge can be substantial,
leading to an increased potential exerted on the planar
surface. Depending on the protein structure and charge
distribution, the charged headgroups may then organize
to minimize the free energy. However, since the band is
very narrow, corresponding to roughly one charge, the
contribution to the total free energy of interaction is small.

We will now account for the above, simulated findings
in terms of the charge capacitance as shown in Figure 1.

(18) McQuarrie, D. A. Statistical Mechanics; Harper Collins: New
York, 1976.

Figure 2. Free energy of interaction between hisactophilin
and a negatively charged wall at 10 mM (left) and 150 mM
(right) 1:1 salt. Dashed lines are for a model with fixed protein
charges.

âA ) -ln 〈exp(-âu)〉 ≈ 〈âu〉 - 1
2
(〈(âu)2〉 - 〈âu〉2) (6)

âA ) eΦ
kT

Q - 1
2(eΦ

kT)2
C (7)

Figure 3. Electrostatic binding free energy at different pH
and salt concentrations. Lines are for a model with charge
regulation; lines with symbols for one with a fixed protein
charge.

Figure 4. Induced charge as a function of the protein-wall
separation at different pH. Cs ) 70 mM.
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According to eq 7, the regulation free energy scales linearly
with the capacitance and thus, for hisactophilin, we expect
charge regulation to be most important at pH 5-7. In this
interval it is interesting to note the marked capacitance
gradient around pH 7 and that changing pH from 7.5 to
6 doubles the capacitance, rendering the protein much
more susceptible to electrostatic perturbations. That this
occurs precisely at physiological conditions is hardly a
coincidence, but rather an efficient evolutionary design
to control binding properties. Now, to quantify the
interaction, we need to evaluate the magnitude of the
potential from the charged surface, salt, and counterions.
For this, we use the simple, linearized solution of the
Gouy-Chapman potential

where 1/κ is the Debye length and γ ) tanh(eψ0/4kT), ψ0
being the surface potential. Figure 6 shows how the
regulation interaction varies with pH and salt concentra-
tion and is very similar to that obtained by the more
elaborate simulation method. Notable, this simple ap-
proach is able to predict the strong regulation dip below
pH 7 and low salt concentration as is also found in Figure
3. As the salt concentration is increased, the potential
from the surface is efficiently screened by exp(-2κr) and
the induced interactions play only a minor role. To some
extent, this effect may be counter-acted by the fact that
capacitance peaks are often enlarged when increasing the
salt concentration. This stems from screening of internal

electrostatic interactions in the biomolecule, causing the
capacitance profile to resemble the ideal capacitance,
which has a more distinct form.5 The results presented in
Figure 6 are calculated using capacitances for 70 mM salt
and as such does not include this effect.

Conclusions

We have investigated the physiologically important
interaction between hisactophilin and a charged, lipid
membrane. As also found experimentally, the binding can
be controlled by very small changes in pH and salt plays
an important role for the adsorption. At pH 6.5 and 10
mM salt concentration, the charge regulation mechanism
can contribute significantly (5 kT) to the adsorption free
energy. This is explained by the unusually high capaci-
tance of the histidine-rich protein at this pH. Increasing
pH strongly reduces charge regulation, since hisactophi-
lin’s capacitance is considerably diminished by even small
changes in pH. At physiological salt concentrations, the
same behavior is observed, but the contribution from
charge regulation is now reduced to around 1 kT, still
creating a distinct minimum in the potential of mean force.

The derived expression for the regulation free energy
between a protein and an electrical potential is general
and can, in combination with the Gouy-Chapman theory,
account for protein adsorption at different pH and salt
conditions. Using this framework together with the slope
of the titration curve, i.e., the capacitance, we arrive at
the same conclusions as obtained by the more involved
Monte Carlo simulation method.

LA050607Z

Figure 5. Variation in surface charge density in spherical
shells around the perpendicular axis connecting the wall and
the protein, averaged over configurational space. pH ) 6.5 and
Cs ) 150 mM.

Φ(r) ) 4γkT
e

exp(-κr) (8)

Figure 6. Charge regulation interaction at different pH and
salt concentrations calculated from the Gouy-Chapman po-
tential at protein-wall contact (15 Å), using a surface charge
density of 300 Å2.
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Both natural and synthetic polyelectrolytes form strong complexes with a variety of proteins. One peculiar
phenomenon is that association can take place even when the protein and the polyelectrolyte carry the same
charge. This has been interpreted as if the ion-dipole interaction can overcome the repulsive ion-ion
interaction. On the basis of Monte Carlo simulations and perturbation theory, we propose a different explanation
for the association, namely, charge regulation. We have investigated three different protein-polymer complexes
and found that the induced ionization of amino acid residues due to the polyelectrolyte leads to a surprisingly
strong attractive interaction between the protein and the polymer. The extra attraction from this charge-
induced charge interaction can be severalkT and is for the three cases studied here, lysozyme,R-lactalbumin,
andâ-lactoglobulin, of the same magnitude or stronger than the ion-dipole interaction. The magnitude of
the induced charge is governed by a response function, the protein charge capacitance〈Z2〉 - 〈Z〉2. This
fluctuation term can easily be calculated in a simulation or measured in a titration experiment.

I. Introduction

The complexation of polyelectrolytes and proteins is exten-
sively used in pharmaceutics, foods, and cosmetics.1-9 The
subject has been addressed by a number of authors exploring it
from experimental measurements8-13 to theoretical model-
ing.10,14,15 The strength of interaction is to a large extent
regulated by electrostatic interactions, governed by key param-
eters such as pH and salt concentration.8-10

A particularly interesting issue is the apparently paradoxical
formation of soluble complexes at conditions where the net
charges of the protein and the polyelectrolyte have the same
sign. Experimental studies of Dubin, Kruif, and co-workers9-12,16

have demonstrated this special feature of the polymer/protein
complexation. The term complexation “on the wrong side” has
been used, meaning that a polyanion forms a complex with a
protein at a pH above the isoelectric point of the protein.4,9,14,16

The molecular interpretation of such studies has focused on the
assumption of “charged patches” on the protein surface.9,11,12,14,17

This mechanism has also been used in order to explain protein
chromatography data.18

Following this reasoning, a polyanion monomer should bind
in a positive protein region, and vice versa. The same kind of
argument has been used when discussing the interaction between
two protein molecules at the isoelectric point, pH≈ pI. A more
formal way to describe the interaction between oppositely
charged patches on two protein molecules is in terms of a
multipole expansion. That is, for two neutral protein molecules
the leading terms would then be dipole-dipole, dipole-
quadrupole, etc. Other electrostatic properties of the protein,
however, may be more important, and Kirkwood and Shu-
maker19 demonstrated theoretically in 1952 that fluctuations of

residue charges in two proteins can result in an attractive force.
Recently, Lund and Jo¨nsson20 have taken up this idea and used
Monte Carlo simulations and a charge regulation theory in order
to explain protein-protein association in a purely electrostatic
model.

In a system were electrostatic interactions are known to be
relevant, protein charge fluctuations could be an important
component of models aimed to describe such systems. This
potentially relevant contribution was neglected in previous
simulations.9,14-16 Conversely, the authors invoked an additional
1/R6 attractive potential in order to better describe the com-
plexation “on the wrong side”.9,14,15

The purpose of this work is 2-fold: The first is to demonstrate
that a polyelectrolyte and a protein molecule at its isoelectric
point do form complexes in apurely electrostatic model. We
will also show that the driving force for the complexation can
be due to charge fluctuations in the protein. The second issue
is the relative importance of “charged patches”, i.e. charge-
dipole interactions, etc., versus the charge regulation term.
Second-order perturbation theory offers an easy way to get a
qualitative picture of the significance of these terms. We have
chosen a set of globular proteins extensively investigated in the
literature in order to demonstrate these interactions, namely,
lysozyme (lys),R-lactalbumin (R-lac), â-lactoglobulin (â-lac),
bovine serum albumin (bsa), insulin (ins), and calmodulin
(CaM).

Lysozyme,R-lactalbumin, andâ-lactoglobulin were chosen
to be extensively studied due to both their biological relevance
and particular physicochemical features. These milk proteins
exhibit some interesting properties and are often used as models
of protein folding, stability, complex formation, and other
biophysical and biochemical studies.21-28 Lysozyme is a small
enzyme that hydrolyzes the glycosidic bond betweenN-
acetylmuramic acid andN-acetylglucosamine. In the human
body it acts as a barrier preventing infections.21,22R-Lactalbumin
is a calcium metalloprotein that is responsible for the formation
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42 19. Fax: +55 (16) 3633 29 60. E-mail: fernando@fcfrp.usp.br.
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of lactose in the mammary gland.23 Different other functional
properties such as apoptosis and induction of cell growth
inhibition have also been attributed to this whey protein.23-25

Even thoughâ-lactoglobulin, the primary component of whey,
might be related to milk allergy, shows the ability to bind small
hydrophobic molecules such as retinol and fatty acids, and has
significant industrial interest,26-30 its biological function remains
unclear.27,28,30

II. Model and Simulation

The proteins were modeled as rigid bodies in full atomistic
detail according to the X-ray structures provided by the Protein
Data Bank31,32(PDB identities are 2LZT, 1HFY, 1BEB, 1AO6,
1APH, and 1CLL for lys,R-lac, â-lac, bsa, ins, and CaM,
respectively). To account for the acid-base equilibrium, the
initial atomic charges were allowed to change their charge state
according to the solution pH.33

All protein atoms present in the X-ray structure are described
by hard spheres of radiusRa ) 2 Å. This is a reasonable size,
and the results are not sensitive to this particular detail. The
protein was kept fixed at the center of an electroneutral spherical
cell, whose radiusRcell was determined by the protein concentra-
tion. This so-calledcell model34,35 has been used successfully
in the past.36,37 The electrolyte solution surrounding the
macromolecule, including neutralizing counterions, is described
by the restricted primitive model.38 Each mobile ionk with
chargeqk is treated explicitly as a hard sphere of radiusRa ) 2
Å, while the solvent is treated as a structureless dielectric
medium characterized by a relative dielectric permittivittyεs.

The interaction between any two particles is given by

whereε0 is the vacuum permittivity,qi andqj denote the charges
on particles i and j, respectively, andrij represents their
separation.

A single flexible polyelectrolyte is modeled as a chain of
Nmon ) 21 charged hard spheres of radiiRmon ) 2 Å and charges
of qmon ) -e (e is the elementary charge) connected by
harmonic springs. The bond interaction potential between
neighboring monomers is calculated as

whereri,i+1 is the distance between monomeri and i + 1, rmin

is the separation corresponding to the energy minimum for a
dimer andlB ) e2/4πε0εskT is the Bjerrum length. We have
used a value of 4 Å for rmin, which results in an average
monomer-monomer separation of approximately 7.4 Å. The
polymer is not allowed to titrate. The total energy of the system
for a given configuration is then

whereNmob ) Nc + Ns + Nmon is the total number of mobile
particles comprisingNc counterions,Ns added salt ions, andNmon

number of polyanion beads andN ) Nmob + Np is the total
number of particles including theNp protein atoms. The term
Vex(ri) is the imposed hard wall that defines the cell

The dielectric constant,εs, was set to 77.8 at room temperature
of 300 K.

Simulation Details.Single protein properties, average residue
charges on lysozyme,R-lactalbumin, andâ-lactoglobulin to-
gether with their dipole moments, and capacitances at different
pH values were obtained initially in the simulations. The
simulation cell,RC ) 189 Å, contained a single titrating protein
fixed at the center plus 20 ion pairs as well as neutralizing
counterions. The polyelectrolyte was absent in these simulations,
and the corresponding pI values for the studied proteins were
acquired from the average protein charge as a function of pH.
Partial residual charges of the protein at pI were saved and used
in simulations B and C.

The complexation between the protein and the polyelectrolyte
was studied in the second set of simulations. The protein was
kept fixed at the center of the cell, while the polyelectrolyte
was free to move within the cell. The probability distribution,
P(R), for the separation between the center of mass of the two
was sampled, and during a first production run an approximate
potential of mean force,w(R), was generated

The probability distribution,P(R), was updated during a second
production run, and a final well-converged potential of mean
force was obtained. The cell boundary introduces an artificial
repulsion in the potential of mean force at separations close to
RC. It is easy to correct for this depletion effect by subtracting
off the potential of mean force for a polyelectrolyte in a cell
without a protein. All simulations were done with a protein
concentration of 0.06 M and salt concentration of approximately
1 mM. An appropriate number of counterions was always
present in order to obtain an electroneutral system.

The simulations were performed in a semi-grand-canonical
ensemble using the standard Metropolis Monte Carlo algorithm39

with random displacements of mobile species (salt, counterions,
and polyanion beads) within the cell. In addition, the simulation
cell was coupled to a proton bath in order to establish a constant
pH in the system. After every tenth attempted move of the
mobile charges, an attempt was made to delete/insert protons
on the titrating groups. In reality, protonation of an acidic group
means that acid has been added to the solution. Hence in the
simulation, a protonation was balanced by the insertion of a
negative mobile charge in order to maintain electroneutrality.
The acceptance/rejection of an attempt to change the ionization
state of a residue was based on the trial energy

where∆Uc is the corresponding change in Coulomb energy,
and pK0 is the dissociation constant of the model compound.
These values were taken from ref 40 and are given in Table 1.
This method is accurate for weakly charged systems, whereas
for really highly charged titrating objects, it has to be corrected
for the excess chemical potential of the proton.

Perturbation Theory. In this section we present a perturba-
tion approach for the interaction between a protein molecule at
pH ) pI and a charged molecule, i.e., in our case a polyelec-
trolyte. If the charges of a neutral protein are fixed, that is, the
amino acid residues are not allowed to titrate, then the leading
term in the perturbation expansion is the ion-dipole interaction;
the polyelectrolyte net charge interacts with the dipole moment

u(rij) ) {∞ rij e 2Ra

qi qj

4πε0εsrij
otherwise

(1)

âubond)
lB

2rmin
3

∑
i)1

Nmon-1

(ri,i+1)
2 (2)

U ) ∑
i)1

Nmob

Vex(ri) +
1

2
∑
i)1

N

∑
j)1

N

u(rij) + ubond (3)

Vex(ri) ) {0 ri e RC

∞ otherwise
(4)

âw(R) ) -ln P(R) + constant (5)

∆Utitra ) ∆Uc ( kT ln 10(pH- pK0) (6)
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of the protein. If the amino acid residues can titrate and change
their charges as a function of protein-polyelectrolyte separation,
then an additional induced charge-charge interaction will appear
(this term is sometimes referred to as the “regulation term”).
Both terms are identically zero in first order, but contribute
attractively to the free energy in second order. The thermally
averaged ion-dipole term varies asR-4, while the ion-induced
charge interaction is more long ranged and decays likeR-2.
The relative importance of these two terms is the focus of the
present work. Below follows a formal derivation of the terms.

Consider a protein described by a charge distribution [r i,qi],
assuming its center of mass is placed at the origin, and the
polyelectrolyte simply modeled by a point chargeQR at [R].
The electrostatic energy can then be written as

where we have usedqi ) ezi. From statistical mechanical
perturbation theory41,42 we can, provided thatâU(R) is small,
write the interaction free energy as

where〈...〉0 denotes an average over all configurations in the
unperturbed system. Assuming thatR . ri, we now perform a
multipole expansion and obtain the final expression for the ion-
ion, ion-induced charge, and ion-dipole interactions

where〈Z〉0 is the protein average charge number,〈µ〉0 ) |∑izir i|
the average dipole moment number,and finallyC is the charge
fluctuations or theprotein charge capacitance43

The capacitance is an intrinsic property of a protein defining
its ability for charge regulation. It is easily obtained as the
derivative of the titration curve and is thus strongly pH-
dependent. Since charge fluctuations are largest when pH)
pKa of a certain residue, the capacitance of a protein rich on,
say, glutamic acid will peak at pH 4-5 (pKa

glu ≈ 4.4).
The leading term in eq 7 is the ion-ion interaction, but this

vanishes at the isoelectric point where〈Z〉0 ) 0. Left is the

regulation and the ion-dipole termsswhich one is more
important depends of course onC and〈µ〉0 but it is interesting
to note that the charge regulation term is more long ranged than
the ion-dipole interaction.

Equation 7 is valid in the limit of no salt. To approximately
account for the effect of salt, the above expansion can be
performed using a screened potential, where the ionic strength
is expressed through the Debye length, 1/κ. In the case of the
ion-ion term, this brings about an additional factor of exp(-
κR), while the ion-induced charge interaction is screened by
exp(-2κR).

III. Results

The Isoelectric Point.As a starting point, we have simulated
a single protein in salt solution varying the pH in order to
determine the isoelectric point. Figure 1 shows the net charge
of the three proteins as a function of pH. The corresponding pI
values forR-lactalbumin,â-lactoglobulin, and lysozyme are 5.4,
4.5, and 10.9, respectively. These values have been obtained at
low salt concentration. Addition of salt changes pI, and dimer
or oligomer formation can also affect the isoelectric point. For
example, the addition of 1 M salt to anR-lactalbumin solution
decreases pI by approximately 0.4 units. Due to these facts, the
experimental values forR-lactalbumin varies between 4.1 and
4.6, while forâ-lactoglobulin the experimental data are slightly
more scattered, between 4 and 5.5.

Figure 2 describes how the capacitance and the protein dipole
moment vary with pH. The dipole moment is strictly well
defined only at pI. For a nonneutral molecule the value ofµ
will depend on the coordinate originshere we have used the
center of mass. BothR-lactalbumin andâ-lactoglobulin have
large dipole moments over an extensive pH interval, while
lysozyme has a comparatively small dipole moment. The
capacitance for the three proteins varies significantly with pH,
but at pI it is considerable for all three proteins. The smallest
capacitance value is found forR-lactalbumin [CR-lac(pH ) pI
) 5.4) ) 0.99], and it is related to the number of amino acid
residues that titrate around pI. The relevant properties for the
three proteins are collected in Table 2. Note, however, that the
data forâ-lactoglobulin is obtained for the dimer.26,28

Perturbation Calculations. Table 2 contains the basic
physical data for the proteins used in this study. We now use
this information to analytically calculate the ion-induced charge
and ion-dipole contributions to the interaction free energy
according to eq 7. The magnitude of the regulation and ion-
dipole terms at contact are also given in Table 2. The results
indicate that the regulation term is by far the most important
term for lysozyme, while forR-lactalbumin andâ-lactoglobulin

TABLE 1: Titrating Residues in the Investigated Proteinsa

protein residues Asp Glu His Tyr Lys Cysb Arg

pK0
40 4.0 4.4 6.3 9.6 10.4 10.8 12.0

lysozyme (2LZT) 129 7 2 1 3 6 0 11
R-lactalbumin (1HFY) 123 14 4 3 4 13 0 1
â-lactoglobulin (1BEB) 320 20 32 2 8 30 2 6
bovine serum albumin

(1A06)
585 35 62 15 18 58 35 24

insulin (1APH) 41 0 4 2 4 1 6 1
calmodulin (1CLL) 142 16 19 1 2 5 0 6

a The PDB identities are reported together with the corresponding
protein name. The dissociation constants for the isolated amino acids
are given in the second line and the corresponding pK0 for C- and
N-termini are 3.8 and 7.5, respectively.40 b Only cysteins not engaged
in sulfide bridges can titrate.

âU(R) ) ∑
i

lBziZR

|R - r i|
R ) |R|

âA(R) ) -ln〈e-âU(R)〉0 ≈ -ln[1 - 〈âU(R)〉0 + 1
2

〈(âU(R))2〉0]

âA(R) ≈ lBZR(〈Z〉0

R ) - lB
2 ZR

2( C

2R2
+

〈µ〉0
2

6R4 ) (7)

C ≡ 〈Z2〉0 - 〈Z〉0
2 ) - 1

ln 10

∂〈Z〉0

∂pH

Figure 1. The simulated charge number ofR-lactalbumin (spheres),
â-lactoglobulin (squares), and lysozyme (no symbols). The salt
concentration is 1 mM, and the protein concentration is 0.1 mM.
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the two terms are of comparable magnitude. The actual numbers
in Table 2 should of course be regarded as qualitative and not
quantitative. However, they still give, as will be seen below, a
correct picture of the behavior of the three proteins. The contact
separation has been defined as the protein radius plus the
polyelectrolyte radius,Rp + Rpe. The latter has been chosen as
half the end-to-end separation of the corresponding neutral ideal
polymer. Both the protein and polyelectrolyte radii are ap-
proximate, but even with a rather generous variation of these
values, the general picture of Table 2 will remain the same.

The regulation term decays slower than the ion-dipole term,
which means that it will gain in relative importance at larger
separation; see Figure 3. This means that even if the two terms
are comparable at contact, the regulation term can still dominate
the contribution to, for example, the second virial coefficient.

Monte Carlo Simulations. We have performed four different
simulations for each protein: A, the “neutral” protein, that is

all charges have been set to zero; B, the protein with fixed
charges at each amino acid residue; C, the protein with an ideal
dipole at its center of mass; D, the protein with titrating amino
acid residues.

The first set of simulations (A) describes only the shape of
the protein, and the free energy of interaction is of course
everywhere repulsive. These energy curves also give an indica-
tion of how difficult it is to deform the polyelectrolyte. The
second set of simulations (B) uses fixed fractional charges on
all residues, which has been determined in a separate simulation
of the isolated protein at the appropriate pH. In the next set
(C), the charge distribution of the protein is replaced by an ideal
dipole; see Table 2. In the fourth and final set (D) the amino
acids are allowed to titrate and this simulation contains all
electrostatic contributions including the ion-induced charge term.
The difference between set B and C describes the importance
of higher order electrostatic moments, quadrupole, octupole, etc.,
in the protein, while a comparison of sets B and D will reveal
the effect of the regulation mechanism.

Figure 2. (a) The simulated dipole moment number,µ ) 〈|∑zir i|〉, of R-lactalbumin (no symbols),â-lactoglobulin (spheres), and lysozyme (squares).
The salt concentration is 1 mM, and the protein concentration is 0.1 mM. (b) Same as (a) but the protein capacitance,C.

TABLE 2: Charge Capacitance and Dipole Moment
Number for the Investigated Proteins at Their Isoelectric
Pointsa

pI C µ Rp + Rpe -âAreg -âAdip

lysozyme 10.9 1.7 24 58 5.7 0.2
R-lactalbumin 5.4 0.99 82 58 3.3 2.2
â-lactoglobulin 4.5 3.5 128 73 7.4 2.2
bovine serum albumin 5.5 3.2 297 81 5.5 7.7
insulin 5.4 0.36 49 51 1.6 1.3
calmodulin 4.0 3.7 51 58 12 0.9

a Rp is an estimate of the protein radius. The two last columns give
the interaction between the protein and the polyelectrolyte at contact,
that isâAreg ) -lB2 ZR

2C/2(Rp + Rpe)2 andâAdip ) - lB2ZR
2µ2/6(Rp +

Rpe),4 whereRpe has been chosen as half the end-to-end separation of
the corresponding neutral polymer (30 Å) andZR ) -21.

Figure 3. The contribution to the free energy of interaction from the
charge-induced charge term (solid lines) and the ion-dipole term
(dashed lines). Lines without symbols describe lysozyme, filled circles
refer to R-lactalbumin, and filled squares refer toâ-lactoglobulin,
respectively. The free energies are calculated from eq 7 using simulated
capacitances and dipole moments from Table2 and σ ) Rp + Rpe.
Note that the ion-dipole terms forR-lactalbumin andâ-lactoglobulin
coincide.

Figure 4. The potential of mean force between the centers of mass of
the protein and the polyelectrolyte obtained from MC simulations with
model D. The curves have been calculated at the respective isoelectric
points for lysozyme (no symbols),R-lactalbumin (filled circles), and
â-lactoglobulin (filled squares).

Figure 5. The potential of mean force between the centers of mass of
lysozyme and the polyanion. The curves have been calculated at pI,
and the four curves correspond to the different cases mentioned in the
text.
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The calculated potential of mean force,w(R), for the three
proteins at their respective pI all show a clear minimum; see
Figure 4. The relative strength of the minima are in qualitative
agreement with perturbation calculations, cf. Figure 3, while
the actual numbers are approximately half the values predicted
by second-order perturbation theory. A more quantitative
comparison is difficult since the size of the polyelectrolyte is
not unambiguously defined. The minima appear at roughly the
same separation despite the fact thatâ-lactoglobulin is more
than twice as big as the two others. This can be explained by
the elongated form of the former, which also results in a more
long ranged attraction. The separationR can approach zero,
which corresponds to a situation where the polyelectrolyte wraps
around the protein. Note, however, thatw(0) is repulsive
indicating that the “wrapping” of the chain around the proteins
is an entropically unfavorable structure.

â-Lactoglobulin forms a stronger complex with the polyanion
than R-lactalbumin. Experimental results with whey proteins
and gum arabicum by Weinbreck et al.44 indicate a significant
complex formation between the polyelectrolyte andâ-lactoglo-
bulin, which was the main component in the whey protein in
their experiment. An experimental comparison of the relative
strength of complex formation betweenR-lactalbumin and
â-lactoglobulin at their respective pI is difficult, since the charge
of gum arabicum varies in this pH interval. The attractive
minimum in the protein-polyelectrolyte complex is reduced upon
addition of salt,14 and we can use the minima ofw(R) in Figure
4 in order to estimate the critical ionic strength. Assuming that
the salt screening can be described by simple Debye-Hückel
theory and that the complex can be defined as dissolved when
the interaction is less thankT, we get the following relation

The factor of 2 in the exponent comes from the fact that the
second-order terms dominate the interaction. Following this
recipe we find that approximately 10 and 20 mM salt is
sufficient to dissociate theR-lactalbumin andâ-lactoglobulin
polymer complexes, respectively. This is in fair agreement with
experiments,9,14but the actual numbers are of course dependent
on the criterion in eq 8.

Thus, we have shown that a polyanion can form a complex
with a neutral protein molecule. Next, we will make a numeri-
cally more rigorous partitioning of contributions to the potential
of mean force shown in Figure 4. The minimum for lysozyme
is solely due to charge regulation, Figure 5. If the charge
distribution on lysozyme is considered fixed, then the polyan-
ion-lysozyme interaction is essentially everywhere repulsive.
Replacing the detailed charge distribution with an ideal dipole
at the mass center has a small effect on the free energy. This
means that the ion-dipole interaction gives a very small

attractive contribution, while the effect from higher order
moments is negligible.

As shown in Figure 6, the polyanion interacts more strongly
with R-lactalbumin andâ-lactoglobulin than with lysozyme. For
R-lactalbumin the regulation term increases the depth of the
minimum from approximately 4 to 6kT. An interesting effect
is that the dipolar protein shows a stronger interaction than the
protein with a detailed but fixed charge distribution. This means
that the ion-quadrupole interactions etc. add repulsive contribu-
tions to the interaction. The potential of mean force for
â-lactoglobulin is even more attractive (≈10kT) in good
agreement with the predictions based on the perturbation
calculations.

IV. Conclusions

Strong protein-polyelectrolyte complexes can form due to
purely electrostatic interactions even when the protein has a
zero net charge at its isoelectric point. Two mechanisms
contribute to the attractive interaction. One is the ion-dipole
term and the other is a charge-induced charge interaction. The
latter is often the dominating term and its strength is related to
charge regulation of titrating amino acid residues in the protein.
This ability can be quantified by the protein charge capacitance
C ) 〈Z2〉 - 〈Z〉2. The capacitance can be calculated from a
simulation or measured in a titration experiment. Three different
protein-polymer complexes have been investigated here by
Monte Carlo simulations: lysozyme,R-lactalbumin, andâ-lac-
toglobulin. The contribution from the charge-induced charge
interaction to the free energy of interaction can be severalkT s
and is for the three cases studied here of the same magnitude
or stronger than the ion-dipole interaction. We believe that this
type of interaction is of importance also for the interaction
between two proteins.
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Note Added after ASAP Publication.The following Note
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was published on the Web on 2/9/2006.

After publication of our paper on the Web, we were informed
of the paper by P. M. Biesheuvel and M. A. Cohen Stuart,
Langmuir 2004, 20, 2785, which, using mean-field theory,
also suggests charge regulation as a relevant mechanism to
describe polyelectrolyte-protein complexation at the wrong
side of the isoelectric point.

This paper was reposted on 2/21/2006.

Figure 6. The potential of mean force between the centers of mass of (a)R-lactalbumin and (b)â-lactoglobulin and a polyanion, calculated at the
respective pI. The four curves correspond to the different cases mentioned in the text.

exp(-2κRmin)|âw(Rmin)| e 1 (8)

Protein-Polyelectrolyte Interaction J. Phys. Chem. B, Vol. 110, No. 9, 20064463

Paper 4 – Polyelectrolyte-Protein Complexation

63



References and Notes

(1) Schmitt, C.; Sanchez, C.; Desobry-Banon, S.; Hardy, J.Crit. ReV.
Food Sci. Nutr.1998, 38, 689-753.

(2) Doublier, J. L.; Garnier, C.; Renard, D.; Sanchez, C.Curr. Opin.
Colloid Interface Sci.2000, 5 (3, 4), 202-214.

(3) Zancong, S.; Mitragotri, S.Pharm. Res.2002, 19, 391-395.
(4) Xia, J.; Dubin, P. InMacromolecular Complexes in Chemistry and

Biology; Dubin, P., Bock, J., Davies, R. M., Schulz, D. N., Thies, C., Eds.;
Springer-Verlag: Berlin, 1994.

(5) Jiang, G.; Woo, B. H.; Kangb, F.; Singhb, J.; DeLuca, P. P.J.
Controlled Release2002, 79, 137-145.

(6) Simon, M.; Wittmar, M.; Bakowsky, U.; Kissel, T.Bioconjugate
Chem.2004, 15, 841-849.

(7) Hubbell, J. A.Science2003, 300, 595-596.
(8) Girard, M.; Turgeon, S. L.; Gauthier, S. F.J. Agric. Food Chem.

2003, 51, 6043-6049.
(9) de Kruif, C. G.; Weinbreck, F.; de Vries, R.Curr. Opin. Colloid

Interface Sci.2004, 9, 340-349.
(10) Grymonpre´, K. R.; Staggemeier, B. A.; Dubin, P. L.; Mattison, K.

W. Biomacromolecules2001, 2, 422-429.
(11) Hattori, T.; Hallberg, R.; Dubin, P. L.Langmuir2000, 16, 9738-

9743.
(12) Seyrek, E.; Dubin, P. L.; Tribet, C.; Gamble, E. A.Biomacromol-

ecules2003, 4, 273-282.
(13) Hallberg, R.; Dubin, P. L.J. Phys. Chem. B1998, 102, 8629-

8633.
(14) de Vries, R.J. Chem. Phys.2004, 120 (7), 3475-3481.
(15) Carlsson, F.; Linse, P.; Malmsten, M.J. Phys. Chem. B2001, 105,

9040-9049.
(16) de Vries, R.; Weinbreck, F.; de Kruif, C. G.J. Chem. Phys.2003,

118 (10), 4649-4659.
(17) Park, J. M.; Muhoberac, B. B.; Dubin, P. L.; Xia, J.Macromolecules

1992, 25, 290-295.
(18) Regnier, F. E.Science1987, 238, 319-323.
(19) Kirkwood, J. G.; Shumaker, J. B.Proc. Natl. Acad. Sci. U.S.A.

1952, 38, 863-871.
(20) Lund, M.; Jo¨nsson, B.Biophys. J.2003, 85, 2940-2947.
(21) Humphrey, B. D.; Huang, N.; Klasing, K. C.J. Nutr. 2002, 132,

1214-1218.
(22) Proctor, V. A.; Cunningham, F. E.CRC Crit. ReV. Food Nutr.1988,

26 (4), 359-3958.
(23) Fast, J.; Mossberg, A.-K.; Svanborg, C.; Linse, S.Protein Sci.2005,

14, 329-340.

(24) Svensson, M.; Hakansson, A.; Mossberg, A.-K.; Linse, S.; Svan-
borg, C.Proc. Natl. Acad. Sci. U.S.A.2000, 97 (8), 4221-4226.

(25) Kuwajima, K.FASEB J.1996, 10, 102-109.
(26) Gottschalk, M.; Nilsson, H.; Roos, H.; Halle, B.Protein Sci.2003,

12, 2404-2411.
(27) Oliveira, K. M. G.; Valente-Mesquita, V. L.; Botelho, M. M.;

Sawyer, M. L.; Ferreira, S. T.; Polikarpov, I.Eur. J. Biochem.2001, 268,
477.

(28) Fogolari, F.; Ragona, L.; Licciardi, S.; Romagnoli, S.; Michelutti,
R.; Ugnolini, R.; Molilari, H. Proteins: Struct., Funct., Genet.2000, 39,
317-330.

(29) Motrich, R. D.; Gotteroa, C.; Rezzonico, C., Jr.; Rieraa, C. M.;
Rivero, V. Clin. Immunol.2003, 109, 203-211.

(30) Pellegrini, A.; Engels, M.Curr. Med. Chem.: Anti-Infect. Agents
2005, 4, 55-66.

(31) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E.Nucleic Acids Res.2000,
28, 235-242.

(32) Protein data bank. http://www.rcsb.org/pdb, 2005.
(33) Kesvatera, T.; Jo¨nsson, B.; Thulin, E.; Linse, S.Proteins: Struct.,

Func., Genet.1999, 37, 106-115.
(34) Hill, T. L. Statistical Mechanics; McGraw-Hill: New York,

1956.
(35) Marcus, R. A.J. Chem. Phys.1955, 23, 1057.
(36) Jönsson, B. The Thermodynamics of Ionic Amphiphile-Water

SystemssA Theoretical Analysis. Ph.D. Thesis, Lund University, Lund,
Sweden, 1981.

(37) Svensson, B.; Jo¨nsson, B.; Thulin, E.; Woodward, C.Biochemistry
1993, 32, 2828-2834.

(38) Levesque, D.; Weis, J. J.; Hansen, J. P. InMonte Carlo Methods
in Statistical Physics; Binder, K., Ed.; Springer-Verlag: Berlin, 1986; Vol.
5, pp 47-119.

(39) Frenkel, D.; Smit, B.Understanding Molecular Simulation: From
Algorithms to Applications; Academic Press: San Diego, CA, 1996.

(40) Nozaki, Y.; Tanford, C.Methods Enzymol.1967, 11, 715-734.
(41) McQuarrie, D. A.Statistical Mechanics; Harper Collins: New York,

1976.
(42) Zwanzig, R.Nonequilibrium Statistical Mechanics; Oxford Uni-

versity Press: Oxford, 2001.
(43) Lund, M.; Jönsson, B. Biochemistry 2005, 44 (15), 5722-

5727.
(44) Weinbreck, F.; de Vries, R.; Schrooyen, P.; de Kruif, C. G.

Biomacromolecules2003, 4, 293-303.

4464 J. Phys. Chem. B, Vol. 110, No. 9, 2006 da Silva et al.

64



Implications of a high dielectric constant in proteins

Mikael Lund∗ and Bo Jönsson
Theoretical Chemistry, Chemical Center, Lund University

POB 124, S-22100 Lund, SWEDEN.
Phone: +46-46-222 0381 / Fax: +46-46-222 4543

Email: mikael.lund@teokem.lu.se

Cliff E. Woodward
School of Chemistry, University College, University of New South Wales
Australian Defence Force Academy, Canberra ACT 2600, AUSTRALIA.

Abstract

Solvation of protein surface charges plays an important role for the protonation states
of titratable surface groups and is routinely incorporated in low dielectric protein models
using surface accessible areas. For many-body protein simulations, however, such dielectric
boundary methods are rarely tractable and a higher level of coarse graining is desirable.
We here propose the inverse scheme and scrutinize how charges on a high dielectric surface
are affected by the non-polar protein interior. A simple dielectric model combined with
explicit ion Monte Carlo simulations show that for small, hydrophilic proteins this effect
is mostly negligible, suggesting that the protein (solution) can be approximated with
a uniform high dielectric constant. This conception is verified by estimates for titration
curves and acidity constants for four different proteins (BPTI, calbindin D9k, ribonuclease
A, and turkey ovomucoid third domain) that all correlate well with experimental titration
data.

Keywords: Protein electrostatics, Monte Carlo Simulation, Coarse Graining, Dissociation Constant, Charge
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Introduction

In the past century protein ionization has caught the attention of many researchers and a
wealth of experimental data is available, especially potentiometric titration curves and NMR
determined pKa values. Theoreticians have not neglected the subject either and numerous
protein solution models have been proposed for the calculation of pKa values. These range
from simple, spherical models as that of Tanford and Kirkwood1–3 (TK), numeric Poisson-
Boltzmann (PB) and generalized Born calculations4–9 as well as explicit solvent models.10,11

In the original TK model1–3 titratable charged groups were assumed to be buried within a
spherical protein with a dielectric constant much less than that of the surrounding (aqueous)
solvent. Modern approaches utilizing electrostatic continuum models, can be viewed as gener-
alizations of the original TK model. Two important questions arise: (i) What is the dielectric
constant of the protein? and (ii) Where is the dielectric interface between protein and solvent
to be located? The interior of a protein may have a higher than expected dielectric constant due
to polarization contributions from the configurational freedom of polar side chains12–14 as well
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as proton fluctuations in titratable groups.12,15 Many values for the interior dielectric response
of proteins have been reported, ranging from 2 to 40, approximately. We will not review this
whole branch of biophysics but merely note that there is little agreement about this quantity
and, in macroscopic models it may ultimately be best treated as an adjustable parameter16

matched to experimental results.
The majority of charges in globular proteins are located ”close” to the protein solution

interface (Fig. 1). These surface groups interact directly with the surrounding solvent, as ev-
idenced by the fact that proteins dissolve in water through solvation of polar surface groups
and that protons exchange between side chains and the solvent. This means that the posi-
tion of the interface between a protein and the aqueous solvent is ambiguous. This fact led
Tanford to concede some thirty years ago17 “...that the Kirkwood model is not appropriate for
proteins because the ionic groups often extend into the surrounding solvent sufficiently far so
that the medium between them is pure solvent and the effect of the large dielectric cavity several
Ångstroms away is minimal.” In connection with this, it is pertinent to note, that a number
of researchers6,18–22 have obtained good agreement with experimental titration results using a
uniform dielectric constant model, i.e., where the internal dielectric constant of the protein is
set to that of the surrounding solvent. That such simple model can have predictive success
may seem puzzling, but it is worthwhile to note that todays descendants of the original (low
dielectric) TK approach are not entirely different from the uniform dielectric model: In recog-
nition of surface charge solvation most models incorporate surface accessible areas, rendering
them much more successful than what was previously reported by Tanford.

In this paper we will turn the problem upside down: Instead of consider solvent effects on
charges in a low dielectric, we will study interior perturbations of charges in a high dielectric.
For this purpose we propose a slight modification of the TK model by imbedding a low dielectric
sphere within a static protein model (Fig. 2). This sphere will mimic the expected low dielectric
deep interior of the protein. In the region between the sphere and the protein surface, we shall
assume that the dielectric constant is equal to that of the solvent. This is in recognition of
the ability of the solvent to permeate this region to solvate charged residues and, further, that
the residues themselves will increase the local polarization of this region. We shall use this
model to calculate theoretical protein titration curves and make a comparison with a range of
experimental results. Though crude, this model should give us some insight into the role played
by the low dielectric interior in determining titration behavior in proteins.

Model and theory

X-ray or nuclear magnetic resonance determined protein structures are represented by either:(a)
a collection of spheres (diameter, σ=4 Å) each representing an atom or (b) spheres representing
amino acid residues located at their center-of-mass and with a diameter, σ, determined from
their molecular weight, Mw, according to the formula,

σ/2 =

(
3Mw

4πρNAv

)1/3

ρ = 1 g/cm3. (1)

The latter (coarse grained) model reduces the number of particles from the order of thousands
to hundreds and can be useful when studying several protein molecules.23–25 The non-polar deep
interior is described by a spherical cavity with radius a and dielectric constant εp, centered at
the protein center of mass. The solvent is treated as a dielectric continuum with dielectric
constant, εs, while counter ions and salt are explicitly treated as mobile, charged hard spheres
(σ=4 Å). The canonical ensemble distribution is sampled using the Metropolis Monte Carlo
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(MC) algorithm26 where the total energy is calculated as a sum of pair interactions,

U =
∑
i,j

(
uel(rij) + uhs(rij)

)
+
∑

i

urf (ri) i 6= j (2)

uhs(rij) =

{
0 rij > (σi + σj)/2
∞ otherwise

(3)

The electrostatic part of the pair potential, uel, is found by identifying the appropriate bound-
ary conditions and solving the Poisson and Laplace equations for a spherical discontinuity,
yielding:27,28

uel(rij) =
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with Γ1 = (εs−εp)Pn(cos θ)
εp+εs(n+1)/n

and Γ2 = (εp−εs)Pn(cos θ)
εs−εpn/(n+1)

. Pn is the Legendre polynomial evaluated for

the angle, θ between ri and rj. In the case of a homogeneous dielectric medium (εp = εs) Eq. 4
reduces to the plain Coulomb potential and for i = j the second term contributes to the self
energy,

urf (r) =
1

2
qφrf (r) =

q2

8πε0εs

∞∑
n=1

Γ1

r

(
a

r

)2n+1

(5)

here shown for a charge outside the spherical cavity.
Titration is accomplished by exchanging protons (+1 charges) between random sites in the

protein and the solvent which brings about an additional energy term:15

∆U = ∆U el ± (pH− pKa)kT ln 10 (6)

where kT is the thermal energy, ∆U el is the change in electrostatic energy, pKa is the site’s
intrinsic acidity constant, (+) applies for protonation and (-) for deprotonation. The first term
in Eq. 6 is purely electrostatic while (pH− pKa)kT ln 10 accounts for “chemical” interactions,
as measured for small model compounds (pKa: Ctr 3.8, Asp 4.0, Glu 4.4, His 6.3, Ntr 7.5, Tyr
9.6, Lys 10.4, Cys 10.8, Arg 12.0) – more on this in the next section.

We have also investigated excess chemical potentials, µex for ion pairs in the solution using
the Widom particle insertion method.29 Here a cat- and an anion (σ = 4 Å) are simultaneously
inserted at random positions in the cell and µex can be sampled according to

µex = −kT ln
〈
e−∆U/kT

〉
0
, (7)

where ∆U is the total energy change for the process evaluated according to Eq. 2

Results and discussion

Eq. 6 embodies an approach often employed for protein titration calculations. The term,
pH − pKa, includes bonding and (de)solvation components and obtaining it from first princi-
ples would require quantum calculations and more complex simulations. Instead, we will adopt
the approach of obtaining the pKa values from titration data on small amino acid model com-
pounds. Thus, ∆U el, accounts for the energy change that occurs when a proton is transferred
from the model compound to the corresponding site in the protein. As in other work, we will as-
sume that ∆U el contains only electrostatic contributions, i.e., we assume that non-electrostatic
contributions to proton binding are the same in the protein and the model compound. In order
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to calculate, ∆U el, one needs to properly model the electrostatic environment of protons in the
model compound as well as that of the protein. In this work, we shall assume that the low
dielectric region of the model compounds are small enough to be neglected. Furthermore, we
shall assume that the titratable sites on the protein lie outside the low dielectric sphere, mod-
elling the interior of the protein. The validity of these assumptions will eventually be verified
upon comparison with experiment.

The quantity ∆U el can itself be separated into one- and two-body components. The one-
body contribution is the so-called generalized Born energy, ∆UBorn, and is due to the interaction
of a proton with its own reaction potential arising from the polarization of the surrounding
dielectric continuum. If the proton were immersed in a uniform dielectric continuum with
dielectric constant εs, one would obtain the usual Born expression,

UBorn
∞ ∝ −(1− 1/εs)/σB (8)

where the proton is assigned a Born diameter, σB. The generalized Born energy is a sum of
this term and a contribution due to the polarization of dielectric boundaries. In our model,
the proton is assumed to be located in the solvent region of the dielectric medium in both the
protein and the model compound. This leads to a cancellation of the terms of the type in
Eq.(8). Thus, for a proton removed from the model compound and placed in the protein at a
distance r0 from the center of the low dielectric sphere (r0 > a),

∆UBorn = urf (r0) (9)

where urf is the reaction potential defined by Eq.(5). We note that ∆UBorn, is generally
positive, i.e., it disfavours the transfer of charge to the protein, due to the presence of the low
dielectric region, which is assumed absent in the model compound. A charge placed near the
dielectric interface will be subject to an unfavourable reaction potential. The magnitude of
this effect is illustrated in Fig. 4 where we have used MC simulations to calculate the excess
chemical potential, µex, for an ion outside a low dielectric sphere. We have investigated the
dependence on the radius of the sphere and the external salt concentration. Firstly, we note
that the larger is the radius of the low dielectric region, the more unfavourable the reaction
potential becomes. This is due to a greater amount of lower dielectric material being closer to
the ion at a given distance from the surface. Since the reaction field is relatively short ranged
we observe essentially no screening at physiological salt concentrations. The effect of the low
dielectric region on the Born energy is not large. With reasonable choices for the low dielectric
sphere and salt concentrations, µex (stemming from the Born energy) is only of the order of
a few tenths of a kT . Furthermore, we expect that our approximations will overestimate the
penalty of charging the protein, as we have assumed that the dielectric environment of the
model compounds can be replaced by a uniform dielectric continuum modelling water.

We also note, that the same approximations, as embodied in Eq.(9), but applied to a model
whereby the proton is transferred into the low dielectric sphere of the protein instead (r0 < a),
would give rise to a negative Born energy, and thus favours the creation of charge in the protein.
This apparent paradox arises, in this case, as the model compound would now be assumed to
be equivalent to an infinite low dielectric continuum. This is obviously unphysical.

The two-body contribution to ∆U is due to the electrostatic interaction between the titrating
proton and all the other charges present on the protein. This interaction is mediated by the
intervening dielectric material and any dielectric boundaries present. The presence of the
boundaries can have some unexpected consequences. To illustrate this, we present in Fig 3, the
interaction between two like charges close to the spherical dielectric boundary in the protein.
One may expect that the presence of the low dielectric region would have a tendency to enhance
the electrostatic interaction between charges. However, our results show that, even when the
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charges are only a few Ångstroms from the surface of the low dielectric sphere, there is little
change in their interaction, whether the sphere is present or not. The electric field lines tend
to avoid the low dielectric region and the interaction is well approximated by that in a uniform
solvent. By looking at the difference between the ion pair interaction in the uniform and non-
uniform dielectric model, we are better able to see the effect of the dielectric boundary, Fig.3
(b). For example, for charges just outside the spherical surface, the pair interaction is more
repulsive than the direct Coulomb potential at small angles, but then becomes slightly more
attractive at large angles. This can be understood by realising that the effect of the boundary
on the potential set up by a given charge, can be represented by induced multi-poles, which are
unfavourably aligned with the charge. Considering just the induced dipole component, when
a second charge is brought into the vicinity of the first charge and the induced dipole, it is
repelled by both at small angles and repelled by the charge and attracted by the dipole at
large angles (greater than 90). Though truncation at the dipole term is a poor approximation,
addition of the higher order induced multipoles does not alter the qualitative picture.

Changing the radius, a, of the low dielectric region does have a significant influence on
the pair interaction. If a is decreased the effect of the induced multipoles is diminished. On
the other hand, the discontinuity has a much larger effect when the interacting charges become
immersed in the low dielectric region. When the charges are just below the surface (a = ri+0.1)
the small angle interactions are more screened than in the case of the uniform, high-dielectric
description. This counter-intuitive result is caused by a strong polarization of the high dielectric
region. The multipoles induced by a charge are attractive to a second charge at small angles
and repulsive at large angles. When the charges are even further below the surface of the low
dielectric sphere the interaction is much more repulsive than that without the sphere. These
results demonstrate how sensitive the interaction between charges are to the choice of the
position of the dielectric boundary.30

Using our model, we have investigated the titration behaviour of four different proteins:
calbindin, bovine pancreas trypsin inhibitor (BPTI), ribonuclease A, and turkey ovomucoid
third domain. We used MC simulations to calculate the titration curve for ribonuclease A. In
this case we have assumed that the dielectric constant was uniform throughout the solution
and the protein, with a value, εp = εs=80. The results are given in Fig. 5. Good agreement
is found between the computed and measured titration curve, despite the absence of a low
dielectric protein interior. We found that the calculated results remained equally good, even in
the presence of a low dielectric spherical region, provided the it did not include ionic groups.
The calculated results differ significantly from the ideal or “null” curve, which does not include
electrostatic interactions. This is an important observation and hints that the underlying
physical mechanisms captured by our model are probably correct.

For turkey ovomucoid third domain and BPTI we have calculated individual pKa values
(Table 1 and 2) and compared with measurements and theoretical predictions based on the
PBE5 and a modified Tanford-Kirkwood (MTK) approach.31 Again we have assumed a uniform
high dielectric constant (εp = εs = 80). In both cases the model agrees well with experimental
data and is very competitive with the alternative models (see also Khandogin and Brooks32

work on ovomucoid), which both assume low dielectric interiors for the protein.
It is worth noticing that the MTK calculations are significantly improved by introducing

either a higher dielectric constant (reported up to 20), or letting the flexible side chains relax
in the electric field. As is discussed by Havranek and Harbury31 and others,16,33 buried polar
groups may require a more subtle description.

As a final example, Fig. 6 shows measured22,34 and our calculated titration curves for
calbindin D9k. In this case, we have incorporated a low dielectric spherical interior in the
protein, The radius of the interior was made as large as possible, while still keeping the surface
protein charges external to it. We observed no notable deviations from results obtained using
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a uniform dielectric constant (not shown in graph). The agreement with the experimental data
is good, with the electrostatic interactions tending to flatten the titration curve, compared to
the ideal model. This effect is slightly overestimated by the simulations.

The decomposition of intrinsic pKa-values is not trivial and it is of interest to analyze how
minor shifts in these values will influence the titration curve. This can be conveniently estimated
using the protein charge capacitance15 which is a molecular measure of how the protonation
state responds to an external electric potential, φext:

C =
〈
Z2
〉
− 〈Z〉2 = − ∂Z

βe∂φext

= − 1

ln 10

∂Z

∂pH
(10)

where Z is the total protein charge number. As evident from Eq. 6 shifting the pKa values is
equivalent to applying an external potential. At pH 4 the capacitance for calbindin is approxi-
mately 2 (from the derivative of the titration curve) and shifting the intrinsic pKa values by 0.4
units will cause the protein to bind two more protons (∆Z ≈ −C ln 10∆pKa). If at a pH where
C is small, much larger shifts are required to significantly influence the titration curve. Gen-
erally, electrostatic interactions tend to lower and broaden the capacitance peaks, thus making
the model calculations less sensitive to the choice of intrinsic parameters. For example, the
ideal capacitance for calbindin at pH 4 is more than twice as large as in the real protein. As for
BPTI and ovomucoid third domain, the root-mean-square value (rms) was found to be 0.4-0.5
pK units (Table 1 and 2) indicating that better agreement with experiment may be obtained
by slightly changing the intrinsic pKa values. At the moment we do not offer any controlled
way of effecting this, we merely note this as an operational possibility.

Conclusions

We have investigated the effect of incorporating a low dielectric sphere to model protein inte-
riors in simulations. The model highlights some counterintuitive behaviours, for example, the
interaction between a pair of charges is not always enhanced by placing them in the vicinity
of the low dielectric core. This is due to the orientation of the induced multi-poles, relative to
the charges. This suggests that the placement of the dielectric boundaries in a protein/solvent
system is an important consideration, when attempting to model phenomena such as protein
titration. Buried ionic groups may thus prove particularly problematic in both uniform dielec-
tric models as well as in those containing a dielectric boundary.

This notwithstanding, we have found that an electrostatic model, which assumes a uniform
value for the dielectric constant (equal to that of water) is able to accurately predict both
site and overall titration behaviour for a range of small proteins. This is invaluable for many-
body protein simulations (protein aggregation etc.) where dielectric boundaries pose a difficult
computational problem. Further, since salt particles are treated explicitly the model is capable
of describing multivalent ions and/or high salt concentrations.

Incorporating a low dielectric sphere to model the interior of a protein has little effect on the
results, provided the sphere does not include surface charges. In the light of these findings and
from the fact that molecular continuum models are idealized approximations in the first place
we suggest that the straightforward strategy of assuming a uniform dielectric model seems to
provide an accurate an simple model for protein electrostatics.
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36. Richarz, R., Wüthrich, K. (1978) High-field 13c nuclear magnetic resonance studies at 90.5
mhz of the basic pancreatic trypsin inhibitor Biochemistry 17, 2263–2269.

37. Wuthrich, K., Wagner, G. (1979) Nuclear magnetic resonance of labile protons in the basic
pancreatic trypsin inhibitor J. Mol. Biol. 130, 1–18.

38. Bode, W., Wei, A. Z., Huber, R., Meyer, E., Travis, J., Neumann, S. (1986) X-ray
crystal structure of the complex of human leukocyte elastase (pmn elestase) and the third
domain of the turkey ovomucoid inhibitor EMBO 5, 2453.

39. Shaller, W., Robertson, A. D. (1995) ph, ionic strength, and temperature dependences of
ionization equilibria for the carboxyl groups in turkey ovomucoid thirs domain Biochemistry
34, 4714–4723.

40. Tanford, C., Hauenstein, J. D. (1956) Hydrogen ion equilibria of ribonuclease J. Am.
Chem. Soc. 78, 5287–5291.

41. Leonidas, D. D., Shapiro, R., Irons, L., Russo, N., Acharya, K. R. (1997) Crystal struc-
tures of ribonuclease a complexes with 5’-diphosphoadenisine 3’-phosphate and 5’diphos-
phoadenosine 2’-phosphate at 1.7 a resolution Biochemistry 36, 5578.

42. Szebenyi, D. M. E., Moffat, K. (1986) The refined structure of vitamin D-dependent
calcium-binding protein from bovine intestine. molecular details, ion binding, and implica-
tions for the structure of other calcium-binding proteins J. Biol. Chem. 261, 8761–8777.

Table 1: Measured (∼25-50 mM salt) and calculated pKa values for BPTI. The MC (35 mM salt)
and PB (150 mM salt) results are based on the crystal structure35 (4PTI). The MC calculation
was performed using an all atom description and a uniform dielectric response (εp = εs = 80).

Ideal PB5 MC Exp.36,37

Asp3 4.0 3.3 2.8 3.0
Asp50 4.0 2.5 2.5 3.4
Glu7 4.4 4.7 2.9 3.7
Glu49 4.4 3.5 3.8 3.8
Lys15 10.4 10.4 10.3 10.6
Lys26 10.4 10.4 10.7 10.6
Lys41 10.4 10.3 11.1 10.8
Lys46 10.4 10.0 10.4 10.6
Ctr 3.8 3.8 2.7 2.9
Ntr 7.5 7.2 7.3 8.1
rms 0.6 0.7 0.5

Figure 1. Distances (Å) to the center-of-charge of: titrateable sites (circles) and the protein
surface closest to that site (line). Plotted for calbindin (left) and ribonuclease (right) using an
all atom description based on the crystal structures.
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Table 2: Measured and calculated pKa values for turkey ovomucoid third domain at 10 mM 1:1
salt concentrations. The MC and MTK calculations are both based on the crystal structure38

(1PPF). In the simulations, the amino acid model was applied.
Ideal MTK31 MC Exp.39

εp=4, relaxed εp=20 εp=80

Asp7 4.0 2.1 3.0 3.2 < 2.6
Glu10 4.4 4.0 3.5 3.9 4.1
Glu19 4.4 3.1 2.7 3.4 3.2
Asp27 4.0 2.9 3.7 2.7 < 2.3
Glu43 4.4 5.6 4.7 4.1 4.7
Ctr56 3.8 2.6 3.2 2.5 < 2.5
rms 1.2 0.5 0.7 0.4

Figure 2. Illustration of a protein model, where all charges (salt and protein) are located in a
high-dielectric region (εs) and the non-polar interior is described by a spherical, charge-less low
dielectric cavity (εp) of radius a.

Figure 3. Top: Effect of the non-polar protein interior (εp) on the electrostatic pair interaction
between two positive charges situated in a polar region (εs) a few Ångstroms away from the
dielectric interface. Calculated using Eq. 4 with ri = rj = 15 Å and a = 13 Å. Bottom: Plotted
as the difference with various values of a.

Figure 4. MC simulation of the decay of the excess chemical potential of a univalent ion
outside a low dielectric, neutral sphere (εp=2, εs=80) of different radii, a. The energy offsets
are arbitrary.

Figure 5. Measured40 and calculated titration curve for ribonuclease A at 10 mM salt. The
MC results are based on the crystal structure 1AFU.41

Figure 6. Titration curve for calbindin obtained from intrinsic pKa-values (ideal), measure-
ments,22,34 and MC simulations assuming the protein core to be a low dielectric spherical cavity
of radius a and dielectric constant, εp=2. The simulations were performed using the full atomic
structure (PDB entry 3ICB42) and with a ionic strength of 5 mM matching the experimental
conditions.
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It is well known that attractive electrostatic interactions can occur between strongly coupled
species of like charge [1, 2, 3, 4, 5, 6]. This is known as ion-ion correlations and in electrostatic
continuum models it is often explained via a partitioning of free energies into individual contri-
butions from energy and entropy. For example, Guldbrand et al. [1] found that the attraction
between like charged surfaces in the presence of divalent counter ions were due mainly to a
strong energetic component that could overcome the repulsive entropic contribution from the
counter ions. This is true within the primitive model where the solvent screened Coulomb
potential is treated as an energy. However, the dielectric constant – and especially that for
water – is temperature dependent since it contains solvent degrees of freedom. In the following
we will scrutinize the implications of this basic fact and see that the physics behind ion-ion
correlations can in fact be explained using alternative arguments.

Consider a N -particle system, RN , interacting through an effective, temperature dependent
potential. The system free energy is then given by

A = −kT ln
∫

e−U(T,RN )/kT dRN (1)

Even though the configurational “energy” U(T,RN) has the character of a free energy, Eq. 1
is still valid and A is the true system free energy. The average energy can always be obtained
through

U = A− T
∂A

∂T

=

∫ (
U(T,RN )− T ∂U(T,RN )

∂T

)
e−U(T,RN )/kT dRN∫

e−U(T,RN )/kT dRN

We now make the assumption that the configurational energy function, U(T,RN), is a sum
of pairwise additive, solvent screened Coulomb potentials. This corresponds to the primitive
model and while Eq. 1 now becomes approximate, the agreement with experimental data – both
for free energies and derivatives – is often excellent, even at different temperatures [7, 8, 9].
The total energy can now be written as:

U =

(
T∂ε
ε∂T

+ 1
) ∫

U(T,RN)e−U(T,RN )/kT dRN∫
e−U(T,RN )/kT dRN

=

(
T∂ε

ε∂T
+ 1

)〈
U(T,RN)

〉
R

At room temperature T∂ε
ε∂T

' −1.37 (Ref. [10]) and we arrive at the following

U ' −0.37
〈
U(T,RN)

〉
R

(2)

U in Eq. 2 accounts for both implicit and explicit energy components and should be regarded
as the total system energy. This has the interesting implications that interactions in a polar
solvent are mostly governed by entropy ; either from ions or dipoles.

Figure 1 shows a Monte Carlo simulation study (see ref. [6] for technical details) of the
interaction between two like charged colloidal particles in the presence of different counter
ions. In the case of monovalent counter ions a strong repulsion prevails and in the traditional
picture, i.e. where ∂ε/∂T = 0 this is explained by a decreased entropy arising when bringing
the macromolecules (and ions) into contact. Also, note that the energy is attractive. In the
case of trivalent counter ions this entropic cost is reduced since there is three times less ions
and, further, the attractive energetic component is enhanced.

However, if the temperature variation of the dielectric constant of water is included (Fig. 1,
right) a different picture emerges. In the first case (monovalent counter ions) the repulsion stems
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mainly from entropy, but the energy has changed sign and is no longer attractive. For trivalent
ions the inter-colloid, ion-ion correlation attraction is caused by entropy and not energy as
previously argued in the continuum model. These findings are derived from empirical knowledge
of the behavior of the dielectric constant and an attempt to explain them will inevitably involve
water dipoles on a microscopic level. Thus, we are beyond the continuum description and the
following argumentation is of course open for discussion. If we start with trivalent counter ions,
bringing the two spheres into close contact the “aggregate” appears neutral, thus diminishing
the electric perturbations of the surrounding medium. For the water dipoles this is entropically
favorable as they become less oriented at the cost of interaction energy with the aggregate.
In the case of monovalent counterions this effect is still present but is opposed by a strong
entropic repulsion brought about by constraining the much larger counterion cloud. This is
also reflected in the excess chemical potential for a 1:1 salt, averaged over the entire simulation
volume using the Widom particle insertion method [11]; for monovalent counter-ions µex=-1.3
kT but only -0.16 kT in the trivalent case. The above considerations can be condensated to
the following:

• Weak coupling → Entropic repulsion (Ionic)

• Strong coupling → Entropic attraction (Dipolar)

This is contrary to the correlation argument that in an electro-neutral system within the di-
electric continuum model, the energy will always contribute with an attractive interaction.
While

〈
U(T,RN)

〉
R

can be useful for deciphering simulation results it is important to keep

in mind that the real energy – given by Equation 2 – dictate a change in sign turning the
entropy/energy balance upside down. This is of course critical when comparing against calori-
metric data and since T/ε∂ε/∂T decrease with increasing T larger deviations can be expected
at elevated temperatures.
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Introduction

Due to their complex structure and mixed composition biomolecules interact via a wide range of
physical mechanisms. This includes hydrophobic-, steric-, dispersion-, and electrostatic forces
and in order to perform predictive studies an understanding of these interactions on a micro-
scopic level is essential. It is generally assumed that electrostatic interactions play key roles for
both structure and function of these molecules. Hence, electrostatic interactions in biomolecules
have been intensively studied over the years. Many studies deal with the properties of a sin-
gle biomolecule [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], while the electrostatic interaction between,
for example, two proteins have not enjoyed the same intense interest [12, 13, 14, 15]. In this
communication we will treat both the electrostatic and van der Waals interaction between two
proteins/peptides in a solution with varying salt concentration and pH. The focus will, however,
be on the former type of interaction. For two equally charged proteins the free energy of inter-
action is dominated by a strong repulsion, which can be significantly modulated by addition of
salt. The energetic and entropic components of this interaction can sometimes vary in a coun-
terintuitive way and we will try to emphasize this conceptually important fact. Additional van
der Waals and/or hydrophobic interactions can sometimes overcome the Coulombic repulsion
and we will discuss the relative importance of these terms, which can be conveniently done via
the second virial coefficient. At short separation, close to contact, the interaction between two
proteins will not only depend on their net charge but on the detailed charge distribution in
the protein. The non-uniform charge distribution depends on the protein structure but also
on solution conditions such as pH and salt concentration. Often, when transcribing protein
structure to functionality the charge distribution is characterized by loosely formulated terms
like “charge patchiness” and “charge compartments”. While these terms may be intuitively
appealing, they fail to quantify any kind of binding properties. We will investigate the im-
portance of the actual charge distribution in the protein and try to describe it in terms of a
multipole expansion. That is, we will discuss the free energy of interaction in terms of ion-ion,
ion-dipole, ion-quadrupole, dipole-dipole etc. interactions and demonstrate its applicability for
a number of protein complexes in aqueous salt solutions.

The non-uniform charge distribution, as well as a non-uniform distribution of hydrophobic
amino acids, should in principle induce orientational correlations between two protein molecules.
We will try to describe this and to quantify the importance of the different terms. Note, however,
that the ion-dipole interaction is subject to an orientational average, which tend to reduce its
importance - the free energy of interaction between an ion and a dipole decays asymptotically
as R−4, where R is their separation. This term can ce compared with the ion-induced ion
interaction, which is not orientationally averaged and decays as R−2. The ion-induced ion term
comes from the fact that the protonation state of an amino acid residue is perturbed by nearby
charged molecules (ions, other proteins, DNA etc.). That is, when two proteins approach, their
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ionization states become correlated lowering the free energy. This charge regulation interactions
can be included in the multipole expansion and can be quantified in terms of the capacitance,
C, which is the key property for describing the ability for charge regulation.

Methodology and Theory

Interaction Model

Figure 1: Snapshot from a MC simulation of two proteins. The red and grey spheres illustrate mobile
cations and anions, while amino acids are depicted as a white spheres, clustered to form the two proteins. In a
simulations, the proteins are displaced along a line and rotated independently. Ions are displaced in all three
directions and the whole system is enclosed in sphere of appropriate radius.

The simulated model system consists of two protein molecules built from spheres immersed
in a spherical cell see Fig.. To maintain electroneutrality and the desired salt concentration,
mobile salt particles with hard sphere diameters, σ = 4 Å, are added. As for the protein shape,
two models have been utilized both based on structural data obtained from the Brookhaven
Protein Databank (PDB). In the first atomic model the protein molecules are mimicked by
replacing each nonhydrogen atom in the protein by a hard sphere with diameter σ = 4 Å,
which, for the largest system results in ??? particles/protein. In addition, one has to include
salt particles and in a dilute protein solution with high salt concentration, the total number of
interacting particles can add up to many thousands. To improve the simulation efficiency, a
slightly simplified mesoscopic model has been developed. Here the atoms in each amino acid are
replaced by a single sphere located at the amino-acid center of mass. The size of these spheres
are set equal for all residues and adjusted so that the total excluded volume of the protein is
equal to that of the atomic model. This amounts to a diameter for the amino acid spheres of
σ = 6.8 Å. Charges are assigned to the center of each sphere according to the actual pH. The
atomic and mesoscopic models produce virtually identical results for the charge distribution as
well as the free energy of interaction of two proteins.

The actual charge on an amino-acid residue is pH dependent, since acidic and basic amino
acids can titrate. This can be taken into account in the simulations, and the charge on a residue
will fluctuate and its average value will be determined by the difference pKa − pH, where pKa

is the acid constant of the hypothetical free amino acid [16]. This theoretical approach has
been applied to single proteins and shown to be in good agreement with experimental data
from nuclear magnetic resonance studies [17, 18].

We use a dielectric continuum model for the solution assuming that all charges are uniformly
screened by a constant relative permittivity with a value equal to that of pure water. Thus,
the simulation cell will contain a collection of spheres, which are fixed in space and can be
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either charged or neutral. In addition the mobile salt partcles are also described as charged
hard spheres - see Fig.. The total interaction energy can be split into short-range repulsive
(hs), electrostatic (el), and van der Waals (vdW) terms,

U =
∑
i>j

[uhs(rij) + uel(rij) + uvdW (rij)] (1)

where rij is the distance between two sites. The repulsive uhs term accounts for the repulsion
arising when the electron clouds from two atoms or molecules come into contact. An exact
description of this contribution requires a complex quantum mechanical treatment, and hence
the simpler hard-sphere term is usually applied as,

uhs(rij) = ∞ rij ≤
σi + σj

2
(2)

where σi is the diameter of site i. The electrostatic term includes Coulombic interactions
between charged sites, and in the dielectric continuum approximation it can be written as,

uel(rij) =
zizje

2

4πε0εrrij

(3)

where εr is the relative dielectric permittivity, zi the valency of site i, e the electron charge,
and ε0 the permittivity of vacuum. To describe the short-range attraction between two protein
sites we invoke a van der Waals-type interaction,

uvdW (rij) = −Dij

r6
ij

(4)

Here Dij determines the magnitude of the attraction and is related to the Hamaker constant,
A [19],

Aij = π2ρiρjDij (5)

where the ρ values are particle densities. As a first approximation, we have decided to use the
same Dij for all amino acids. A straightforward improvement would be to let the amino-acid
size affect the interaction, hence one would have a different Dij for each pair of amino acids.
Calculation of Hamaker constants can be done using the Lifshitz theory [19], but detailed
knowledge of the electronic properties is required and as a consequence, A is often treated as
an adjustable parameter. Fortunately, Hamaker constants are not subject to large variations
and for proteins in water, A ∼ 3− 10 kT [20] (1 kT = 4.11 · 10−27 J at 298.15 K). In addition,
there will also be hydrophobic interactions between some amino acids. One way to treat this
attractive term would be to augment the van der Waals term with an extra attraction at short
separations. We have neglected this interaction as it is probably only important when there is
a structural rearrangement in the aggregation process and this is not taken into account in the
present model.

Monte Carlo simulations

Most simulations were performed in the canonical ensemble using the traditional Metropolis
Monte Carlo (MC) algorithm [21] supplemented with a semicanonical procedure allowing the
protein to titrate[17]. The energy evaluation for each configuration includes all pair interactions
as in eq.(1). During the MC simulation the proteins are allowed to translate symmetrically along
the z-axis and individually rotate around vectors going through their center-of-mass. Mobile
ions may translate in any direction. By these random displacements and rotations all possible
configurations are explored. If a move leads to an energy decrease, the new state is accepted.
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If the energy increases, the state is accepted with the probability exp(−∆Uel/kT ). In addition
to these particles moves, the protein is also allowed to titrate. This is done via a random
change of the ionization status of titrating residues. The acceptance for the titration process is
controlled by a change in electrostatic interactions, ∆Uel, plus the cost for ionizing/neutralizing
the randomly chosen amino acid. The appropriate Boltzmann factor reads,

exp(−∆Utit/kT ) = exp[−∆Uel/kT ± ln 10(pKa − pH)]) (6)

where pH is the chosen pH and pKa is the acid constant for the particular amino acid. The
second term in the exponential can be either positive or negative, depending on whether the
group is ionized or neutralized. After completion of this semicanonical MC scheme, one obtains
the average charge on each titrating residue and hence the proper net charge of the protein.
Note that this procedure mimics the experimental situation, in which a proton released from
the protein is absorbed by buffer maintaining a constant pH. In a few simulations, we have
suppressed the titration and instead used fixed charges appropriate for that particular pH. The
results from these simulations give an indication of the importance of charge regulation.

Proceeding this way, the system eventually reaches equilibrium and its properties can be
sampled. The probability distribution, P (R), for the protein-protein separation is readily sam-
pled and the free energy of interaction is,

βA(R) = − ln P (R) + const (7)

where β = 1/kT and R is the distance between the center-of-masses of the two proteins and
the constant can be found from the asymptote of P (R).

The MC simulations give the exact free energy, but it is sometimes more informative and
gives a better insight to make an approximate partitioning of the free energy. This will allow
us to identify different physical components of the interaction free energy. For this purpose,
we will use statistical mechanical perturbation theory [22] to derive expressions for the free
energy of interaction, A between two charged molecules. Performing a thermal averaging of the
intermolecular interaction energy, U(R, Ω, X) we obtain the exact solution,

βA(R) = − ln
〈
e−βU(R,Ω,X)

〉
(8)

where the brackets denote an unbiased average over all possible configurations, including ori-
entations (Ω) and protonation states (X). If the interaction is small compared to the thermal
energy, kT , then Eq. 8 can be expanded to second order to give,

βA(R) ≈ β 〈U(R)〉 − β2

2

[〈
U(R)2

〉
− 〈U(R)〉2

]
(9)

The electrostatic energy, U(R, Ω, X), is simply the Coulomb potential, summed over all charged
groups, i and j in the two proteins. If salt is present, a screened Debye-Huckel potential is more
appropriate,

βU(R, Ω, X) =


lB
∑∑

zizj

rij
(no salt)

lB
∑∑

zizje
−κrij

rij
(salt)

(10)

Here, lB = e2/4πε0εrkT is the Bjerrum length, rij is the distance between the charges and κ is
the inverse Debye length. Combining eq.(9) and (10) and performiing a multipole expansion
of the charge distribution on each protein, we obtain the free energy expressions as a function
of the protein center-center separation, R (See Table 1). Now we can identify different terms
like the direct ion-ion interaction, ion-induced ion, ion-dipole etc. These contributions are
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expressed in terms of the charge number, Z, the capacitance, C = 〈(∑i zi)
2〉− 〈∑i zi〉2 and the

average dipole number, µ. (The dipole number has the dimension of length and by multiplying
with the elementary charge one obtains the proper dipole moment, µe.) Note that the direct
ion-dipole interaction varies like 1/R2, but that the orientational averaging changes it into
1/R4 and similarly for the dipole-dipole interaction. The Debye-Hückel theory can, at least,
approximately take into account the salt-excluded volume taken up by the proteins, by including
a size parameter, a. We have found that an accurate choice of a is to set it equal to the average
protein radius.

Table 1: Expressions for the free energy of interaction between two charged molecules A and B.
The third column shows the Debye-Hückel screening factor for the various types of interactions.
R is the center-to-center distance and κ is the inverse Debye length. The size parameter, a is
the average protein radius. The subscripts A and B refers to the two proteins.
Interaction βA(R) Screening factor

Ion-ion lBZAZB
R

e−κ(R−a)

1+κa

Ion-induced − l2BZ2
ACB

2R2

(
e−κ(R−a)

1+κa

)2

Induced-induced − l2BCACB

2R2 e−2κR

Ion-dipole −(lBZAµB)2

6R4

(
e−κ(R−a)

1+κa

)2
(1 + κR)2

Dipole-dipole −(lBµAµB)2

3R6
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Results

Basic protein properties

In order to demonstrate the presented methods we shall analyze two protein complexes, namely
fab-lysozyme (antibody-antigene) and barnase-barstar (substrate-inhibitor). The structure of
both complexes are known (PDB entries 3HFL and 1BRS) and the individual protein structures
can be directly employed in the MC simulations - Table 2 shows their amino acid composition.

Table 2: Titrating residues in the investigated proteins. The standard dissociation constants
for the isolated amino acids [16] are given in the second line and the corresponding pK0 for C-
and N-termini are 3.8 and 7.5, respectively. †Only cysteins not engaged in sulfide bridges can
titrate.
Protein residues Asp Glu His Tyr Lys Cys† Arg
pK0 - 4.0 4.4 6.3 9.6 10.4 10.8 12.0
Lysozyme 129 7 2 1 3 6 0 11
Fab (L-chain) 214 10 10 2 11 13 1 7
Barnase (A-chain) 110 9 3 2 7 8 0 6
Barstar (D-chain) 89 4 10 1 3 6 0 3

Valuable information is obtained by simulating the protonation state of a single protein in
a salt solution. Computationally, this is a fast procedure and the resulting data immediately
provides insight to the intermolecular interactions. The essential properties are: the total
charge number (Z), the charge capacitance (C), and the dipole moment (µ). Values are shown
in Fig.3 and 2 and we shall use data from these graphs as input for the perturbation expressions
in Table 1. Before doing so, we give a description of the obtained properties:
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Figure 2: Charge numbers and capacitances for some of the investigated proteins. All data
are calculated using amino acid level Monte Carlo simulation of a single, titrating protein in a
dilute salt solution.

At low pH all proteins are fully protonated, but as pH is increased they pass their iso-electric
points which, for the investigated proteins, span a large interval, from barstar with pI=4.3 to
lysozyme with pI=10.9. At high pH, eventually all protons are released giving rise to substantial
net negative charge and possibly denaturation. The presented calculations are based on the
x-ray structure of the proteins and any structural rearrangement is not taken into account in
the simulation. If the protein net charge is high, far from pI, it will in most cases dominate
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the interaction via the direct ion-ion term, lBZAZB/R. The ion-induced and ion-dipole terms
are more short range and will under these conditions usually only make a small contributions.
However, the ion-induced and ion-dipole interactions both scale as charge squared and thus,
these interactions are more sensitive to the proteins protonation state. Close to pI these terms
will dominate the electrostatic interaction.

The iso-electric point of barnase is approximately 8.5, which agrees with the experimental
stability measurements by Schreiber and Fersht [23]. At pH=8 these authors found that the
stability of the barnase-barstar is reduced upon mutation of positively charged lysine and
arginine into alanine. According to Fig.2a barnase is positively and barstar negatively charged
at this pH. The mutation of acidic residues in barnase should then based on electrostatic
arguments increase the stability. This is seen in two out of three cases in the study and in all
three cases the changes are smaller than for the basic residues.

The charge capacitance is a measure of how the total protonation state is affected by an
external potential, stemming from another charged object. As can be seen in Table 1, the
induced interactions scale linearly with the capacitance and the regulation mechanism can
therefore be important at pH where C peaks. All four capacitance curves in Fig 2 have similar
forms with peaks at low and high pH, caused by the large amount of acidic and basic residues
(see Table 2). Notable, in all cases at neutral pH the capacitance is relatively small. This is
a typical result and a result of the lack of histidine residues. Histidine-rich proteins are not
abundant, but some examples are known, namely hisactophilin and histidine-rich glycoprotein
(HGR). It has been proposed [24] that charge regulation is an important driving force when
hisactophilin binds to lipid membranes in vivo.

The dipole moment is the first order approximation for describing the uneven charge dis-
tribution of a molecule. Note, however, that the dipole moment is only strictly defined for a
neutral molecule. Here we have evaluated it around the protein mass centra, which are also
used for defining the protein protein separation. Fig 3 shows that the dipole moment varies
rather modestly for lysozyme, barnase and barstar, but changes dramatically for fab when pH is
varied. The fab dipole moment is almost 700 D at pH=7. This is due to an uneven distribution
of the Asp, Glu and Tyr residues. The two former start to titrate at around pH=4, creating a
large dipole moment, while when the tyrosines begin to titrate we see a reduction of the dipole
moment. The large dipole moment of fab will have consequences for its orientational beahviour
in the fab-lysozyme complex.
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Figure 3: Dipole moments for some of the investigated proteins. All data are calculated using
amino acid level Monte Carlo simulation of a single, titrating protein in a dilute salt solution.
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The second virial coefficient

Table 3: The interaction of two different proteins, A and B, different pH. The isoelectric points
of the proteins are denoited by pIA and pIB, respectively. The interactions can be divided
into: ion-ion, ion-induced charge (ion-ind), ion-dipole (ion-dip), dipole-dipole (dip-dip), induced
charge-induced charge (ind-ind), and van der Waals (vdW) interactions.

pH range Interactions
pIA < pH > pIB Repulsive (ion-ion)
pIA > pH < pIB Repulsive (ion-ion)
pIA < pH < pIB Attractive (ion-ion, ion-ind, ion-dip, vdW)
pIA ≈ pH ≈ pIB Attractive (ind-ind, dip-dip, vdW)
pIA or pIB ≈ pH Attractive (ion-ind, ion-dip, vdW)
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Figure 4: Cross second virial coefficient for barnase-barstar as a function of pH - both with and
without van der Waals interactions. Calculated from MC simulations at low salt concentration.

The potential of mean force, A(r) is a microscopic quantity, but can be integrated to yield
measurable thermodynamic entities. In particular, the second virial coefficient is commonly
used to weigh protein-protein interactions and is defined by,

B = −2π
∫ ∞

0

(
e−βA(r) − 1

)
r2dr (11)

When B is positive, the net interaction is repulsive, while if negative the proteins attract each
other. Virial coefficients can be defined for both homo- and heterodimers, the latter being the
cross virial coefficient. Closely related to B is the binding constant [25],

K ≈ 4π
∫ ∞

σ

(
e−βA(r) − 1

)
r2dr = 2 (Bhc −B) (12)

valid for relatively short range interactions. Bhc is the hard core contribution equal to 2πσ3/3,
where σ is the average protein diameter.

The protein protonation state is influenced by solution pH and it has a large impact on
protein-protein interactions - Table 3 gives an overview of the dominant interactions at various
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pH. Figure 4 shows the cross virial coefficient for the barnase-barstar complex and at extreme
pH when the proteins are like charged, strong repulsive interactions prevail. The opposite
is observed at pH values spanning the two iso-electric points, where the net charges are of
opposite signs, causing the proteins to attract. The virial coefficient increases steadily when
pH is raised from 5.5 to 10. This reduction in complex stability is also found in the experimental
study of Schreiber and Fersht [23], where they measure decreasing equilibrium constant for the
barnase-barstar complex in the pH range 4.5 to 9.

For attractive interactions, close-contact configurations are more populated and short range
interactions become increasingly important. This is demonstrated at pH ≈ 5 − 6 where the
cross virial coefficient is noticeably lowered by van der Waals interactions, whereas at high and
low pH van der Waals interactions have only little or no effect. Due to the short range nature of
van der Waals interactions, surface complimentarity is an important aspect [12]. Ion-dipole and
dipole-dipole interactions tend to orient the protein molecules, thus constraining the number
of possible contact configurations. This has consequences for the van der Waal’s interactions
that may be modulated in non-trivial manners as evident in Figure 4.

At the iso-electric points the direct ion-ion interaction has vanished, leaving only van der
Waals and higher order electrostatic terms (ion-dipole, regulation etc.). Importantly, we note
a significant attraction at pH 8.6 (pI for barnase) caused mainly by ion-dipole and regulation
interactions.

Electrostatic interactions near the isoelectric point

When pH=pI for one of the proteins the strong ion-ion term vanishes and the effective terms are
ion-induced charge and ion-dipole interactions. To investigate the relative importance of these,
we have used Eqs. 11 and 12 and the expressions from Table 1 to calculate the cross second
virial coefficients and binding constants at the iso-electric points and at different salt concen-
trations. This is shown for the fab-lysozyme system in Figure 5a. The interaction is strongly
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Figure 5: a) CHANGE! Lysozyme-fab association free energies (β∆A = − ln K) at different salt
concentrations and pH, calculated at the iso-electric points using perturbation formulas from
Table 1. Lines represents calculations with ion-dipole interactions only, while for lines with
symbols the regulation interaction has been included. b) The charge regulation interaction for
the lysozyme-fab system calculated using Monte Carlo simulation (circles) and perturbation
theory (lines). Debye length=300 Å.

salt dependent and at physiological concentrations there remains only small contribution. The
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strong salt dependence comes from the fact that these term only contribute in second order and
the Debye-Hückel screening is exp(−2κr). At pH 7.6 (pI for fab), including the ion-induced
charge term has little or no effect on the binding constant. Thus the ion-dipole term is com-
pletely dominant due to the unusually high dipole moment of fab at this pH (µfab ≈ 700 D).
and its relatively low capacitance (Cfab = 0.5). At pH 10.9 (pI for lysozyme) the induced inter-
action becomes increasingly important at low salt concentrations and at 1 mM salt (1/κ = 96
Å) the association constant has been enlarged by one order of magnitude, compared to the
pure ion-dipole description. Again, this is explained using data from Fig 2 and 3: At pH 10.9
the dipole moment of lysozyme is very small (µlys = 24 Å) while the capacitance is around 1.
The above findings are further supported by numeric simulations of the lysozyme-fab system
as illustrated in Figure 5b. The shown data are obtained by subtracting the potential of mean
force obtained from two simulations - one with charge titration and another without. Although
the qualitative picture is retained, the highly non-spherical shape of the fab molecule causes
some discrepancies between the simulation and the perturbation results.

Orientational dependency

An interesting feature of the ion-dipole interaction, is that it strides to orient a dipolar molecule
and thus can be of importance for recognition processes in the cell. In a MC simulation the
orientational ordering can be probed by averaging the z-components of the dipole moment
vectors. That is, we can calculate the angle ,Θ, between the vector connecting the two proteins
and the dipole moment vector. This average will be zero for a completely random orientation
and unity for a perfectly aligned dipole. Figure 6 shows the average angle, 〈cos Θ〉, as a
function of the fab-lysozyme separation at different pH. When the proteins are far apart, 〈cos Θ〉
approaches zero, but at shorter separations an alignment occurs. At around neutral pH, fab
is electroneutral and has a large dipole moment. At the same condition, Zlysozyme ≈ 7 and
we therefore expect the ion-dipole interaction to be significant. This is indeed the case and
manifested by a pronounced alignment of the fab molecule, 〈cos Θ〉 ≈ 0.65. We also note that
the alignment occurs at intermediate protein-protein separations and is a direct consequence
of the elongated shape of fab. As pH is raised, Zfab becomes negative while Zlysozyme and µfab

decreases. Eventually the picture is reversed and lysozyme is aligned, while fab is more or less
freely rotating. However, since µlysozyme is quite small, the alignment effect is not as large as in
the fab case. The maximum alignment happens at closest possible contact, because the shape
of lysozyme is approximately spherical.
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Abstract

An overview of the interaction between charged macromolecules in aqueous solution is pre-
sented. The starting point is the dielectric continuum model and the Debye-Hückel equation.
The usefulness of the simple theory is emphasized in particular for biological macromolecules,
whose net charge or surface charge density often is low. With more highly charged macro-
molecules or aggregates it may be necessary to go beyond the simple Debye-Hückel theory and
invoke the non-linear Poisson-Boltzmann equation or even to approach an exact solution us-
ing Monte Carlo simulations or similar techniques. The latter approach becomes indispensable
when studying systems with divalent or multivalent (counter)-ions. The long range character of
the electrostatic interactions means that charged systems of varying geometry - spheres, planes,
cylinders... - often have many properties in common. Another consequence is that the detailed
charge distribution on a macromolecule is less important. Many biological macromolecules con-
tain titratable groups, which means that the net charge will vary as a consequence of solution
conditions. This gives an extra attractive contribution to the interaction between two macro-
molecules, which might be particularly important close to their respective isoelectric points.
The treatment of flexible polyelectrolytes/polyampholytes requires some extra efforts in order
to handle the increasingly complex geometry. A theoretical consequence is that the number of
parameters - chain length, charge density, polydispersity etc - prohibits the presentation of a
simple unified picture. An additional experimental, and theoretical, difficulty in this context
is the slow approach towards equilibrium, in particular with high molecular weight polymers.
A few generic situations where polyelectrolytes can act both as stabilizers and coagulants can,
however, be demonstrated using simulation techniques.

Introduction - The Dielectric Continuum Model

An aqueous solution containing biological molecules can in a general sense be described as an
electrolyte solution. That is, it contains simple ions such as Na+, K+, Cl− etc., but it can
also include macromolecules with a net charge significantly different from unity. DNA, proteins
and polysaccharides are important examples of natural origin but different synthetic additives
can also be described as charged macromolecules, sometimes collectively refered to as polyelec-
trolytes. It is our intention to discuss the interaction/stability of biological polyelectrolytes in
a few generic situations, some of which hopefully are of interest for a food chemist.

Despite the progress in computer technology and numerical algorithms during the last
decades, it is still not feasible to treat a general solution of charged macromolecules in an
atomistic model. This becomes especially clear when we are trying to calculate the interaction
between macromolecules and how the interaction can be modulated by other charged species.
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The alternative at hand is to use the dielectric continuum model, crudely refered to as the Prim-
itive Model. The solvent is then described as a structureless medium solely characterized by its
relative dielectric permittivity, εr. This simplification facilitates both the theoretical treatment
and the conceptual understanding of electrostatic interactions in solution. In contrast to its
name, it is a very sophisticated approximation, which allows an almost quantitative description
of widely different phenomena such as sea water and cement paste! In the Primitive Model we
treat all charged species as charged hard spheres and the interaction, between two charges i
and j separated a distance r, can be formally described as,

u(r) =
ZiZje

2

4πε0εrr
r > dhc (1)

u(r) = ∞ r < dhc (2)

where Zi is the ion valency, e the elementary charge, ε0 the dielectric permittivity of vacuum
and dhc is the hard sphere diameter of the ion. For simplicity, we will in this communication
mostly assume it to be the same for all ionic species and equal to 4 Å.

Figure 1: Snapshot from a MC simulation of two proteins. The black and grey spheres illustrate
mobile cations and anions, while amino acids are depicted as a white spheres, clustered to
form the two proteins. In a simulations, the proteins are displaced along a line and rotated
independently. Ions are displaced in all three directions and the whole system is enclosed in
sphere of appropriate radius.

These charges can be the small mobile ions in a salt solution, but they can also be the
charged groups on a protein or some other macromolecule. The model is schematically depicted
in Figure 1 with two macromolecules in a salt solution. We will solve this model exactly using
Monte Carlo (MC) simulations or in an approximate way with either the Poisson-Boltzmann
(PB) equation or its linearized version, the Debye-Hückel (DH) equation. For an introduction
to the DH theory, the reader is recommended to consult the excellent textbook of Hill [1]. En-
gström and Wennerström [2] has solved the PB equation for a charged surface with neutralising
counterions and their paper is a good starting point on this subject. Monte Carlo and other
simulations are well described in the textbooks by Allen and Tildesley [3] and by Frenkel and
Smit [4]. MC simulations allow us to emphasize where the simple theory is applicable and
where a more accurate treatment is needed. The simulations also give an oppurtunity to clarify
certain physical mechanisms, providing a deeper understanding of the system at hand.

The paper is arranged as follows:

• A simple electrolyte solution.

• A charged macromolecule in a salt solution.
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• The interaction between two charged macromoleules.

• The addition of polyelectrolytes/polyampholytes.

• Attraction due to charge regulation.

• Protein polyelectrolyte complexes.

A Simple Electrolyte Solution
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Figure 2: Individual activity factors from MC simulations and from the DH theory with the hard core diameter
equal to 4 Å. a) Monovalent ion in a 1:1 and 2:1 salt and b) Divalent ion in a 2:1 salt. The arrows indicate
physiological salt condition.

An important property in an electrolyte solution is the activity factor, γ, or excess chemical
potential, µex, which is a part of the total chemical potential, µ,

µ = µ0 + kT ln c + kT ln γ = µ0 + µid + µex (3)

µ0 is an uninteresting reference chemical potential and c is the concentration. It is straightfor-
ward to calculate γ in a Monte Carlo simulation, but we can also obtain it from the Debye-
Hückel approximation,

kT ln γDH = − Z2e2κ

8πε0εr(1 + κdhc)
(4)

The important quantity in eq.(4) is the inverse screening length, κ,

κ2 =
e2

ε0εrkT

∑
i

ciz
2
i (5)

which is proportinal to the ionic strength. Figure 2 shows how γ varies as a function of salt
concentration for two different salts. The accuracy of the simple DH theory is surprisingly good
and the main discrepancy comes from the too approximate treatment of the excluded volume
effect, i.e. the hard core interaction. A knowledge of γ allows us to calculate a number of
interesting quantities. For example, we can calculate the dissolution of carbon dioxide in the
ocean. The high salt content of the oceans increases the solubility of CO2, which is apparent
from the equilibrium relations,

H2CO3 → HCO−3 + H+ K1 =
cHCO3cH

cH2CO3

γHCO3γH

γH2CO3

= KS
1

γHCO3γH

γH2CO3

(6)
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HCO−3 → CO2−
3 + H+ K2 =

cCO3cH

cHCO3

γCO3γH

γHCO3

= KS
2

γCO3γH

γHCO3

(7)

Note that thermodynamic equilibrium constants, K1 and K2, are true constants in contrasts
to the stoichiometric ones, KS

1 and KS
2 . Table 1 presents experimental and simulated activity

factors for some salts relevant for sea water. The departure from ideality (γ = 1) is non-
negligible and as a consequence the dissolution of CO2 in sea water is significantly larger than
in fresh water. The excellent agreement between measured and simulated activity factors in
Table 1 gives a strong support for the Primitive Model.

Salt γExp γSim

Na2SO4 0.37 0.37
K2SO4 0.35 0.36
NaCl 0.67 0.67
KCl 0.66 0.66
CaSO4 0.14 0.15

Table 1: Experimental [5, 6] and simulated [7] mean activity factors in sea water at 298 K. The salinity is 3.5
%.

A Charged Macromolecule in a Salt Solution

We can use the activity factors in order to study how the binding of a charged ligand to a
charged macromolecule is affected by addition of salt or changes in pH - a change in pH means
that the net charge of both ligand and macromolecule can vary. The changes will affect the
electrostatic interactions and are almost quantitatively captured by the activity factors. The
simplest approach would then be to treat the macromolecule as a charged spherical object and
directly apply eq.(4). Let us take the calcium binding to the small chelator 5,5’-Br2BAPTA as
an example [8],

Ch + Ca2+ → ChCa K =
cChCa

cChcCa

γChCa

γChγCa

= Ks
γChCa

γChγCa

(8)

Since K is a true constant we can write a relation between the stoichiometric binding constants
at two different salt concentrations as,

KI
s

γI
ChCa

γI
Chγ

I
Ca

= KII
s

γII
ChCa

γII
Chγ

II
Ca

(9)

The charge of the chelator is −4e at neutral pH and it is assumed to have a radius of 7 Å.
When calcium is bound to the chelator it is simply modeled by a reduction of the chelator
charge from −4e to −2e. This simple model captures the salt dependence from 1 mM to 1 M
salt. Table 2 shows how the stoichiometric binding constant, Ks, varies with salt concentration.
Both simulated and DH results are in excellent agreement with experiment.

A quantitatively more correct alternative is to use the so-called Tanford-Kirkwood (TK)
model [9]. The TK model takes the detailed charge distribution into account and solves the
electrostatic problem using a variant of the DH approximation. The final result is the free
energy for the macromolecule in a salt solution. For not too highly charged macromolecule this
is usually a very efficient and reliable approach and the relevant equations are easily evaluated
numerically. Figure 3 shows how the calcium binding constant to the small protein calbindin
D9k varies with salt concentration [10]. Both simulated and TK results are based on the detailed
charge distribution of the protein with the calbindin structure obtained from an x-ray study [11].
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cs (mM) ∆pKExp
s ∆pKSim

s ∆pKDH
s

2 0.00 0.00 0.00
10 0.26 0.32 0.32
25 0.64 0.60 0.59
50 0.89 0.85 0.84
100 1.20 1.12 1.11
300 1.58 1.58 1.59
500 1.77 1.79 1.81
1000 1.97 2.05 2.09

Table 2: Shift in the stoichiometric calcium binding constant for the chelator BAPTA. 2 mM salt has been
taken as a reference point and the shifts are calculated relative this value.

The agreement between the two theoretical approaches is excellent and so is the comparison
with experimental results.
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Figure 3: A comparison of experimental and theoretical binding constant shifts for the calcium binding protein
calbindin D9k. The electrostatic interactions have been modified by adding salt in the range 2-150 mM and by
mutating (neutralizing) charge residues in the protein [10]. The symbols represent different mutations (charge
neutralization of acidic residues) and different salt concentrations. Spheres are simulated data and squares are
calculated using the TK approach. Filled symbols describe the addition of KCl and open symbols the addition
of K2SO4. The dashed line corresponds to perfect agreement. The shifts are calculated relative to the native
protein at 2 mM salt concentration.

It is interesting to investigate the limitations of the TK approach and one should expect
deviations from the simulated values for a really highly charged protein. This is indeed the case
and Figure 4 reveals a typical behaviour for the binding of a charged ligand to an oppositely
charged macromolecule or particle. That is, when the charge reaches a certain niveau, then the
electrostatic response is no longer linear but it approaches an asymptotic value. This means
that the binding becomes ”saturated” and, for example, a further increase of negatively charged
residues in a protein does not lead to an increased binding of calcium.

The electrostatic model in colloid chemistry has always been one with a uniform dielectric
permittivity for the whole system, typically chosen to be equal to that of water. In the calcu-
lations reported above we have followed this tradition. Obviously, the dielectric permittivity
of a protein is different from that of bulk water, but we do not know its exact value and to be
more formal, it is not a well-defined quantity. We also note that charged species prefer the high
dielectric region - ions dissolve in water and not in oil! Another way to express it is to say that
the electric field lines remain in the aqueous phase, hence a small body of low dielectric material
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Figure 4: Binding constant shifts as a function of protein net charge - comparison of DH (line) and MC
simulations (symbols). The protein is modelled as a sphere of radius is 14 Å with two binding sites close to
the surface. The shift refers to a change in salt concentration from 1 to 500 mM. The protein concentration is
20µM and the binding process involves two divalent ions.

has only a marginal effect on the electrostatic interactions. These conclusions are supported
by a wealth of experimental results on colloidal systems.

In biophysics, the opposite paradigm prevails and the low dielectric interior of a protein is
usually assumed to be the clue to many properties of biochemical interest. The electrostatic
approach is based on the PB or DH equation. A technical feature with the ”low dielectric”
assumption is that the calculations contain a divergence, which can cause numerical problems.
Or, it can be used as a ”fitting parameter”. The divergence in electrostatic calculations invoking
a low dielectric region is apparent in many applications. One very clear such example is
the determination of apparent pKa’s in the protein calbindin - see Table 3, which have been
determined experimentally by Kesvatera et al. [12] and theoretically by Spassov and Bashford
[13] using a low dielectric response for the protein. Juffer and Vogel [14] have extended the
Debye-Hückel calculations of Spassov and Bashford and allowed for a high dielectric response
from the protein. The paper by Kesvatera also contains results from MC simulations using
a uniform dielectric response equal to that of water. Obviously the calculations using a low
dielectric interior containing charged groups are unable to describe the electrostatic interactions
in calbindin and the results are unphysical.

Amino Acid Exp. Theory-Spassov Theory-Juffer Theory-Kesvatera

Glu-27 6.5 21.8 5.2 4.7
Asp-54 3.6 16.9 4.8 4.4
Asp-58 4.4 9.1 4.8 4.8
Glu-60 6.2 13.2 5.6 6.0
Glu-65 5.4 12.7 4.6 5.0
Rms. - 10.6 0.93 0.92

Table 3: The apparent pKa of titrating acidic groups in calbindin D9k. Experimental and various theoretical
results. The ”low dielectric” results of Spassov and Bashford have been highlighted. Both Spassov-Bashford and
Juffer-Vogel have used the DH approximation, but the latter authors have assumed a uniformly high dielectric
permittivity in the same way as Kesvatera et al.. The rms deviations are given in units of pKa.
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Figure 5: The interaction between two smMLCK peptides at two different salt concentrations; left=4 mM
and right=100 mM of a monovalent salt. The smMLCK peptide consists of 15 amino acids and its net charge
is +7e. Solid fat lines show the simulated free energy of interaction, while thin solid line is from the screened
Coulomb interaction, eq.(10). The thin line with filled circles is the simulated total energy of interaction and
the line marked with filled squares is the electrostatic interaction between the charges on the two peptides only.

The Electrostatic Interaction Between Two Proteins

The interaction of two peptides

Calmodulin binds to myosin light chain kinase (MLCK) via a small peptide rich in basic
residues. Calmodulin and the peptide forms a complex, which has been isolated and crys-
tallized. We have taken the peptide, smooth muscle MLCK (= smMLCK), from this complex
and studied the interaction between a pair. The net charge of smMLCK at neutral pH is close
to +7e and the two peptides repel each other, see Figure 5a, that is the free energy of interaction
is positive. The unscreened direct electrostatic interaction between the peptides is of course
strongly repulsive, but the total electrostatic energy, including the background electrolyte, is
essentially zero or sligthly attractive for all separations. Thus, the repulsion between the equally
charged peptides is totally dominated by the entropy - the entropy of salt and counterions. An
increase in salt concentration from 4 to 100 mM does not change this picture - Figure 5b.
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Figure 6: The interaction between an smMLCK peptide and a fragment of calmodulin. The net charge of
smMLCK is +7e and the calmodulin fragment has a charge of −8e. Left: The salt concentration is 4 mM.
The solid fat line is the simulated free energy of interaction, while the thin line is the corresponding screened
Coulomb interaction. The thin line with filled circles is the simulated total energy of interaction. Right: The
effect of added salt on the free energy of interaction.

A different picture emerges for the interaction of two oppositely charged peptides. Figure 6
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shows the free energy of interaction between smMLCK and a peptide section from calmodulin,
comprising Glu45-Glu67 with a net charge of −8e. The interaction free energy is strongly
attractive and so is the total energy. Thus, the attraction is energy driven and the entropy
change is in this case only marginal.

The interaction between two charged macromolecules in a salt solution is screened by salt
particles and one can derive an expression for their free energy of interaction, A(r), based on
the DH approximation,

A(r)/kT = lBZ1Z2
exp(−κr)

r
(10)

where we for convenience have introduced the Bjerrum length, lB = e2/4πε0εrkT . Note that
A(r) is a free energy. Figure 5 shows that the screened Coulomb potential is a good approxi-
mation and it is semi-quantitatively correct at both salt concentrations.

The results presented here for these peptides is generic and is found in many cases with
charged macromolecules or particles. The geometry is not crucial and the same qualitative
behaviour is found for both interacting planes and interacting spheres. The screened Coulomb
potential captures the change in free energy when the two macromolecules approach each other.
It is, however, questionable to partition the screened Coulomb interaction into energy and
entropy terms. More elaborate forms of the screened Coulomb potential can be derived [15],
where the macromolecular size is taken into account. The comparison in this section has been
limited to a uni-uni valent electrolyte and to situations where κ−1 is of the same order or larger
than the macromolecular dimension. To extend the use of the screened Coulomb potential to
multivalent electrolytes usually leads to qualitatively incorrect results - see next section.

The effect of multivalent ions

Above we have shown how the simple theory, the screened Coulomb potential, is capable
of an almost quantitative description of the interaction between two charged proteins. This
good agreement is limited to systems containing only monovalent counterions. There is a
qualitative difference between the interaction of two charged macromolecules in the presence
of monovalent and in the presence of multivalent counterions. In the latter case the mean field
approximation behind the DH equation breaks down and one has to rely on simulations or
more accurate theories like the hypernetted chain equation [16, 17]. The deviation from the
mean field description due to ion-ion correlations has such a physical origin that the effect
should be independent of the particular geometry of the charged aggregates. Clearly there are
quantitative differences between cylindrical, spherical or irregularly shaped or flexible charged
colloidal species, but the basic mechanism operates in the same way. The importance of ion-ion
correlations can be seen from Fig.7, where the free energy of interaction for two charged spherical
aggregates has been calculated from an MC simulation. For monovalent counterions there is
a monotonic repulsion in accordance with the screened Coulomb equation, eq.(10), but with
multivalent counterions or a solvent with a low dielectric permittivity, the entropic double layer
repulsion decreases and eventually the correlation term starts to dominate. This phenomenon
can be seen as a balance between entropy and energy. For two weakly or moderately charged
macromolecules with monovalent counterions, the dominant contribution to the free energy
of interaction comes, as we have seen in Figure 5, from a reduction in entropy when the
two counterion clouds start to overlap. The energy of interaction is always attractive and is
only weakly dependent on the counterion valency. The important difference between a system
with monovalent or divalent counterions, is the reduced entropy of the latter due to a lower
number density of counterions. Thus, any change that reduces the entropy and/or increases
the electrostatic interactions will eventually lead to a net attractive interaction.

This is for a model system with spheres with net charges, but the same mechanism is
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Figure 7: a) The free energy of interaction between two spherical aggregates of radius 10 Å and net charge
24. The system contains no salt but only counterions of different valency. The dielectric permittivity is 78 and
the temperature 298 K. b)The same as in a) with monovalent counterions and variation of the relative dielectric
permittivity.

also operating between two protein molecules with discrete charge distributions and irregular
form[18] and between two DNA molecules [19].

The effect of titrating groups

All proteins and many other macromolecules contain ionizable residues whose ionization status
depends on the interaction with other molecules. This means that the electrostatic interaction
between two proteins, besides the interaction between their average charges, also will contain
terms originating from induced charges. These interactions can be formalized in a statistical
mechanical perturbation approach [20, 21] and a protein is characterized not only by its average
net charge, but also by its capacitance. The induction interaction is important for the inter-
action of an approximately neutral protein with another charged macromolecule. The protein
capacitance is a function of the number of titrating residues and will display maxima close to
the pKa’s of the titrating amino acids. In this section we will derive a formal expression for
the capacitance. Consider the macromolecules A and B, described by two set of charges [ri, zi]
and [rj, zj], respectively. Their mass centra are separated by R, which means that the distance
between two charges i and j is given by rij = |R + rj − ri|. The average net charge of the
distributions need not be zero, that is 〈ZA〉 6= 0, where 〈ZA〉 = 〈∑ zi〉. The free energy of
interaction can be written as,

A(R)/kT = − ln 〈exp(−U(R)/kT )〉0 ≈ 〈U(R)/kT 〉0
−1

2

〈
(U(R)/kT )2

〉
0
+

1

2
[〈U(R)/kT 〉0 +

1

2

〈
(U(R)/kT )2

〉
0
]2 (11)

where U(R) is the interaction between the two charge distributions and 〈...〉0 denotes an av-
erage over the unperturbed system, which in the present case is the single isolated protein in
solution. The interaction energy is simply the direct Coulomb interaction between the two
charge distributions,

U(R)/kT =
∑

i

∑
j

lBzizj

rij

(12)

We can make a Taylor series expansion of U , assuming that R >> ri. This expansion will
include ion-ion interaction, ion-dipole interaction, dipole-dipole interaction etc. It will also
include charge-induced charge and induced charge-induced charge interactions. Thus, we can
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write an approximation to the free energy including all terms of order up to 1/R2. Note that
the ion-dipole interaction disappears in first order and that the first non-vanishing dipole term,
−l2BZ2µ2/6R4 is of order 1/R4.

A(R)/kT ≈ lB 〈ZA〉 〈ZB〉
R

− l2B
2R2

(
〈
Z2

A

〉
− 〈ZA〉2)(

〈
Z2

B

〉
− 〈ZB〉2)

− l2B
2R2

((
〈
Z2

A

〉
− 〈ZA〉2) 〈ZB〉2 + (

〈
Z2

B

〉
− 〈ZB〉2) 〈ZA〉2) (13)

The first term is the direct Coulomb term and the following term is the induced charge-induced
charge and the last terms are the charge-induced charge interactions. Note also that 〈Z2〉 6=
〈Z〉2. If the molecules are identical, that is 〈ZA〉 = 〈ZB〉 = 〈Z〉, then the expression simplifies
to,

A(R)/kT ≈ − lB 〈Z〉2

R
− l2B

2R2
(
〈
Z2
〉
− 〈Z〉2)2 − l2B

R2
(
〈
Z2
〉
− 〈Z〉2) 〈Z〉2 (14)

and if pH = pI, then < Z >= 0 and the induced charge-induced charge interaction becomes
the leading term,

A(R) ≈ − l2B 〈Z2〉2

2R2
(15)

The above equations show that the fluctuating charge of a protein or macromolecule may under
certain circumstances contribute significantly to the net interaction. We can define a ”charge
polarizability” or a capacitance, C, as

C =
〈
Z2
〉
− 〈Z〉2 (16)

With this definition of the capacitance, Eq.(13) can be rewritten in a more compact form,

A(R)/kT ≈ lB 〈ZA〉 〈ZB〉
R

− l2B
2R2

(CACB + CA 〈ZB〉2 + CB 〈ZA〉2) (17)

We can use general electrostatic equations and relate the capacitance to the charge induced
by a potential ∆Φ,

Zind =
C∆Φ

kT
(18)

The capacitance, C, can also be derived from the experimental titration curve. For a single
titrating acid the ionization degree, α, can be found in any elementary physical chemistry
textbook,

log K = −pH + log
α

1− α
(19)

Taking the derivative of α wrt to pH gives,

dα

dpH
= α(1− α) = C ln 10 (20)

where in the second step we have identified the capacitance defined in Eq.(16). We can obtain an
approximate value for the capacitance in a protein assuming that there is no interaction between
the titrating sites. A protein contains several titrating groups like aspartic and glutamic acid,
histidine etc., each with an ideal pK value. Denoting different titrating groups with γ and their
number with nγ, then the total capacitance can be approximated with,

Cideal =
1

ln 10

∑
γ

nγ
10pH−pKγ

(1 + 10pH−pKγ )2
(21)
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Figure 8: Left: The capacitance for calbindin D9k as a function of pH. The thick solid curve is from a MC
simulation of the atomistic model , while the thin solid line is the ideal capacitance calculated from Eq.(21). pI
for calbindin is approximately 4.2. Right: The capacitance for hisactophilin as a function of pH with symbols
as before. pI for hisactophilin is 7.3

We have calculated the capacitance for a number of proteins with different characteristics in
terms of number and type of residues. A MC simulation has to be performed at each pH at given
salt and protein concentrations. Unless otherwise stated we have used a salt concentration of
70 mM and a protein concentration of 0.7 mM. Figure 8a shows the capacitance for calbindin.
The main difference from the ideal capacitance curve is a strong broadening of two peaks
corresponding to the response from acidic and basic residues, respectively. If the protein has
a significant net charge, the true curve will also shift away from the ideal one, as is seen for
calbindin at high pH.

The protein hisactophilin is of the same size as calbindin, but it has a slightly different
capacitance curve, see Figure 8b. The protein contains 31 histidine residues, which is reflected
in a large maximum for Chisacto at pH ≈ 5. The downward shift of the maximum is due to
the high positive charge of hisactophilin at low pH. The net charge is +28 at pH = 3 and +23
at pH = 4. The isoelectric point found from the simulations is pI = 7.3, which is in good
agreement with experimental estimates.

The electrostatic interaction between two proteins will be dominated by the direct Coulomb
interaction provided that the net charge, Z, is sufficiently different from zero. The induced
interactions will only play an important role at pH values close to the isoelectric point of one
of the proteins - this can be seen from Eq.(17). Figure 9a shows the free energy of interaction
between the two proteins calbindin and lysozyme at pH = 4, which is close to the isoelectric
point for calbindin. At contact there is a significant difference in interaction energy between
a model with fixed charges compared to a situation where the proteins are free to adjust their
charges.

The difference in free energy between the two models is mainly due to the interaction
between the induced charge in calbindin and the permanent charge in lysozyme. This is a
typical result and significant effects from charge regulation can be expected when one of the
interacting proteins has a large net charge and the other a large capacitance. Following Eq.(17)
we can approximate the difference as,

(Areg(R)− Afix(R))/kT = ∆A(R)/kT = − l2B
2R2

(CcalbClys + ClysZ
2
calb + CcalbZ

2
lys) (22)

and Figure 10 shows an almost perfect agreement between the simulated free energy difference
and the calculated one according to Eq.(22).

An interesting result is that despite that both calbindin and lysozyme are positively charged
at pH = 4, there is still an attractive electrostatic interaction between the two. Such an
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Figure 9: a) The energy amd free energy of interaction between calbindin and lysozyme at pH = 4 for a
protein model with fixed charges (dashed lines) and one with charge regulation (solid lines). The amino acid
model is used and the salt concentration is b) The variation of net charge of calbindin (solid line) and lysozyme
(dashed line) as a function of their separation. The simulations are based on the amino acid model. pH = 4
and salt concentration is 5 mM.

attraction could of course be due to charge-dipole and/or dipole-dipole interactions, but they
do not seem to be important in the present case: the main contribution to the interaction free
energy comes from the induced charges. This is further demonstrated in Figure 9b, where one
can follow how the net charge of calbindin goes from ≈ 1.4 at infinite separation to ≈ −0.5
at contact between calbindin and lysozyme. We will come back to this issue when discussing
protein polyelectrolyte complexation.
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Figure 10: The difference in free energy of interaction between calbindin and lysozyme at pH = 4 for a
protein model w regulation and one with fixed charges. R is the separation between the mass centra of the two
proteins. Symbols denote the simulated difference (see Figure 9) and the solid line is obtained from Eq.(22)
with Zcalb = 1.16, Ccalb = 2.23, Zlys = 10.2 and Clys = 0.88.

Bridging attraction with polyelectrolytes

Adsorption of a polyelectrolyte to an aggregate is a necessary, but not sufficient condition, in
order to attain a modulation of the free energy. It actually has to adsorb to both aggregates
in order to form bridges, see Figure 11, that can lead to attractive interactions. For highly
charged polyelectrolytes and oppositely charged macromolecules, bridge formation is usually a
very effective way of destabilization. From simulations and mean field theories, we know that
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Figure 11: Snapshot from a MC simulation of system containing two charged macromolecules and an oppositely
charged polyelectrolyte.

the attraction is rather short ranged and that it typically only extends over distances of the
order of the monomer-monomer separation [22, 23, 24, 25]. Figure 12a shows what happens if
a polyelectrolyte salt is added to a solution of two charged macromolecules. The double layer
repulsion is replaced with a short range attraction with a minimum at a surface-to-surface
separation of approximately a monomer-monomer distance.
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Figure 12: a) The free energy of interaction between two charged spheres as a function of separation, in the
presence of a polyelectrolyte salt (solid line) and in the presence of a 1:1 salt (dashed line). The charge of the
aggregates is 10e and the radius is 10 Å. The freely jointed polyelectrolyte chain contains 10 charged monomers
separated a distance of 6 Å. b) The free energy of interaction between two negatively charged spheres in the
presence of a single neutral polyampholyte chain with 40 monomers. The charge topology has been varied and
the following notation is used: di-block (solid line with no symbols), tri-block (+10,-20,+10) (circles), tetra-
block (+10,-10,+10,-10) (squares) and ”reversed” tri-block (-10,+20,-10) (diamonds). Each macromolecule has
a charge of +20e and the radius is 10 Å.

A polyelectrolyte adsorbs readily to an oppositely charged macromolecule and in the pres-
ence of several charged spheres it becomes of course entropically favourable for the chain to
adsorb to more than one sphere. This can only be accomplished at short separations, since
the chain tries to avoid placing charges far from the charged aggregates, where the potential
is high. Thus, a weakly charged chain, i.e. a chain with large separation between the charged
monomers, will lead to a more long ranged but weaker attraction. In general, one finds that
highly charged systems give rise to fewer, but stronger ”bridges”, and there will be an optimal
choice of polyelectrolyte structure for the attraction between the colloids.

The interaction between charged macromolecules is, from an electrostatic point of view,
rather insensitive to the addition of neutral random polyampholytes. It is only with block-
polyampholytes that the normal double layer repulsion can be decreased in the same way as
with oppositely charged polyelectrolytes. The oppositely charged block acts in the same way as
an oppositely charged polyelectrolyte. The only complication or constraint is that the equally
charged blocks should avoid the aggregates. If the polyampholyte has a net charge, then it
behaves qualitatively as a weakly charged polyelectrolyte. A mixing of positively and negatively
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charged monomers allows a tailoring of the range and magnitude of the attraction. Figure 12b
shows the free energy of interaction between two charged macromolecules with different types of
polyampholytes. A naive picture of a tri-block between two adsorbing macromolecules, which
seems to be true for neutral block-copolymers, is one where the two ends of the PA chain
adsorb to one aggregate each and ”pull” them together. Such a structure is quite common in a
simulation, but it does not lead to a significant ”pulling” force due to the weak force constant
of a long segment of negatively charged monomers. Another way to express this is that the
free energy gain of adsorbing a PA chain is approximately distance independent for a tri-block
of the type (-10,+20,-10). Figure 13 is a snapshot from the simulation and demonstrates this
conformation.

Figure 13: A tri-block, (+10,-20,+10), adsorbing to two negatively charged, Z = −20, macroions. Counterions
and positively charged monomers are shown in grey and negatively charged monomers in black.

Protein polyelectrolyte complexation

The complexation of polyelectrolytes and proteins is extensively used in pharmaceutics, foods
and cosmetics. [26, 27, 28, 29, 30, 31, 32, 33] The subject has been addressed by a number of
authors exploring it from experimental measurements [32, 33, 34, 35] to theoretical modeling [36,
37, 38]. The strength of interaction is to a large extent regulated by electrostatic interactions,
governed by key parameters such as pH and salt concentration.

A particularly interesting observation [33, 36, 39] is the apparently paradoxical formation
of soluble complexes at conditions where the net charges of the protein and the polyelectrolyte
have the same sign. Experimental studies of Dubin, Kruif and co-workers [33, 36, 39] have
demonstrated this special feature of the polymer/protein complexation. The term complexation
“on the wrong side” has been used, meaning that a polyanion forms a complex with a protein
at a pH above the isoelectric point of the protein. The molecular interpretation of such studies
has focused on the assumption of “charged patches” on the protein surface [33, 40, 34, 37].

A formal way to describe the interaction between oppositely charged patches on two macro-
molecules is in terms of a multipole expansion. That is, for two neutral protein molecules
the leading terms would then be dipole-dipole, dipole-quadrupole, etc. Other electrostatic
properties of the protein, however, may be more important and Kirkwood and Shumaker [20]
demonstrated theoretically already in 1952 that fluctuations of residue charges in two proteins
can result in an attractive force. Recently, we have taken up this idea and used MC simulations
and a charge regulation theory in order to explain protein-protein and protein-polyelectrolyte
association in a purely electrostatic model [21, 41]. A charge regulation mechanism has also
been suggested by Biesheuvel and Cohen-Stuart [42].

We can use simulated capacitances and dipole moments in order to analytically calculate
the ion-induced charge and ion-dipole contributions to the interaction free energy according
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Figure 14: The contribution to the free energy of interaction from the charge - induced charge term (solid
lines) and the ion-dipole term (dashed lines). Lines without symbols describe lysozyme, filled circles refer to
α-lactalbumin and filled squares refer to β-lactoglobulin, respectively. The free energies are calculated from
eq.(17) using simulated capacitances and dipole moments. Note that the ion-dipole terms for α-lactalbumin
and β-lactoglobulin coincide.

to eq.(17). The results indicate that the regulation term is by far the most important term
for lysozyme, while for α-lactalbumin and β-lactoglobulin the two terms are of comparable
magnitude. The curves in Figure 14 should of course be regarded as qualitative and not
quantitative. However, they still give, as will be seen below, a correct picture of the behaviour
of the three proteins. The contact separation has been defined as the protein radius plus the
polyelectrolyte radius, Rp + Rpe. The latter has been chosen as half the end-to-end separation
of the corresponding neutral ideal polymer. Both the protein and polyelectrolyte radii are
approximate, but even with a rather generous variation of these values the general picture of
Figure 14 will remain the same. The regulation term decays slower than the ion-dipole term,
which means that it will gain in relative importance at larger separation, see Figure 14. This
means that even if the two terms are comparable at contact, the regulation term can still
dominate the contribution to, for example, the second virial coefficient.

We have performed four different simulations for each protein-polyelectrolyte complex:

• A: the “neutral” protein, that is all charges have been set to zero.

• B: the protein with fixed charges at each amino acid residue.

• C: the protein with an ideal dipole at its center of mass.

• D: the protein with titrating amino acid residues.

The first set of simulations (A) describes only the shape of the protein and the free energy
of interaction is of course everywhere repulsive. The second set of simulations (B) uses fixed
fractional charges on all residues, which has been determined in a separate simulation of the
isolated protein at the appropriate pH. In the next set (C), the charge distribution of the protein
is replaced by an ideal dipole. In the fourth and final set (D) the amino acids are allowed to
titrate and this simulation contains all electrostatic contributions including the ion-induced
charge term. The difference between set B and C describes the importance of higher order
electrostatic moments, quadrupole, octupole etc. in the protein, while a comparison of sets C
and D reveals the effect of the regulation mechanism.

The calculated free energy of interaction, A(R), for the three proteins at their respective pI
all show a clear minimum, see Figure 15. The relative strength of the minima are in qualitative
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Figure 15: The free energy of interaction between the centers of mass of the protein and the polyelectrolyte
at low salt concentration obtained from MC simulations with Model D. The curves have been calculated at the
respective isoelectric points for lysozyme (no symbols), α-lactalbumin (filled circles) and β-lactoglobulin (filled
squares).

agreement with perturbation calculations, cf. Figure 14, while the actual numbers are approx-
imately half the values predicted by second order perturbation theory. The minima appear at
roughly the same separation despite the fact that β-lactoglobulin is more than twice as big as
the two others. This can be explained by the elongated form of the former, which also results
in a more long ranged attraction. The separation R can approach zero, which corresponds to
a situation where the polyelectrolyte wraps around the protein. Note, however, that A(0) is
repulsive indicating that the “wrapping” of the chain around the proteins is an entropically
unfavourable structure.

The attractive minimum in the protein-polyelectrolyte complex is reduced upon addition of
salt [37] and we can use the minima of A(R) in Fig.15 in order to estimate the critical ionic
strength. Assuming that the salt screening can be described by simple Debye-Hückel theory
and that the complex can be defined as dissolved when the interaction is less than kT , we get
the following relation,

exp(−2κRmin)|A(Rmin)| ≤ kT (23)

The factor of two in the exponent comes from the fact that the second order terms dominate
the interaction. Following this recipe we find that approximately 10 and 20 mM salt is sufficient
to dissociate the α-lactalbumin and β-lactoglobulin polymer complexes, respectively.

Thus, we have shown that a polyanion can form a complex with a neutral protein molecule.
Next, we will make a numerically more rigorous partitioning of contributions to the free energy
of interaction shown in Fig. 15. The minimum for lysozyme is solely due to charge regulation,
Fig. 16a. If the charge distribution on lysozyme is considered fixed, then the polyanion-
lysozyme interaction is essentially everywhere repulsive. Replacing the detailed charge distri-
bution with an ideal dipole at the mass center has a small effect on the free energy. This means
that the ion-dipole interaction gives a very small attractive contribution, while the effect from
higher order moments is negligible.

As shown in Fig. 16b, the polyanion interacts more strongly with α-lactalbumin than with
lysozyme. For α-lactalbumin the regulation term increases the depth of the minimum from
approximately 4 to 6 kT . An interesting effect is that the dipolar protein shows a stronger
interaction than the protein with a detailed but fixed charge distribution. This means that the
ion-quadrupole interactions etc. add repulsive contributions to the interaction.
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Figure 16: The free energy of interaction between the centers of mass of lysozyme and the polyanion. The
free energies have been calculated at pI and the four curves correspond to the different cases mentioned in the
text. a) Lysozyme and the polyanion and b) α-lactalbumin and the polyanion.

Conclusion

We have demonstrated a few generic situations where electrostatic interactions between charged
macromolecules seem to play an important role. With Monte Carlo simulations we can obtain
the exact answer within the given interaction model, which allows us to test the validity of
approximate theories. Many biochemical systems are comparatively weakly charged, in contrast
to many inorganic systems, and simple theories based on the Debye-Hückel approximation give
accurate answers. The long range character of the Coulomb interaction usually means that the
geometry and detailed distribution of the charged groups are less important for the interaction
of two charged macromolecules.
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MOLEKYLÆR MODELLERING

Hvad har proteiner og DNA tilfælles med havvand og cement? 
Ikke meget, vil nogen måske mene, og der er da ved første øje-
kast heller ikke mange ligheder. Men ser man lidt nærmere ef-
ter, viser det sig, at de deler den samme egenskab, nemlig at de 
er stærkt ioniske. Og netop ladninger i form af frie ioner og mo-
lekyler er uhyre vigtige for de fysiske og kemiske egenskaber. 
Et synligt eksempel er, når mælk og eddike blandes: pH-sænk-
ningen foranlediger protonering af proteinet kasein, så det går 
fra at være negativt ladet til omtrent neutralt. Der er nu ikke 
længere nogen frastødende kraft mellem kaseinmolekylerne, og 
de udfælder derfor.

Den klassiske teori for ioniske opløsninger blev grundlagt i 
starten af 1900-tallet. Den nok mest berømte er Debye og 
Hückels vellykkede teori til beregning af aktivitetskoefficienter. 
Modellen de anvendte, behandler solventet som strukturløst (et 
dielektrisk kontinuum), mens ioner antages at være ladede, hår-
de kugler. Parvekselvirkningsenergien mellem to kugler kan 
derfor beskrives med Coulombs lov:

hvor z er ladningstallene (valens), r den indbyrdes afstand og ε
er solventets dielektricitetskonstant. For at beskrive systemets 
termodynamiske egenskaber skal man summere energierne for 
alle tænkbare molekylorienteringer og -positioner (mikrotil-
stande), hvorved den eftertragtede tilstandssum kan skrives 
som:

Det bliver hurtigt et ubehageligt regnestykke, og for at løse pro-
blemet måtte Debye og Hückel ty til både linearisering og mid-
delfeltsteori (Poisson-Boltzmann). Disse tilnærmelser har be-
tydning for opløsninger med multivalente ioner og/eller høj 
ionstyrke, og Debye-Hückel-teorien er da også kendt for at fejle 
for sådanne systemer.

I dag er sagen en ganske anden. Tilstandssummen - som er 
alfa og omega i statistisk mekanik - kan opnås ved at lade en el-
ler mange computere udregne energierne for de utallige parti-
kelkombinationer. For at beskrive en 0.1 M NaCl-opløsning kan 
man f.eks. tage 200 kugler - halvdelen positivt ladede, resten 
negative - og lægge dem i en virtuel, kubisk kasse med en side-
længde på 119 Ångstrøm (regn selv efter!) og dielektricitetskon-
stanten 80, svarende til vand. I en Monte Carlo (MC)-simule-
ring kan mikrotilstandene herefter udforskes ved at udføre til-
fældige kugleflytninger. Systemets energi udregnes før og efter 
hver flytning, og forskellen afgør om gerningen skal godkendes 

Monte Carlo simulering 
– fra proteiner til cement

Vi har kastet kittel og murerarbejdstøj i ringen og vil i stor magelighed studere proteiner, 
cement, DNA og havvand. Kan biomolekyler virkelig beskrives med simple, hårde kugler? 
Og hvad siger vores kollegaer til sådanne fantasifulde tilnærmelser? Læs mere her, hvor 
der gives en introduktion til molekylær modellering

Af Mikael Lund og Bo Jönsson - Teoretisk Kemi, Lunds Universitet

eller forkastes. Udvælgelsesmetoden er snedigt opbygget, så de 
konfigurationer, der bidrager mest til tilstandssummen (lavest 
energi), besøges oftere end dem, der giver et ubetydeligt bidrag 
(høj energi). Efter en stund med sådanne rokeringer opnår sy-
stemet termodynamisk ligevægt, og man kan nu - under stadig 
flytning - påbegynde undersøgelser af både mikro- og makro-
skopiske egenskaber. Slutresultatet er eksakt for den opsatte 
model, og simuleringen betegnes populært som et »computer-
eksperiment«.

Havvand og drivhuseffekten
Lad os tage opløsningen af kuldioxid i havvand som et eksempel,

Med tilhørende dissociationskonstanter,

I fortyndede opløsninger, kan alle aktivitetskoefficienter, γ sæt-
tes til 1, men i havvand er ionstyrken tæt på 1 M og de ovenstå-
ende γ-brøker er hhv. 0,3 og 0,04. Disse afvigelser har naturlig-
vis betydning for kuldioxids opløselighed i verdenshavene, og 
det er derfor vigtigt, at klimamodeller inkluderer præcise akti-
vitetskoefficienter. Sådanne målinger er dog ofte problematiske 
(T. Pedersen, Dansk Kemi 2000, nr. 9 og 10), og MC-simulerin-
ger kan her hjælpe til [1]. Tabel 1 viser hhv. målte og beregnede 
middelaktivitetskoefficienter i kunstigt havvand1.

Tabel 1. Middelaktivitetskoefficienter for en række salte i havvand. Salinitet: 
35 promille.
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MOLEKYLÆR MODELLERING
Proteiner som kugler:
Det er nu skitseret, hvordan ioniske opløsninger kan beskrives 
med kugler i en kasse, men der er ingen grund til at stoppe der. 
Kuglesystemet kan let bruges til at opbygge større molekyler 
som proteiner, DNA, miceller og polymerer. Figur 1 viser et bil-
lede fra en simulering af et protein i en vandig saltopløsning, 
hvor målet var at bestemme støkiometriske pK

a
-værdier for ti-

trerbare residier [2]. Som det ses i figur 2, er titrerkurverne ofte 
i særdeles god overensstemmelse med det eksperimentelt be-
stemte resultat.

for protein-krystallografer, som ofte prøver sig frem til de for-
hold, der giver fine krystaller. Følgende eksempel illustrerer en 
interessant mekanisme, der kan have stor indflydelse på protein-
protein-vekselvirkninger.

Proteinet calbindin har ved pH 7 en ladning på -7, og den 
vandige opløsning er derfor ganske stabil, da molekylerne 
frastøder hinanden. Tilsættes NaCl, vil frastødningen grad-
vist mindskes, men man får ikke et fri energi minimum, der 
forårsager udfældning. Tilsættes derimod meget små mæng-
der LaCl

3
, udfælder proteinet straks. Det skyldes ionkorrela-

tioner, som ikke kan studeres med Poisson-Boltzmann-meto-
der, men kræver en eksplicit beskrivelse af frie ioner. Meget 
fundamentalt, mindskes energien i et elektroneutralt system 
(proteiner og modioner) altid, når ladningerne flyttes tættere 
sammen; elektrostatikken bidrager med en tiltrækkende 
kraft mellem molekylerne - til trods for at de har samme lad-
ning. Det strider måske mod vanlig intuition, men er helt 
analogt med en saltkrystal, hvor de skiftende kat- og anioner 
sørger for gitterenergien. For at neutralisere to calbindin-
molekyler kræves enten 14 natrium(I)-ioner eller ca. 5 
lanthan(III)-ioner. Disse skal inddrages fra opløsningen, 
hvilket - da antallet af frihedsgrader mindskes - koster en-
tropi, og de giver derfor et frastødende bidrag til protein-
protein-vekselvirkningen. For Na+ er dette bidrag større end 
den elektriske tiltrækning, og proteinerne frastøder hinan-
den. For La3+ kræves der tre gange færre partikler, og prisen 
(entropi) er derfor mindre. Da trivalente ioner samtidig giver 
anledning til stærke parvekselvirkninger, dominerer den 
elektrostatiske energi, og proteinerne udfælder (figur 4).

Der findes mange calciumbindende proteiner i biologiske syste-
mer - et af dem er calbindin D

9k
, der binder to calciumioner. 

Bindingsprocessen er grundigt studeret med forskellige spektro-
skopiske metoder og ved at variere saltkoncentration, salttype 
og endda ved at mutere aminosyrer i proteinet. Man kan - næ-
sten uden sved på panden - foretage tilsvarende eksperimenter 
på en computer, og som det fremgår af figur 3 er overensstem-
melsen mellem teori og praksis særdeles god. Bemærk at syste-
met udelukkende er opbygget af små kugler.

Ion-ionkorrelation
Det er også muligt at studere to eller flere proteinmolekyler, 
hvorved opløsningens stabilitet kan følges under forskellige for-
hold som pH, saltkoncentration og valens [3]. Det har betydning 

Figur 2. Titreringskurve 
for ribonuclease A.

Figur 1. Monte Carlo-simulering af et protein i en saltopløsning, hvor alle 
atomer og ioner er beskrevet med kugler.

Figur 3. Målte og 
simulerede skift i 
Ca2+-bindingskon-
stanter til calbindin 
D

9k
 ved forskellige 

pH, saltkoncentratio-
ner og proteinmute-
ringer.

Figur 4. Ændring i fri 
energi som funktion af 
afstand mellem to 
calbindinmolekyler ved 
pH 7 og med hhv. 
mono- og trivalente 
modioner.
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Cement og DNA:
Ionkorrelationer er vigtige for systemer med høj ladning og 
di- eller trivalente ioner. Til trods for deres umiddelbare for-
skelle er både DNA og cement gode eksempler på sådanne 
systemer. DNA er en negativ ladet polymer, og ifølge gængse 
teorier burde det derfor være stift som en pind. Og det er da 
også, hvad man observerer, hvis der kun er Na+ til stede. I en 
biologisk celle findes der dog både tri- og tetravalente katio-
ner (spermidin og spermin), der medfører, at DNA-strengen 
krøller sig sammen som vist i figur 5. Det er således ionkor-
relationer, der gør det muligt at pakke de meget lange DNA-
strenge i cellen [4].

Cement har været kendt siden antikken, og bygninger som 
Pantheon og Pont du Gare fryder den dag i dag vores øjne. Den 
antikke cement adskiller sig ikke nævneværdigt fra moderne 
Portlandcement, der har været i brug siden 1800-tallet. Hoved-
bestanddelen er tricalciumsilicat, som kan opløses i vand under 
dannelse af en stærk basisk opløsning. Efter en stund er ionkon-
centrationen øget tilstrækkelig til at udfælde et andet mineral, 
calciumsilicathydrat (C-S-H). Udfældningen sker i form af na-
nostore lameller, der under basiske forhold har en meget høj 
ladning pga. titrerende silanolgrupper. Da der samtidig forefin-
des calciumioner, leder ionkorrelationer til en tiltrækkende vek-

Figur 6. Målt (venstre) og simuleret (højre) kraft mellem cementpartikler ved 
forskellige pH.

Figur 5. Simuleret DNA-streng med hhv. monovalente (venstre) og trivalente 
(højre) modioner.

selvirkning mellem de højt ladede C-S-H-lameller [5]. At simu-
leringerne virkelig formår at beskrive cementkohesionen, bevi-
ses i figur 6.

Tak til Thorvald Pedersen for venlig opfordring til dette indlæg 
- og for i første omgang at igangsætte samarbejdet på tværs af 
sundet.
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Fodnote
1) En vandig opløsning indeholdende de vigtigste komponenter af havvand 

(Na+, K+, Mg2+, Ca2+, Cl- og SO
4
2-). Aktivitetskoefficienter for andre species 

antages udelukkende at afhænge af disse »hovedingredienser«.
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Nyt om...

...uran

Margaret-Jane Crawford og medarbejdere ved universitetet 
i München har fremstillet et ammoniumsalt af uranpolyazid

U(N
3
)

7
3-

Crawford brugte propannitril 
CH

3
CH

2
CN

som opløsningsmiddel
Gruppen har senere fremstillet analoge heptaazidforbin-

delser af molybden og wolfram.
Fremstilling af disse tungmetalpolyazider bliver aldrig 

brugt til kemiske småforsøg, det er alt for farligt: Opvarmes 
et af disse stoffer til stuetemperatur, dekomponerer det un-
der eksplosion. Henlægges det i atmosfærisk luft i laborato-
riet, bryder det i brand.
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