
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Restart Strategies for Constraint-Handling in Generative Design Systems

Nordin, Axel

Published in:
[Host publication title missing]

2014

Link to publication

Citation for published version (APA):
Nordin, A. (2014). Restart Strategies for Constraint-Handling in Generative Design Systems. In [Host publication
title missing] American Society Of Mechanical Engineers (ASME).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/684fafd1-62cf-4a25-b240-ab07d23a5f9a

Proceedings of the ASME 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2014
August 17-20, 2014, Buffalo, New York, USA

DETC2014-34858

RESTART STRATEGIES FOR CONSTRAINT-HANDLING IN GENERATIVE
DESIGN SYSTEMS

 Axel Nordin
Division of Machine Design

Department of Design Sciences LTH
Lund University

Box 118, 221 00 Lund
Sweden

Email: axel.nordin@mkon.lth.se

ABSTRACT
Product alternatives suggested by a generative design

system often need to be evaluated on qualitative criteria. This

evaluation necessitates that several feasible solutions which

fulfill all technical constraints can be proposed to the user of

the system. Also, as concept development is an iterative

process, it is important that these solutions are generated

quickly; i.e., the system must have a low convergence time. A

problem, however, is that stochastic constraint-handling

techniques can have highly unpredictable convergence times,

spanning several orders of magnitude, and might sometimes not

converge at all. A possible solution to avoid the lengthy runs is

to restart the search after a certain time, with the hope that a

new starting point will lead to a lower overall convergence

time, but selecting an optimal restart-time is not trivial. In this

paper, two strategies are investigated for such selection, and

their performance is evaluated on two constraint-handling

techniques for a product design problem. The results show that

both restart strategies can greatly reduce the overall

convergence time. Moreover, it is shown that one of the restart

strategies can be applied to a wide range of constraint-

handling techniques and problems, without requiring any fine-

tuning of problem-specific parameters.

INTRODUCTION
Within product development projects, many activities may

require several iterations before a solution that fulfills

engineering constraints and design specifications can be found.

During the concept development activity, it is important to be

able to quickly evaluate the technical aspects of a product

proposal and generate new designs based on this evaluation.

A possible aid in this process is a generative design system

(GDS) that generates potential product designs, while leaving

the designer in control of the final design selection. GDSs have

been developed, for example, to help the designer preserve the

"form identity" of a brand [1-3]. A GDS intended for product

design is basically structured around a graphical user interface

and is often coupled to an interactive optimization system or a

constraint satisfaction system that handles user preferences and

technical constraints such as production and functional

constraints. Through the interface, the designer can evaluate,

select and influence the generation of designs.

A hurdle commonly encountered in association with GDSs

is that the decision to choose one design over another is often

not based on pure performance metrics, but rather on criteria

that are subjective and difficult to quantify and thus left to the

designer to evaluate. In order to give the designer a meaningful

choice, the designs generated by a GDS need to fulfill all

technical constraints, which may be time-consuming to

evaluate and hard to satisfy. An efficient method for handling

constraints is therefore an integral part of a GDS.

In preceding studies [5;16], several constraint-handling

techniques (CHTs) based on genetic algorithms were evaluated

in terms of the time needed to converge to a solution to

engineering design problems. The results showed that the

convergence times varied between several orders of magnitude,

and were surprisingly unpredictable, even for stochastic

methods such as genetic algorithms. The means by which the

 2 Copyright © 2014 by ASME

discovered variability of the convergence time can be exploited

is the subject of this paper. In order to avoid spending large

computational resources on searches that might have very long,

or even infinite convergence times, a threshold, or a cutoff

value, for when to restart the search can be set, with the hope

that a new, randomly selected, starting point will lead to a

lower overall convergence time.

However, determining an ideal cutoff value is not trivial;

selecting a low cutoff value decreases the probability of finding

a solution within a single search, which increases the number of

iterations necessary for convergence. Moreover, as the search is

conducted on an engineering problem, where the probability to

converge to a solution within a certain convergence time is

unknown, it is not possible to find the optimal cutoff value

analytically. Therefore, an algorithm for determining when to

restart the search needs to be either independent of the problem,

or be able to adapt the cutoff value as the search progresses.

 The benefit of using an adaptive strategy is that it can

utilize information about successful and unsuccessful searches

to gradually improve the approximation of the optimal cutoff

value, whereas a problem-independent strategy does not

improve with time.

In this paper, one adaptive strategy is presented for

determining the cutoff value, and is compared it in terms of

convergence time to a problem-independent strategy suggested

by Luby et al. [6]. The two restart strategies are applied to two

baseline CHTs that do not employ restarting. As the restart

strategies do not rely on any prior knowledge of the problem,

they can be applied to a broad range of constraint satisfaction

problems with minimal adjustment.

The results show that restarting the search leads to a

significant reduction in the convergence time for both restart

strategies for the given application, with the adaptive strategy

performing better than the distribution-independent strategy.

RESTART STRATEGIES
The emergence of restart strategies is mainly due to the

discovery of problems, or rather runtime distributions (RTDs),

that are highly unpredictable and exhibit a heavy tail of very

long or infinite runtimes (see [7-9]). While heavy-tailed RTDs

are generally detrimental to the efficiency of a CHT, they can

also be exploited to provide substantial speedups by the use of

restart strategies. In order for the restart strategy to be efficient,

it is necessary to determine the optimal cutoff value. In Gomes

and Sabharwal [10], a summary is given of the general concepts

behind restart strategies and the cutoff value’s effect on the

runtime. Further investigations of how the cutoff value affects

the runtime in both serial and parallel cases is given by Shylo et

al. [11]. A more formal foundation is given by Luby et al. [6],

who investigates two approaches based on either using a single

uniform cutoff value, i.e. the same cutoff value is used for all

restarts, or a universal sequence of cutoff values. Luby shows

that the uniform strategy is optimal for Las Vegas algorithms,

but requires the RTD to be known in order to find the correct

cutoff value. Determining the RTD analytically is, however,

most often not possible. Rather, a number of sample runtimes

on which to base an approximation are required. Using sample

runs to train the restart strategy has been investigated in, for

instance, [12]. It is also possible to use an on-line learning

algorithm, which does not rely on a training set, to

progressively improve on the estimation of the uniform cutoff

value. In [13], Gagliolo and Schmidhuber use the converged

and cutoff runtimes from a universal strategy to train a uniform

strategy by a bandit approach with promising results.

Depending on the application, the sampling of runtimes

may not be feasible. The runtime of a single converged solution

might be very long, or the RTD might be so unpredictable that

vast amounts of samples are needed to get a good

approximation. To avoid this problem, Luby et al. [6] instead

suggests a universal strategy which requires no information

about the RTD. The universal strategy is based on an

exponentially increasing but repeating sequence of cutoff

values (1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 …), which he shows to

result in runtimes that are less than or equal to ()

 , where lp is the expected optimal running time.

A variation of the universal sequence is to instead scale the

cutoff value by a factor after each restart or to use a linearly

increasing cutoff value. Huang [14] compared six restart

strategies to Luby’s universal strategy on a number of boolean

satisfiability benchmarks and found that Luby’s strategy

outperformed the others.

IMPLEMENTATION OF THE RESTART STRATEGIES
In this paper, two strategies are compared based on the

results reported in the previous section. The first strategy is

based on Luby’s universal strategy, and the second is an

adaptive uniform strategy.

Universal strategy
Luby’s sequence of cutoff values (t1, t2, t3, …) can more

formally expressed as

 {

where k is any positive integer fulfilling either of the two

conditions. While the universal approach does not require any

information about the problem, the overhead of restarting the

search needs to be taken into account, and in practice the cutoff

values in the sequence are multiplied by a factor (see [14;15]).

In this paper, the scaling factors for the two CHTs are

determined by measuring the convergence times of a number of

trial runs while varying the scaling factor and selecting the

scaling factor that gives the lowest convergence time. The

cutoff values in this implementation are based on time rather

than iterations, but the generations of the genetic algorithm or

the number of individuals evaluated could also have been used.

Adaptive uniform strategy
The uniform strategy is based on using a single cutoff

value for all restarts (t, t, t, …). For the uniform strategy to be

 3 Copyright © 2014 by ASME

efficient, the optimal cutoff value must be determined based on

the actual or estimated RTD, from which the cumulative

distribution function F(T) can be calculated for any given cutoff

value T. As shown in [6] and [13], the expected value of the

total runtime tT for a certain cutoff value can then be expressed

as

 ∫

By either analytical or numerical minimization of E(tT), an

optimal value of T can be found for the given RTD.

In this study, the initial runtimes on which the estimation

of the RTD is based are collected in a training phase by simply

running the CHT until five runs have converged. During the

training phase, the adaptive uniform strategy performs

identically to the non-restart CHT. It would be possible to apply

a scheme such as in [13] to collect the initial data; but, for the

sake of comparison between the universal and uniform

strategies, this was not implemented.

In the adaptive uniform strategy described in this paper,

the data collected from the initial runs is used to fit a non-

parametric piecewise linear approximation of F(T), which is

then updated with each new convergence time collected. A

numeric evaluation of E(tT) for different values of T is then

performed, and the value of T that minimizes E(tT) is used as

the next cutoff value. The approximation of F(T) could also

have been based on a more complex regression model such as

Kriging or could have been assumed to fit some predetermined

polynomial or rational function; however, the fitting time,

robustness and simplicity of the piecewise linear model has

been favored in this application. The time required for fitting

F(T) is negligible in comparison to the runtime of one iteration

of the CHT.

THE STUDY

Objective of the study
As discussed in the introduction, several solutions that

fulfill all technical constraints are usually requested by the user

of a GDS in order to have a wide selection. However, unlike

many of the benchmarks and problems studied in conjunction

with restart strategies previously, the solution-space of a

product design problem is often too large to exhaust, and the

design parameters are usually continuous, making it unfeasible

to find all the solutions to a given design problem. Therefore,

the main performance metric of a CHT for a GDS is how

quickly it can find many, but not all, solutions to a design

problem. To best evaluate this metric, the cumulative time

needed to find unique solutions was measured for each restart

strategy, rather than comparing single convergence times. By

letting the GDS find a relatively high number of solutions, data

can be collected on how the restart strategies perform both

when generating few solutions and when generating many

solutions.

To investigate how the two restart strategies perform on

RTDs with different features, two baseline CHTs were used to

find solutions to a design problem. The first baseline CHT is

easy to implement and requires no fine-tuning, but it has highly

unpredictable convergence times, i.e. its RTD is heavy-tailed.

The second baseline CHT requires careful set-up, but it

converges quickly and reliably, i.e. its RTD is relatively

uniform.

The objective of this study is thus to investigate how the

universal and adaptive uniform restart strategies perform when

used in conjunction with two CHTs with different features on a

typical product design generation problem.

Problem

Design problem

The majority of the works published concerning restart

strategies has been focused on discrete constraint satisfaction

problems and boolean satisfiability problems. This study

instead investigates how these strategies can be applied to

continuous variable problems with actual production and

functional constraints. A suitable design problem, which has

been shown to produce long-tailed RTDs is described in [16].

The design problem is based on a GDS for generating table

structures (see Figure 1 and Figure 2) based on a complex

tessellation that must satisfy three production and structural

constraints. The user of the GDS inputs design parameters such

as the height of the table and the contour of the top. The GDS

finds a number of design candidates that fulfill all constraints

and present them to the user, who can then decide to choose

one design, request more design candidates or re-launch the

design generation with new inputs. The manufacturing

processes used are laser cutting and CNC sheet metal bending.

The geometry of the bending machine limits the flange lengths

of the cells to be manufactured to never be shorter than 30 mm,

and the bending angles to never be less than 35°. The structural

requirements limit the maximum vertical displacement of any

part of the table to 2.5 mm. Initially, there are no design

objectives; the goal of the GDS is to quickly find several

feasible designs which can be presented to the user to select

from. The design parameters ruling the geometry of the support

structure consists of 140 continuous values, leading to a vast

design space. The output from the GDS has been validated by

producing a number of tables based on the solutions. The GDS

and design problem is described in depth in [17].

 4 Copyright © 2014 by ASME

Figure 1. The interface through which the user of the

GDS can define the table contour and review generated
design candidates

Figure 2. Example of a table structure generated by the
GDS on which the restart strategies are applied

CHTs

The two CHTs used as baselines are based on the un-

weighted sum (UWS) and the lexicographic constraint-handling

technique (Lexcoht) from [16].

UWS is straightforward to implement and requires no

tuning, yet performs equally well as weighted sums on this type

of problem [5]. However, as shown in Figure 3, its RTD

exhibits a heavy tail.

Lexcoht is based on handling the constraints in a

lexicographic order, i.e., the constraints are handled in a

defined sequence. As shown in [5] and [16], the order of the

constraints heavily influences the runtime. With good choice of

constraint sequence, Lexcoht outperforms UWS. The sequence

used for Lexcoht in this paper was shown to have a high

convergence rate and a rather flat RTD, as can be seen in

Figure 3. Note that there is an order of magnitude difference in

the span of the two RTDs.

Figure 3. A sorted sample of 100 convergence times

measured for UWS and Lexcoht

Experimental setup
Ten runs were executed for each combination of restart

strategy and CHT. A total of 250 unique design candidates

were requested in each run. The uniqueness was assured by

comparing the geometry of the generated table structures, but

no threshold for how similar two solutions could be was set. An

evaluation of the diversity of the solutions is presented in the

section “diversity”. The input to the GDS was the same in

every run. The measured runtimes were kept for the adaptive

uniform strategy during the entire search for the 250 design

candidates, but were reset between each of the ten runs.

The scaling factor used in the universal strategy was

empirically determined based on the convergence times from

100 trial runs of the two CHTs while solving the design

problem mentioned earlier. A larger sample size could

potentially have yielded a better approximation of the optimal

scaling factor, but the variation in convergence time is quite

high and sample-sizes approaching the number of requested

design candidates were deemed unfeasible. The optimal factor

was determined to be .15 for UWS and 2.57 for Lexcoht,

corresponding to approximately 2 and 30 calls to the evaluation

function of the CHTs. As can be seen in Figure 4 and Figure 5,

the scaling factor and the characteristics of the CHT’s RTD

greatly affects the performance of the universal strategy.

 5 Copyright © 2014 by ASME

Figure 4. Sampled convergence times for the universal

strategy when applied to UWS

Figure 5. Sampled convergence times for the universal

strategy when applied to Lexcoht

RESULTS AND DISCUSSION
This study evaluated the effectiveness of cutting off

lengthy constraint satisfaction runs. Two strategies for

determining when to cut off the current run and restart the

search were studied. The first strategy is adaptive and gradually

improves its approximation of the optimal restart-time

(adaptive uniform), whereas the second strategy is static and

relies on a universal heuristic for determining when to restart

(universal). The two strategies were compared to two baseline

CHTs, which do not employ restarting.

As the constraint-handling techniques presented in this

paper are intended to be used in a GDS, an important

performance metric is how quickly they can find numerous

solutions to a design problem. To best evaluate this metric, the

cumulative time needed to find 250 unique solutions was

measured for each method, rather than comparing single

convergence times.

Results for UWS
As can be seen in Table 1 and Figure 7, both restart

strategies lead to significant reductions in total convergence

time compared to the first baseline CHT. Figure 7 shows the

maximum, minimum and mean cumulative convergence times

for each method in logarithmic scale. The adaptive uniform

strategy and the universal strategy achieve a mean reduction in

convergence time of 94% and 91%, respectively. Table 1 shows

that the variance of the total convergence times is quite high for

the three methods, most likely due to the unpredictability of the

first baseline CHT. However, even the longest total

convergence time measured for the restart strategies is 85%

lower than the shortest time for the baseline CHT. It should

also be noted that the adaptive uniform strategy does not

perform as well as the universal strategy during the first third of

the search, as can be seen in Figure 6. This can be attributed to

the learning process requiring a certain amount of data before a

good approximation of the optimal restart-time can be made.

After the initial learning period, the relative performance of the

two restart strategies does not change much, and similar results

are to be expected if more solutions were requested. A

possibility is to use the two strategies in conjunction, using the

restart-times suggested by the universal strategy during the first

part of the search, while training the adaptive uniform strategy

on the data collected until a stable approximation has been

found. Gagliolo and Schmidhuber have investigated a similar

approach in [13].

Table 1. Total runtimes for the three methods when
applied to UWS

Method Mean (s) STD (s)

UWS 105229 14035

Universal 9787 532

Adaptive 5886 1481

Figure 6. The two restarting strategies plotted separately

for UWS

 6 Copyright © 2014 by ASME

Results for Lexcoht

The UWS baseline CHT is ideally suited for restart

strategies as its convergence times span four orders of

magnitude; however, not all CHTs behave in this way. The

results for the second, more predictable and efficient baseline

CHT, show how the restart strategies perform when the

variance of the convergence time is low. As shown in Figure 9,

even though the standard deviation of the runtimes from

Lexcoht is an order of magnitude lower than for UWS, the

adaptive uniform strategy is still able to find a restart-time that

was high enough to avoid unnecessary restarts, resulting in a

24% reduction in the total convergence time compared to the

baseline. The universal strategy is less suited for the problem

and had a total convergence time that was 13% higher than the

baseline. A comparison of the two restart strategies is shown in

Figure 8.

Table 2. Total runtimes for the three methods for the
when applied to Lexcoht

Method Mean (s) STD (s)

Lexcoht 14168 1024

Universal 16042 1029

Adaptive 10831 839

Figure 8. The two restarting strategies plotted separately

for Lexcoht

Figure 7. The cumulative convergence times for the three methods for the UWS CHT

 7 Copyright © 2014 by ASME

Diversity
Previous research [16] has focused on how the diversity of

the solutions is affected by the choice of CHT. Due to the way

the restart strategies favor more easily reachable solutions, the

solutions could be quite similar, even though the results in [16]

indicate a high diversity between solutions from separate runs

(interpopulation diversity). In order to investigate how

restarting affects the diversity of the solutions in this

application, the diversity measure used in [16] was applied to

the solutions. The diversity of an individual i to an individual j

is calculated by comparing their genomes, in this case the

coordinates of their Voronoi points. For each point a in

individual i’s genome, the point b in individual j’s genome that

has the smallest Euclidian distance da to point a is found, and

the diversity measure is equal to the sum of da for all points in

the genome.

As shown in Figure 10, the diversities are similar to the

interpopulation diversities found in [16], with the lowest

diversity being 0.078 and a mean diversity of 0.166. A sample

of three pairs with low, medium and high diversity is shown in

Figure 11.

Figure 10. A histogram of the diversities of 250 solutions

Figure 9. The cumulative convergence times for the three methods for Lexcoht

 8 Copyright © 2014 by ASME

Figure 11. A sample of generated designs. The diversity

measure for each pair is: a: 0.078, b: 0.151, c: 0.409

CONCLUSION
This study shows that the restart strategies significantly

reduce the total convergence time compared to the heavy-tailed

UWS CHT. Both restart strategies were shown to have

strengths in different situations. The adaptive uniform strategy

performed better overall, while the universal strategy had an

advantage during the first third of the search. However, in order

to get optimal results with the universal strategy, the scaling

factor needs to be determined through some sort of heuristic

beforehand, which might be time-consuming. In this study, the

sample size used to approximate the optimal scaling factor was

large in comparison to the number of requested solutions (100

samples for 250 solutions), although the results in Figure 4 and

Figure 5 seem to indicate that a more sophisticated heuristic

could have found a good scaling factor with much fewer

samples. Additionally, Figure 4 and Figure 5 show that even a

non-optimal scaling factor would have reduced the convergence

time of UWS substantially.

The adaptive uniform strategy was able to reduce the total

convergence time of the relatively flat-tailed Lexcoht, whereas

the universal strategy did not show any improvements. The

adaptability to different RTDs, and the lack of any parameters

to be fine-tuned, should make the adaptive strategy applicable

to any problem where stochastic search algorithms are used and

efficient constraint-handling is important. The adaptive strategy

is especially attractive if many solutions are sought, or if the

GDS is to be used repeatedly with similar problems, as the

information from previous runs can be used to achieve a better

approximation of the RTD and thus the optimal cutoff value.

Comparing all the measured total convergence times

reveals that both restart strategies, when used in combination

with the first baseline CHT, perform better than the second

baseline CHT both with and without restarting. This result is

important as it shows that using restart strategies with the first

baseline CHT, which is simple and generic, is more efficient

than using the more complex CHT which requires careful set-

up. A possible explanation can be found in the plot of the RTDs

of UWS and Lexcoht in Figure 3, which shows that although

the runtimes of UWS are generally high, a number of runtimes

are actually much lower than those of Lexcoht, and can be

exploited by the restarting strategies to lower the overall

convergence time.

The evaluation of the diversity of the solutions showed that

the restart strategies were not prone to finding the same

solution repeatedly. The diversity was comparable to that of the

baseline CHTs.

To further validate the generality and usefulness of restart

strategies within GDSs, the RTDs of other design problems

should be studied, and in particular how different user

requirements affect the optimal cutoff value.

REFERENCES
[1] Pugliese, M. J. and Cagan, J., 2002, "Capturing a rebel:

Modeling the Harley-Davidson brand through a motorcycle

shape grammar", Research in Engineering Design, 13(3),

pp. 139-156.

[2] Chau, H. H., Chen, X., McKay, A. and de Pennington, A.,

2004, "Evaluation of a 3D shape grammar

implementation", 1st Design Computing and Cognition

Conference - DCC'04, Cambridge, MA, pp. 357-376.

[3] McCormack, J. P., Cagan, J. and Vogel, C. M., 2004,

"Speaking the Buick language: Capturing, understanding,

and exploring brand identity with shape grammars",

Design Studies, 25(1), pp. 1-29.

[4] Nordin, A., Motte, D. and Bjärnemo, R., 2013, "Strategies

for consumer control of complex product forms in

generative design systems", 39th Design Automation

Conference - DETC/DAC'13, Portland, OR.

 9 Copyright © 2014 by ASME

[5] Motte, D., Nordin, A. and Bjärnemo, R., 2011, "Study of

the sequential constraint-handling technique for

evolutionary optimization with application to structural

problems", 37th Design Automation Conference -

DETC/DAC'11, Washington, D.C., 5, pp. 521-531, Both

authors contributed equally.

[6] Luby, M., Sinclair, A. and Zuckerman, D., 1993, "Optimal

speedup of Las Vegas algorithms", Information Processing

Letters, 47(4), pp. 173-180.

[7] Gomes, C. P., Selman, B., Crato, N. and Kautz, H., 2000,

"Heavy-Tailed Phenomena in Satisfiability and Constraint

Satisfaction Problems", Journal of Automated Reasoning,

24(1-2), pp. 67-100.

[8] Gomes, C. P., Selman, B. and Crato, N., 1997, "Heavy-

tailed distributions in combinatorial search", in Smolka G.

(Ed.), Principles and Practice of Constraint Programming-

CP97, 1330 Edition, 1997, Springer Berlin Heidelberg, pp.

121-135.

[9] Hogg, T. and Williams, C. P., 1994, "The hardest

constraint problems: A double phase transition", Artificial

Intelligence, 69(1-2), pp. 359-377.

[10] Gomes, C. P. and Sabharwal, A., 2009, "Exploiting

runtime variation in complete solvers", in Biere A., Heule

M., van Maaren H. and Walsh T. (Eds), Handbook of

Satisfiability, 2009, IOS Press, Amsterdam, pp. 271-288.

[11] Shylo, O. V., Middelkoop, T. and Pardalos, P. M., 2011,

"Restart strategies in optimization: parallel and serial

cases", Parallel Computing, 37(1), pp. 60-68.

[12] Kautz, H., Horvitz, E., Ruan, Y., Gomes, C. P. and

Selman, B., 2002, "Dynamic restart policies", The

Eighteenth National Conference on Artificial Intelligence

AAAI-02, Edmonton, Canada, pp. 674-681.

[13] Gagliolo, M. and Schmidhuber, J., 2007, "Learning Restart

Strategies", International Joint Conference on Artificial

Intelligence IJCAI-07, Hyderabad, India, pp. 792-797.

[14] Huang, J., 2007, "The effect of restarts on the efficiency of

clause learning", International Joint Conference on

Artificial Intelligence IJCAI-07, Hyderabad, India, pp.

2318-2323.

[15] Audemard, G. and Simon, L., 2012, "Refining Restarts

Strategies for SAT and UNSAT", in Milano M. (Ed.),

Principles and Practice of Constraint Programming, 2012,

Springer Berlin Heidelberg, pp. 118-126.

[16] Nordin, A., Motte, D., Hopf, A., Bjärnemo, R. and

Eckhardt, C.-C., 2013, "Constraint-handling techniques for

generative product design systems in the mass

customization context", Artificial Intelligence for

Engineering Design, Analysis and Manufacturing - AI

EDAM, 27(4), pp. 387-399.

[17] Nordin, A., Hopf, A., Motte, D., Bjärnemo, R. and

Eckhardt, C.-C., 2011, "Using genetic algorithms and

Voronoi diagrams in product design", Journal of

Computing and Information Science in Engineering,

11(011006).

