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ABSTRACT 
Product alternatives suggested by a generative design 

system often need to be evaluated on qualitative criteria. This 

evaluation necessitates that several feasible solutions which 

fulfill all technical constraints can be proposed to the user of 

the system. Also, as concept development is an iterative 

process, it is important that these solutions are generated 

quickly; i.e., the system must have a low convergence time. A 

problem, however, is that stochastic constraint-handling 

techniques can have highly unpredictable convergence times, 

spanning several orders of magnitude, and might sometimes not 

converge at all. A possible solution to avoid the lengthy runs is 

to restart the search after a certain time, with the hope that a 

new starting point will lead to a lower overall convergence 

time, but selecting an optimal restart-time is not trivial. In this 

paper, two strategies are investigated for such selection, and 

their performance is evaluated on two constraint-handling 

techniques for a product design problem. The results show that 

both restart strategies can greatly reduce the overall 

convergence time. Moreover, it is shown that one of the restart 

strategies can be applied to a wide range of constraint-

handling techniques and problems, without requiring any fine-

tuning of problem-specific parameters. 

 

INTRODUCTION 
Within product development projects, many activities may 

require several iterations before a solution that fulfills 

engineering constraints and design specifications can be found. 

During the concept development activity, it is important to be 

able to quickly evaluate the technical aspects of a product 

proposal and generate new designs based on this evaluation. 

A possible aid in this process is a generative design system 

(GDS) that generates potential product designs, while leaving 

the designer in control of the final design selection. GDSs have 

been developed, for example, to help the designer preserve the 

"form identity" of a brand [1-3]. A GDS intended for product 

design is basically structured around a graphical user interface 

and is often coupled to an interactive optimization system or a 

constraint satisfaction system that handles user preferences and 

technical constraints such as production and functional 

constraints. Through the interface, the designer can evaluate, 

select and influence the generation of designs. 

A hurdle commonly encountered in association with GDSs 

is that the decision to choose one design over another is often 

not based on pure performance metrics, but rather on criteria 

that are subjective and difficult to quantify and thus left to the 

designer to evaluate. In order to give the designer a meaningful 

choice, the designs generated by a GDS need to fulfill all 

technical constraints, which may be time-consuming to 

evaluate and hard to satisfy. An efficient method for handling 

constraints is therefore an integral part of a GDS. 

In preceding studies [5;16], several constraint-handling 

techniques (CHTs) based on genetic algorithms were evaluated 

in terms of the time needed to converge to a solution to 

engineering design problems. The results showed that the 

convergence times varied between several orders of magnitude, 

and were surprisingly unpredictable, even for stochastic 

methods such as genetic algorithms. The means by which the 
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discovered variability of the convergence time can be exploited 

is the subject of this paper. In order to avoid spending large 

computational resources on searches that might have very long, 

or even infinite convergence times, a threshold, or a cutoff 

value, for when to restart the search can be set, with the hope 

that a new, randomly selected, starting point will lead to a 

lower overall convergence time.  

However, determining an ideal cutoff value is not trivial; 

selecting a low cutoff value decreases the probability of finding 

a solution within a single search, which increases the number of 

iterations necessary for convergence. Moreover, as the search is 

conducted on an engineering problem, where the probability to 

converge to a solution within a certain convergence time is 

unknown, it is not possible to find the optimal cutoff value 

analytically. Therefore, an algorithm for determining when to 

restart the search needs to be either independent of the problem, 

or be able to adapt the cutoff value as the search progresses. 

 The benefit of using an adaptive strategy is that it can 

utilize information about successful and unsuccessful searches 

to gradually improve the approximation of the optimal cutoff 

value, whereas a problem-independent strategy does not 

improve with time. 

In this paper, one adaptive strategy is presented for 

determining the cutoff value, and is compared it in terms of 

convergence time to a problem-independent strategy suggested 

by Luby et al. [6]. The two restart strategies are applied to two 

baseline CHTs that do not employ restarting. As the restart 

strategies do not rely on any prior knowledge of the problem, 

they can be applied to a broad range of constraint satisfaction 

problems with minimal adjustment. 

The results show that restarting the search leads to a 

significant reduction in the convergence time for both restart 

strategies for the given application, with the adaptive strategy 

performing better than the distribution-independent strategy. 

 

RESTART STRATEGIES 
The emergence of restart strategies is mainly due to the 

discovery of problems, or rather runtime distributions (RTDs), 

that are highly unpredictable and exhibit a heavy tail of very 

long or infinite runtimes (see [7-9]). While heavy-tailed RTDs 

are generally detrimental to the efficiency of a CHT, they can 

also be exploited to provide substantial speedups by the use of 

restart strategies. In order for the restart strategy to be efficient, 

it is necessary to determine the optimal cutoff value. In Gomes 

and Sabharwal [10], a summary is given of the general concepts 

behind restart strategies and the cutoff value’s effect on the 

runtime. Further investigations of how the cutoff value affects 

the runtime in both serial and parallel cases is given by Shylo et 

al. [11]. A more formal foundation is given by Luby et al. [6], 

who investigates two approaches based on either using a single 

uniform cutoff value, i.e. the same cutoff value is used for all 

restarts, or a universal sequence of cutoff values. Luby shows 

that the uniform strategy is optimal for Las Vegas algorithms, 

but requires the RTD to be known in order to find the correct 

cutoff value. Determining the RTD analytically is, however, 

most often not possible. Rather, a number of sample runtimes 

on which to base an approximation are required. Using sample 

runs to train the restart strategy has been investigated in, for 

instance, [12]. It is also possible to use an on-line learning 

algorithm, which does not rely on a training set, to 

progressively improve on the estimation of the uniform cutoff 

value. In [13], Gagliolo and Schmidhuber use the converged 

and cutoff runtimes from a universal strategy to train a uniform 

strategy by a bandit approach with promising results. 

Depending on the application, the sampling of runtimes 

may not be feasible. The runtime of a single converged solution 

might be very long, or the RTD might be so unpredictable that 

vast amounts of samples are needed to get a good 

approximation. To avoid this problem, Luby et al. [6] instead 

suggests a universal strategy which requires no information 

about the RTD. The universal strategy is based on an 

exponentially increasing but repeating sequence of cutoff 

values (1 1 2 1 1 2 4 1 1 2 1 1 2 4 8 …), which he shows to 

result in runtimes that are less than or equal to          (  )  

  , where lp is the expected optimal running time. 

A variation of the universal sequence is to instead scale the 

cutoff value by a factor after each restart or to use a linearly 

increasing cutoff value. Huang [14] compared six restart 

strategies to Luby’s universal strategy on a number of boolean 

satisfiability benchmarks and found that Luby’s strategy 

outperformed the others. 

 

IMPLEMENTATION OF THE RESTART STRATEGIES 
In this paper, two strategies are compared based on the 

results reported in the previous section. The first strategy is 

based on Luby’s universal strategy, and the second is an 

adaptive uniform strategy. 

 

Universal strategy 
Luby’s sequence of cutoff values (t1, t2, t3, …) can more 

formally expressed as 

 

    {
              

                        
 

 

where k is any positive integer fulfilling either of the two 

conditions. While the universal approach does not require any 

information about the problem, the overhead of restarting the 

search needs to be taken into account, and in practice the cutoff 

values in the sequence are multiplied by a factor (see [14;15]). 

In this paper, the scaling factors for the two CHTs are 

determined by measuring the convergence times of a number of 

trial runs while varying the scaling factor and selecting the 

scaling factor that gives the lowest convergence time. The 

cutoff values in this implementation are based on time rather 

than iterations, but the generations of the genetic algorithm or 

the number of individuals evaluated could also have been used. 

 

Adaptive uniform strategy 
The uniform strategy is based on using a single cutoff 

value for all restarts (t, t, t, …). For the uniform strategy to be 
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efficient, the optimal cutoff value must be determined based on 

the actual or estimated RTD, from which the cumulative 

distribution function F(T) can be calculated for any given cutoff 

value T. As shown in [6] and [13], the expected value of the 

total runtime tT for a certain cutoff value can then be expressed 

as 

 

      
  ∫       

 

 

    
 

 

By either analytical or numerical minimization of E(tT), an 

optimal value of T can be found for the given RTD. 

In this study, the initial runtimes on which the estimation 

of the RTD is based are collected in a training phase by simply 

running the CHT until five runs have converged. During the 

training phase, the adaptive uniform strategy performs 

identically to the non-restart CHT. It would be possible to apply 

a scheme such as in [13] to collect the initial data; but, for the 

sake of comparison between the universal and uniform 

strategies, this was not implemented. 

In the adaptive uniform strategy described in this paper, 

the data collected from the initial runs is used to fit a non-

parametric piecewise linear approximation of F(T), which is 

then updated with each new convergence time collected. A 

numeric evaluation of E(tT) for different values of T is then 

performed, and the value of T that minimizes E(tT) is used as 

the next cutoff value. The approximation of F(T) could also 

have been based on a more complex regression model such as 

Kriging or could have been assumed to fit some predetermined 

polynomial or rational function; however, the fitting time, 

robustness and simplicity of the piecewise linear model has 

been favored in this application. The time required for fitting 

F(T) is negligible in comparison to the runtime of one iteration 

of the CHT. 

 

THE STUDY 
 

Objective of the study 
As discussed in the introduction, several solutions that 

fulfill all technical constraints are usually requested by the user 

of a GDS in order to have a wide selection. However, unlike 

many of the benchmarks and problems studied in conjunction 

with restart strategies previously, the solution-space of a 

product design problem is often too large to exhaust, and the 

design parameters are usually continuous, making it unfeasible 

to find all the solutions to a given design problem. Therefore, 

the main performance metric of a CHT for a GDS is how 

quickly it can find many, but not all, solutions to a design 

problem. To best evaluate this metric, the cumulative time 

needed to find unique solutions was measured for each restart 

strategy, rather than comparing single convergence times. By 

letting the GDS find a relatively high number of solutions, data 

can be collected on how the restart strategies perform both 

when generating few solutions and when generating many 

solutions. 

To investigate how the two restart strategies perform on 

RTDs with different features, two baseline CHTs were used to 

find solutions to a design problem. The first baseline CHT is 

easy to implement and requires no fine-tuning, but it has highly 

unpredictable convergence times, i.e. its RTD is heavy-tailed. 

The second baseline CHT requires careful set-up, but it 

converges quickly and reliably, i.e. its RTD is relatively 

uniform. 

The objective of this study is thus to investigate how the 

universal and adaptive uniform restart strategies perform when 

used in conjunction with two CHTs with different features on a 

typical product design generation problem. 

 

Problem 
 

Design problem 

The majority of the works published concerning restart 

strategies has been focused on discrete constraint satisfaction 

problems and boolean satisfiability problems. This study 

instead investigates how these strategies can be applied to 

continuous variable problems with actual production and 

functional constraints. A suitable design problem, which has 

been shown to produce long-tailed RTDs is described in [16]. 

The design problem is based on a GDS for generating table 

structures (see Figure 1 and Figure 2) based on a complex 

tessellation that must satisfy three production and structural 

constraints. The user of the GDS inputs design parameters such 

as the height of the table and the contour of the top. The GDS 

finds a number of design candidates that fulfill all constraints 

and present them to the user, who can then decide to choose 

one design, request more design candidates or re-launch the 

design generation with new inputs. The manufacturing 

processes used are laser cutting and CNC sheet metal bending. 

The geometry of the bending machine limits the flange lengths 

of the cells to be manufactured to never be shorter than 30 mm, 

and the bending angles to never be less than 35°. The structural 

requirements limit the maximum vertical displacement of any 

part of the table to 2.5 mm. Initially, there are no design 

objectives; the goal of the GDS is to quickly find several 

feasible designs which can be presented to the user to select 

from. The design parameters ruling the geometry of the support 

structure consists of 140 continuous values, leading to a vast 

design space. The output from the GDS has been validated by 

producing a number of tables based on the solutions. The GDS 

and design problem is described in depth in [17]. 
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Figure 1. The interface through which the user of the 

GDS can define the table contour and review generated 
design candidates 

 

 
 

Figure 2. Example of a table structure generated by the 
GDS on which the restart strategies are applied 

 
CHTs 

The two CHTs used as baselines are based on the un-

weighted sum (UWS) and the lexicographic constraint-handling 

technique (Lexcoht) from [16].  

UWS is straightforward to implement and requires no 

tuning, yet performs equally well as weighted sums on this type 

of problem [5]. However, as shown in Figure 3, its RTD 

exhibits a heavy tail. 

Lexcoht is based on handling the constraints in a 

lexicographic order, i.e., the constraints are handled in a 

defined sequence. As shown in [5] and [16], the order of the 

constraints heavily influences the runtime. With good choice of 

constraint sequence, Lexcoht outperforms UWS. The sequence 

used for Lexcoht in this paper was shown to have a high 

convergence rate and a rather flat RTD, as can be seen in 

Figure 3. Note that there is an order of magnitude difference in 

the span of the two RTDs. 

 

 
Figure 3. A sorted sample of 100 convergence times 

measured for UWS and Lexcoht 
 

Experimental setup 
Ten runs were executed for each combination of restart 

strategy and CHT. A total of 250 unique design candidates 

were requested in each run. The uniqueness was assured by 

comparing the geometry of the generated table structures, but 

no threshold for how similar two solutions could be was set. An 

evaluation of the diversity of the solutions is presented in the 

section “diversity”. The input to the GDS was the same in 

every run. The measured runtimes were kept for the adaptive 

uniform strategy during the entire search for the 250 design 

candidates, but were reset between each of the ten runs. 

The scaling factor used in the universal strategy was 

empirically determined based on the convergence times from 

100 trial runs of the two CHTs while solving the design 

problem mentioned earlier. A larger sample size could 

potentially have yielded a better approximation of the optimal 

scaling factor, but the variation in convergence time is quite 

high and sample-sizes approaching the number of requested 

design candidates were deemed unfeasible. The optimal factor 

was determined to be .15 for UWS and 2.57 for Lexcoht, 

corresponding to approximately 2 and 30 calls to the evaluation 

function of the CHTs. As can be seen in Figure 4 and Figure 5, 

the scaling factor and the characteristics of the CHT’s RTD 

greatly affects the performance of the universal strategy. 
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Figure 4. Sampled convergence times for the universal 

strategy when applied to UWS 
 

 
Figure 5. Sampled convergence times for the universal 

strategy when applied to Lexcoht 
 

RESULTS AND DISCUSSION 
This study evaluated the effectiveness of cutting off 

lengthy constraint satisfaction runs. Two strategies for 

determining when to cut off the current run and restart the 

search were studied. The first strategy is adaptive and gradually 

improves its approximation of the optimal restart-time 

(adaptive uniform), whereas the second strategy is static and 

relies on a universal heuristic for determining when to restart 

(universal). The two strategies were compared to two baseline 

CHTs, which do not employ restarting. 

As the constraint-handling techniques presented in this 

paper are intended to be used in a GDS, an important 

performance metric is how quickly they can find numerous 

solutions to a design problem. To best evaluate this metric, the 

cumulative time needed to find 250 unique solutions was 

measured for each method, rather than comparing single 

convergence times. 

 

Results for UWS 
As can be seen in Table 1 and Figure 7, both restart 

strategies lead to significant reductions in total convergence 

time compared to the first baseline CHT. Figure 7 shows the 

maximum, minimum and mean cumulative convergence times 

for each method in logarithmic scale. The adaptive uniform 

strategy and the universal strategy achieve a mean reduction in 

convergence time of 94% and 91%, respectively. Table 1 shows 

that the variance of the total convergence times is quite high for 

the three methods, most likely due to the unpredictability of the 

first baseline CHT. However, even the longest total 

convergence time measured for the restart strategies is 85% 

lower than the shortest time for the baseline CHT. It should 

also be noted that the adaptive uniform strategy does not 

perform as well as the universal strategy during the first third of 

the search, as can be seen in Figure 6. This can be attributed to 

the learning process requiring a certain amount of data before a 

good approximation of the optimal restart-time can be made. 

After the initial learning period, the relative performance of the 

two restart strategies does not change much, and similar results 

are to be expected if more solutions were requested. A 

possibility is to use the two strategies in conjunction, using the 

restart-times suggested by the universal strategy during the first 

part of the search, while training the adaptive uniform strategy 

on the data collected until a stable approximation has been 

found. Gagliolo and Schmidhuber have investigated a similar 

approach in [13].  

 

Table 1. Total runtimes for the three methods when 
applied to UWS 

Method Mean (s) STD (s) 

UWS 105229 14035 

Universal 9787 532 

Adaptive 5886 1481 

 

 
Figure 6. The two restarting strategies plotted separately 

for UWS 
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Results for Lexcoht 

The UWS baseline CHT is ideally suited for restart 

strategies as its convergence times span four orders of 

magnitude; however, not all CHTs behave in this way. The 

results for the second, more predictable and efficient baseline 

CHT, show how the restart strategies perform when the 

variance of the convergence time is low. As shown in Figure 9, 

even though the standard deviation of the runtimes from 

Lexcoht is an order of magnitude lower than for UWS, the 

adaptive uniform strategy is still able to find a restart-time that 

was high enough to avoid unnecessary restarts, resulting in a 

24% reduction in the total convergence time compared to the 

baseline. The universal strategy is less suited for the problem 

and had a total convergence time that was 13% higher than the 

baseline. A comparison of the two restart strategies is shown in 

Figure 8. 

 

Table 2. Total runtimes for the three methods for the 
when applied to Lexcoht 

Method Mean (s) STD (s) 

Lexcoht 14168 1024 

Universal 16042 1029 

Adaptive 10831 839 

 

 

 
Figure 8. The two restarting strategies plotted separately 

for Lexcoht 

Figure 7. The cumulative convergence times for the three methods for the UWS CHT 
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Diversity 
Previous research [16] has focused on how the diversity of 

the solutions is affected by the choice of CHT. Due to the way 

the restart strategies favor more easily reachable solutions, the 

solutions could be quite similar, even though the results in [16] 

indicate a high diversity between solutions from separate runs 

(interpopulation diversity). In order to investigate how 

restarting affects the diversity of the solutions in this 

application, the diversity measure used in [16] was applied to 

the solutions. The diversity of an individual i to an individual j 

is calculated by comparing their genomes, in this case the 

coordinates of their Voronoi points. For each point a in 

individual i’s genome, the point b in individual j’s genome that 

has the smallest Euclidian distance da to point a is found, and 

the diversity measure is equal to the sum of da for all points in 

the genome. 

As shown in Figure 10, the diversities are similar to the 

interpopulation diversities found in [16], with the lowest 

diversity being 0.078 and a mean diversity of 0.166. A sample 

of three pairs with low, medium and high diversity is shown in 

Figure 11. 

 
Figure 10. A histogram of the diversities of 250 solutions 

Figure 9. The cumulative convergence times for the three methods for Lexcoht 
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Figure 11. A sample of generated designs. The diversity 

measure for each pair is: a: 0.078, b: 0.151, c: 0.409 
 

CONCLUSION 
This study shows that the restart strategies significantly 

reduce the total convergence time compared to the heavy-tailed 

UWS CHT. Both restart strategies were shown to have 

strengths in different situations. The adaptive uniform strategy 

performed better overall, while the universal strategy had an 

advantage during the first third of the search. However, in order 

to get optimal results with the universal strategy, the scaling 

factor needs to be determined through some sort of heuristic 

beforehand, which might be time-consuming. In this study, the 

sample size used to approximate the optimal scaling factor was 

large in comparison to the number of requested solutions (100 

samples for 250 solutions), although the results in Figure 4 and 

Figure 5 seem to indicate that a more sophisticated heuristic 

could have found a good scaling factor with much fewer 

samples. Additionally, Figure 4 and Figure 5 show that even a 

non-optimal scaling factor would have reduced the convergence 

time of UWS substantially. 

The adaptive uniform strategy was able to reduce the total 

convergence time of the relatively flat-tailed Lexcoht, whereas 

the universal strategy did not show any improvements. The 

adaptability to different RTDs, and the lack of any parameters 

to be fine-tuned, should make the adaptive strategy applicable 

to any problem where stochastic search algorithms are used and 

efficient constraint-handling is important. The adaptive strategy 

is especially attractive if many solutions are sought, or if the 

GDS is to be used repeatedly with similar problems, as the 

information from previous runs can be used to achieve a better 

approximation of the RTD and thus the optimal cutoff value.  

Comparing all the measured total convergence times 

reveals that both restart strategies, when used in combination 

with the first baseline CHT, perform better than the second 

baseline CHT both with and without restarting. This result is 

important as it shows that using restart strategies with the first 

baseline CHT, which is simple and generic, is more efficient 

than using the more complex CHT which requires careful set-

up. A possible explanation can be found in the plot of the RTDs 

of UWS and Lexcoht in Figure 3, which shows that although 

the runtimes of UWS are generally high, a number of runtimes 

are actually much lower than those of Lexcoht, and can be 

exploited by the restarting strategies to lower the overall 

convergence time. 

The evaluation of the diversity of the solutions showed that 

the restart strategies were not prone to finding the same 

solution repeatedly. The diversity was comparable to that of the 

baseline CHTs. 

To further validate the generality and usefulness of restart 

strategies within GDSs, the RTDs of other design problems 

should be studied, and in particular how different user 

requirements affect the optimal cutoff value. 

 

REFERENCES 
[1] Pugliese, M. J. and Cagan, J., 2002, "Capturing a rebel: 

Modeling the Harley-Davidson brand through a motorcycle 

shape grammar", Research in Engineering Design, 13(3), 

pp. 139-156. 

[2] Chau, H. H., Chen, X., McKay, A. and de Pennington, A., 

2004, "Evaluation of a 3D shape grammar 

implementation", 1st Design Computing and Cognition 

Conference - DCC'04, Cambridge, MA, pp. 357-376. 

[3] McCormack, J. P., Cagan, J. and Vogel, C. M., 2004, 

"Speaking the Buick language: Capturing, understanding, 

and exploring brand identity with shape grammars", 

Design Studies, 25(1), pp. 1-29. 

[4] Nordin, A., Motte, D. and Bjärnemo, R., 2013, "Strategies 

for consumer control of complex product forms in 

generative design systems", 39th Design Automation 

Conference - DETC/DAC'13, Portland, OR. 



 9 Copyright © 2014 by ASME 

[5] Motte, D., Nordin, A. and Bjärnemo, R., 2011, "Study of 

the sequential constraint-handling technique for 

evolutionary optimization with application to structural 

problems", 37th Design Automation Conference - 

DETC/DAC'11, Washington, D.C., 5, pp. 521-531, Both 

authors contributed equally. 

[6] Luby, M., Sinclair, A. and Zuckerman, D., 1993, "Optimal 

speedup of Las Vegas algorithms", Information Processing 

Letters, 47(4), pp. 173-180. 

[7] Gomes, C. P., Selman, B., Crato, N. and Kautz, H., 2000, 

"Heavy-Tailed Phenomena in Satisfiability and Constraint 

Satisfaction Problems", Journal of Automated Reasoning, 

24(1-2), pp. 67-100. 

[8] Gomes, C. P., Selman, B. and Crato, N., 1997, "Heavy-

tailed distributions in combinatorial search", in Smolka G. 

(Ed.), Principles and Practice of Constraint Programming-

CP97, 1330 Edition, 1997, Springer Berlin Heidelberg, pp. 

121-135. 

[9] Hogg, T. and Williams, C. P., 1994, "The hardest 

constraint problems: A double phase transition", Artificial 

Intelligence, 69(1-2), pp. 359-377. 

[10] Gomes, C. P. and Sabharwal, A., 2009, "Exploiting 

runtime variation in complete solvers", in Biere A., Heule 

M., van Maaren H. and Walsh T. (Eds), Handbook of 

Satisfiability, 2009, IOS Press, Amsterdam, pp. 271-288. 

[11] Shylo, O. V., Middelkoop, T. and Pardalos, P. M., 2011, 

"Restart strategies in optimization: parallel and serial 

cases", Parallel Computing, 37(1), pp. 60-68. 

[12] Kautz, H., Horvitz, E., Ruan, Y., Gomes, C. P. and 

Selman, B., 2002, "Dynamic restart policies", The 

Eighteenth National Conference on Artificial Intelligence 

AAAI-02, Edmonton, Canada, pp. 674-681. 

[13] Gagliolo, M. and Schmidhuber, J., 2007, "Learning Restart 

Strategies", International Joint Conference on Artificial 

Intelligence IJCAI-07, Hyderabad, India, pp. 792-797. 

[14] Huang, J., 2007, "The effect of restarts on the efficiency of 

clause learning", International Joint Conference on 

Artificial Intelligence IJCAI-07, Hyderabad, India, pp. 

2318-2323. 

[15] Audemard, G. and Simon, L., 2012, "Refining Restarts 

Strategies for SAT and UNSAT", in Milano M. (Ed.), 

Principles and Practice of Constraint Programming, 2012, 

Springer Berlin Heidelberg, pp. 118-126. 

[16] Nordin, A., Motte, D., Hopf, A., Bjärnemo, R. and 

Eckhardt, C.-C., 2013, "Constraint-handling techniques for 

generative product design systems in the mass 

customization context", Artificial Intelligence for 

Engineering Design, Analysis and Manufacturing - AI 

EDAM, 27(4), pp. 387-399. 

[17] Nordin, A., Hopf, A., Motte, D., Bjärnemo, R. and 

Eckhardt, C.-C., 2011, "Using genetic algorithms and 

Voronoi diagrams in product design", Journal of 

Computing and Information Science in Engineering, 

11(011006). 

 

 


