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!BSTRACT

)N THIS PAPER WE PRESENT AND ANALYSE LOWRANK CHANNEL ESTIMATORS FOR ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING �/&$-	 USING THE FREQUENCY CORRELATION OF THE CHANNEL� ,OWRANK AP
PROXIMATIONS BASED ON THE DISCRETE &OURIER TRANSFORM �$&4	 HAVE BEEN PROPOSED BUT THEY
SUdER FROM POOR PERFORMANCE WHEN THE CHANNEL IS NOT SAMPLESPACED� 7E APPLY THE THEORY
OF OPTIMAL RANKREDUCTION TO LINEAR MINIMUM MEANSQUARED ERROR �,--3%	 ESTIMATORS AND
SHOW THAT THESE ESTIMATORS� WHEN USING A çXED DESIGN� ARE ROBUST TO CHANGES IN CHANNEL COR
RELATION AND SIGNALTONOISE RATIO �3.2	� 4HE PERFORMANCE IS PRESENTED IN TERMS OF UNCODED
SYMBOLERROR RATE �3%2	 FOR A SYSTEM USING ��1!-�
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#HAPTER �

)NTRODUCTION

7IRELESS DIGITAL COMMUNICATION SYSTEMS USING MULTIAMPLITUDE MODULATION SCHEMES� SUCH AS
QUADRATURE AMPLITUDE MODULATION �1!-	� REQUIRE ESTIMATION AND TRACKING OF THE FADING CHAN
NEL� )N GENERAL� THIS MEANS A MORE COMPLEX RECEIVER THAN FOR DIdERENTIAL MODULATION SCHEMES�
SUCH AS DIdERENTIAL PHASESHIFT KEYING �$03+	� WHERE THE RECEIVERS OPERATE WITHOUT A CHANNEL
ESTIMATE ;�=�

)N ORTHOGONAL FREQUENCYDIVISION MULTIPLEXING �/&$-	 SYSTEMS� $03+ IS APPROPRIATE FOR
RELATIVELY LOW DATA RATES� SUCH AS IN THE %UROPEAN DIGITALAUDIO BROADCAST �$!"	 SYSTEM ;�=�
(OWEVER� FOR MORE SPECTRALLYEbCIENT /&$- SYSTEMS� COHERENT MODULATION IS MORE APPROPRI
ATE�

4HE STRUCTURE OF /&$- SIGNALLING ALLOWS A CHANNEL ESTIMATOR TO USE BOTH TIME AND FRE
QUENCY CORRELATION� 3UCH A TWODIMENSIONAL ESTIMATOR STRUCTURE IS GENERALLY TOO COMPLEX FOR A
PRACTICAL IMPLEMENTATION� 4O REDUCE THE COMPLEXITY� SEPARATING THE USE OF TIME AND FREQUENCY
CORRELATION HAS BEEN PROPOSED ;�=� 4HIS COMBINED SCHEME USES TWO SEPARATE &)27IENERçLTERS�
ONE IN THE FREQUENCY DIRECTION AND THE OTHER IN THE TIME DIRECTION�

)N THIS PAPER WE PRESENT AND ANALYSE A CLASS OF BLOCKORIENTED CHANNEL ESTIMATORS FOR /&$-�
WHERE ONLY THE FREQUENCY CORRELATION OF THE CHANNEL IS USED IN THE ESTIMATION� 7HATEVER THEIR
LEVEL OF PERFORMANCE� IT MAY BE IMPROVED WITH THE ADDITION OF A SECOND çLTER USING THE TIME
CORRELATION ;�� �=�

4HOUGH A LINEAR MINIMUM MEANSQUARED ERROR �,--3%	 ESTIMATOR USING ONLY FREQUENCY
CORRELATION HAS LOWER COMPLEXITY THAN ONE USING BOTH TIME AND FREQUENCY CORRELATION� IT STILL
REQUIRES A LARGE NUMBER OF OPERATIONS� 7E INTRODUCE A LOWCOMPLEXITY APPROXIMATION TO A
FREQUENCYBASED ,--3% ESTIMATOR THAT USES THE THEORY OF OPTIMAL RANK REDUCTION� /THER
TYPES OF LOWRANK APPROXIMATIONS� BASED ON THE DISCRETETIME &OURIER TRANSFORM �$&4	� HAVE
BEEN PROPOSED FOR /&$- SYSTEMS BEFORE ;�� �� �=� 4HE WORK PRESENTED IN THIS PAPER WAS INSPIRED
BY THE OBSERVATIONS IN ;�=� WHERE IT IS SHOWN THAT $&4BASED LOWRANK CHANNEL ESTIMATORS HAVE
LIMITED PERFORMANCE FOR NONSAMPLESPACED CHANNELS AND HIGH 3.2S�

!FTER PRESENTING THE /&$- SYSTEM MODEL AND OUR SCENARIO IN 3ECTION �� WE INTRODUCE THE
ESTIMATORS AND DERIVE THEIR COMPLEXITIES IN 3ECTION �� 7E ANALYSE THE SYMBOLERROR RATE �3%2	
PERFORMANCE IN 3ECTION � WHERE WE ALSO DISCUSS DESIGN CONSIDERATIONS� 4HE PROPOSED LOWRANK
ESTIMATOR IS COMPARED TO OTHER ESTIMATORS IN 3ECTION � AND A SUMMARY AND CONCLUDING REMARKS
APPEAR IN 3ECTION ��

�
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#HAPTER �

3YSTEM DESCRIPTION

��� 3YSTEM MODEL

&IGURE ��� DISPLAYS THE /&$- BASEBAND MODEL USED IN THIS PAPER� 7E ASSUME THAT THE USE
OF A CYCLIC PREçX �#0	 ;�= BOTH PRESERVES THE ORTHOGONALITY OF THE TONES AND ELIMINATES INTER
SYMBOL INTERFERENCE �)3)	 BETWEEN CONSECUTIVE /&$- SYMBOLS� &URTHER� THE CHANNELF�S� ~� IS
ASSUMED TO BE SLOWLY FADING� SO IT IS CONSIDERED TO BE CONSTANT DURING ONE /&$- SYMBOL� 4HE
NUMBER OF TONES IN THE SYSTEM IS- � AND THE LENGTH OF THE CYCLIC PREçX IS+ SAMPLES�

&IGURE ���� "ASE BAND MODEL OF AN /&$- SYSTEM� Ú#0Ú DENOTES THE CYCLIC PREçX�

5NDER THESE ASSUMPTIONS WE CAN DESCRIBE THE SYSTEM AS A SET OF PARALLEL 'AUSSIAN CHANNELS�
SHOWN IN &IGURE ���� WITH CORRELATED ATTENUATIONSGJ� 4HE ATTENUATIONS ON EACH TONE ARE GIVEN
BY

GJ � &

‚
J

-3 R

�

� J � � � � � - ` � �

WHERE& �a� IS THE FREQUENCY RESPONSE OF THE CHANNELF�S� ~� DURING THE /&$- SYMBOL� AND3R

IS THE SAMPLING PERIOD OF THE SYSTEM� )N MATRIX NOTATION WE DESCRIBE THE /&$- SYSTEM AS

X � 7G 
 M� ����	

WHEREX IS THE RECEIVED VECTOR�7 IS A MATRIX CONTAINING THE TRANSMITTED SIGNALLING POINTS ON
ITS DIAGONAL�G IS A CHANNEL ATTENUATION VECTOR� ANDMIS A VECTOR OF I�I�D� COMPLEX� ZEROMEAN�
'AUSSIAN NOISE WITH VARIANCE} �

M�

�



&IGURE ���� 4HE /&$- SYSTEM� DESCRIBED AS A SET OF PARALLEL 'AUSSIAN CHANNELS WITH CORRELATED
ATTENUATIONS�

��� #HANNEL MODEL

7E ARE USING A FADING MULTIPATH CHANNEL MODEL ;�=� CONSISTING OF, IMPULSES

F�~� �
, ` �8

J��

mJp�~ ` ~J3R� � ����	

WHEREmJ ARE ZEROMEAN� COMPLEX 'AUSSIAN� RANDOM VARIABLES� WITH A POWERDELAY PROçLEt �~J� �
)N THIS PAPER WE HAVE USED, � � IMPULSES AND TWO VERSIONS OF THIS CHANNEL MODEL�

q 3YNCHRONIZED CHANNEL� 4HIS IS A MODEL OF A PERFECTLY TIMESYNCHRONIZED /&$- SYS
TEM� WHERE THE çRST FADING IMPULSE ALWAYS HAS A ZERODELAY�~� � � � AND OTHER FADING
IMPULSES HAVE DELAYS THAT ARE UNIFORMLY AND INDEPENDENTLY DISTRIBUTED OVER THE LENGTH
OF THE CYCLIC PREçX� 4HE IMPULSE POWERDELAY PROçLE�t �~J� � "D` ~J �~ QLR � DECAYS EXPO
NENTIALLY ;�=�

q 5NIFORM CHANNEL�!LL IMPULSES HAVE THE SAME AVERAGE POWER AND THEIR DELAYS ARE
UNIFORMLY AND INDEPENDENTLY DISTRIBUTED OVER THE LENGTH OF THE CYCLIC PREçX�

��� 3CENARIO

/UR SCENARIO CONSISTS OF A WIRELESS ��1!- /&$- SYSTEM� DESIGNED FOR AN OUTDOOR ENVIRON
MENT� THAT IS CAPABLE OF CARRYING DIGITAL VIDEO� 4HE SYSTEM OPERATES AT ��� K(Z BANDWIDTH AND
IS DIVIDED INTO �� TONES WITH A TOTAL SYMBOL PERIOD OF ���xS� OF WHICH �xS IS THE CYCLIC PREçX�
/NE /&$- SYMBOL THUS CONSISTS OF �� SAMPLES �- 
 + � �� 	� FOUR OF WHICH ARE CONTAINED IN
THE CYCLIC PREçX �+ � � 	� 4HE UNCODED DATA RATE OF THE SYSTEM IS ��� -"IT�SEC� 7E ASSUME
THAT~QLR � � SAMPLE FOR THE SYNCHRONIZED CHANNEL�

�



#HAPTER �

,INEAR CHANNEL ESTIMATION ACROSS TONES

)N THE FOLLOWING WE PRESENT THE ,--3% ESTIMATE OF THE CHANNEL ATTENUATIONSG FROM THE
RECEIVED VECTORX AND THE TRANSMITTED DATA7 � 7E ASSUME THAT THE RECEIVED /&$- SYMBOL
CONTAINS DATA KNOWN TO THE ESTIMATOR Ô EITHER TRAINING DATA OR RECEIVER DECISIONS�

4HE COMPLEXITY REDUCTION OF THE ,--3% ESTIMATOR CONSISTS OF TWO SEPARATE STEPS� )N THE
çRST STEP WE MODIFY THE ,--3% BY AVERAGING OVER THE TRANSMITTED DATA� OBTAINING A SIMPLIçED
ESTIMATOR� )N THE SECOND STEP WE REDUCE THE NUMBER OF MULTIPLICATIONS REQUIRED BY APPLYING
THE THEORY OF OPTIMAL RANKREDUCTION ;��=�

��� ,--3% ESTIMATION

4HE ,--3% ESTIMATE OF THE CHANNEL ATTENUATIONSG� IN ����	� GIVEN THE RECEIVED DATAX AND
THE TRANSMITTED SYMBOLS7 IS ;��=

BGKLLRD � 1 GG

t
1 GG
 } �

M

r
77 '

s` �
u ` �

BGKR ����	

WHERE
BGKR� 7 ` � X �

�
X�

W�

X�

W�
a a a

X- ` �

W- ` �

� 3

����	

IS THE LEASTSQUARES �,3	 ESTIMATE OFG� } �
M IS THE VARIANCE OF THE ADDITIVE CHANNEL NOISE AND

1 GG � $
N
GG'

O
IS THE CHANNEL AUTOCORRELATION� 4HE SUPERSCRIPT�a� ' DENOTES (ERMITIAN

TRANSPOSE� )N THE FOLLOWING WE ASSUME� WITHOUT LOSS OF GENERALITY� THAT THE VARIANCES OF THE
CHANNEL ATTENUATIONS ING ARE NORMALIZED TO UNITY�I�E� $

N
JGJJ�

O
� � �

4HE ,--3% ESTIMATOR ����	 IS OF CONSIDERABLE COMPLEXITY� SINCE A MATRIX INVERSION IS
NEEDED EVERY TIME THE TRAINING DATA IN7 CHANGES� 7E REDUCE THE COMPLEXITY OF THIS ESTIMATOR
BY AVERAGING OVER THE TRANSMITTED DATA ;�=�I�E� WE REPLACE THE TERM�77 ' � ` � IN ����	 WITH
ITS EXPECTATION$

N
�77 ' � ` �

O
� !SSUMING THE SAME SIGNAL CONSTELLATION ON ALL TONES AND EQUAL

PROBABILITY ON ALL CONSTELLATION POINTS� WE HAVE$
N
�77 ' � ` �

O
� $ FJ� �WJJ� G(� WHERE( IS THE

IDENTITY MATRIX� $EçNING THE AVERAGE SIGNALTONOISE RATIO AS2-1 � $ FJWJJ� G�} �
M� WE OBTAIN

A SIMPLIçED ESTIMATOR

BG� 1 GG

‚

1 GG

n

2-1
(

� ` �
BGKR� ����	

�



WHERE
n � $

N
JWJJ�

O
$

N
J� �WJJ�

O

IS A CONSTANT DEPENDING ON THE SIGNAL CONSTELLATION� )N THE CASE OF ��1!- TRANSMISSION�
n � �� � � � "ECAUSE7 IS NO LONGER A FACTOR IN THE MATRIX CALCULATION� THE INVERSION OF1 GG
 n

2-1 (
DOES NOT NEED TO BE CALCULATED EACH TIME THE TRANSMITTED DATA IN7 CHANGES� &URTHERMORE� IF
1 GGAND2-1 ARE KNOWN BEFOREHAND OR ARE SET TO çXED NOMINAL VALUES� THE MATRIX1 GG�1 GG


n
2-1 (� ` � NEEDS TO BE CALCULATED ONLY ONCE� 5NDER THESE CONDITIONS THE ESTIMATION REQUIRES-
MULTIPLICATIONS PER TONE� 4O FURTHER REDUCE THE COMPLEXITY OF THE ESTIMATOR� WE PROCEED WITH
LOWRANK APPROXIMATIONS BELOW�

��� /PTIMAL LOWRANK APPROXIMATIONS

/PTIMAL RANK REDUCTION IS ACHIEVED BY USING THE SINGULAR VALUE DECOMPOSITION �36$	 ;��=� 4HE
36$ OF THE CHANNEL AUTOCOVARIANCE MATRIX IS

1 GG� 4c4 ' � ����	

WHERE4 IS A UNITARY MATRIX CONTAINING THE EIGENVECTORS ANDc IS A DIAGONAL MATRIX� CONTAINING
THE SINGULAR VALUESw� w w� w � � � w w- ` � ON ITS DIAGONAL� � )N !PPENDIX ! IT IS SHOWN THAT THE
OPTIMAL RANKOESTIMATOR IS

BGO � 4a O4 ' BGKR ����	

WHEREa O IS A DIAGONAL MATRIX WITH THE VALUES

pJ �

�
�

�

wJ

wJ 
 n
2-1

J � � � � � � � � � O` �

� J � O� � � � � - ` �
����	

6IEWING THE ORTHONORMAL MATRIX4 ' AS A TRANSFORM� � THE SINGULAR VALUEwJ OF1 GG IS THE
CHANNEL POWER �VARIANCE	 CONTAINED IN THEJSGTRANSFORM COEbCIENT AFTER TRANSFORMING THE ,3
ESTIMATEBGKR� 3INCE4 IS UNITARY� THIS TRANSFORMATION CAN BE VIEWED AS ROTATING THE VECTORBGKR

SO THAT ALL ITS COMPONENTS ARE UNCORRELATED ;��=� 4HE DIMENSION OF THE SPACE OF ESSENTIALLY
TIME AND BANDLIMITED SIGNALS LEADS US TO THE RANK NEEDED IN THE LOWRANK ESTIMATOR� )N ;��=
IT IS SHOWN THAT THIS DIMENSION IS ABOUT� !3 
 � WHERE! IS THE ONESIDED BANDWIDTH AND3
IS THE TIME INTERVAL OF THE SIGNAL� !CCORDINGLY� THE MAGNITUDE OF THE SINGULAR VALUES OF1 GG

SHOULD DROP RAPIDLY AFTER ABOUT+ 
 � LARGE VALUES� WHERE+ IS THE LENGTH OF THE CYCLIC PREçX
� � ! � � �3 R� 3 � +3R AND� !3 
 � � + 
 � 	�

7E PRESENT THE CHANNEL POWER CONTAINED IN THE çRST �� COEbCIENTS IN &IGURE ���� 4HE
CALCULATIONS ARE BASED ON OUR SCENARIO AND THE TWO CHANNEL MODELS� THE SYNCHRONIZED AND
THE UNIFORM� 4HE MAGNITUDE OF THE CHANNEL POWER DROPS RAPIDLY AFTER ABOUTJ � � � I�E� �
COEbCIENTS� WHICH IS CONSISTENT WITH THE OBSERVATION THAT THE DIMENSION OF THE SPACE SPANNED
BY1 GG IS APPROXIMATELY+ 
 � � THAT IS�� 
 � � � IN THIS CASE�

! BLOCK DIAGRAM OF THE RANK` OESTIMATOR IN ����	 IS SHOWN IN &IGURE ���� WHERE THE ,3
ESTIMATE IS CALCULATED FROMX BY MULTIPLYING BY7 ` � �

� 3INCE WE ARE DEALING WITH (ERMITIAN MATRICES THEwKS ARE ALSO EIGENVALUES� (OWEVER� WE USE THE TERMINOLOGY
OF THE 36$ SINCE IT IS MORE GENERAL AND CAN BE USED IN OPTIMAL RANK REDUCTION OF NON(ERMITIAN MATRICES�

� 4HE TRANSFORM IN THIS SPECIAL CASE OF LOWRANK APPROXIMATION IS THE +ARHUNEN,OEVE �A�K�A� (OTELLING	
TRANSFORM OFH�

�



&IGURE ���� 2ELATIVE CHANNEL POWER�wJ� %JGJJ� � IN THE TRANSFORM COEbCIENTS FOR THE TWO EXAMPLE
CHANNELS�

&IGURE ���� "LOCK DIAGRAM OF THE RANK` OCHANNEL ESTIMATOR�

��� %STIMATOR COMPLEXITY

4HE LIMITING FACTOR OF THE RANK` O ESTIMATORS IS AN ERROR âOOR� SEE 3ECTION �� 4O ELIMINATE
THIS ERROR âOOR UP TO A GIVEN 3.2 WE NEED TO MAKE SURE OUR ESTIMATOR RANK IS LARGE ENOUGH�
4HIS PROMPTS AN ANALYSIS OF THE COMPUTATIONAL COMPLEXITY OF THE RANK` O ESTIMATOR� 4HE
IMPLEMENTATION WE HAVE CHOSEN IS BASED ON WRITING ����	 AS A SUM OF RANK� MATRICES� WHICH
GIVES US THE EXPRESSION

BGO �

�

 
Ò �8

J��

pJTJT'
J

�

! BGKR�
Ò �8

J��

PJ

$
TJ� BGKR

%
����	

WHEREPJ � pJTJ AND
$
TJ� BGKR

%
� T'

J
BGKRIS THE %UCLIDIAN INNER PRODUCT� 4HE LINEAR COMBINATION

OFOVECTORS OF LENGTH- ALSO REQUIRESO- MULTIPLICATIONS� 4HE ESTIMATION THUS REQUIRES� O-
MULTIPLICATIONS AND THE TOTAL NUMBER OF MULTIPLICATIONS PER TONE BECOMES� O� )N COMPARISON
WITH THE FULL ESTIMATOR ����	� WE HAVE MANAGED TO REDUCE THE NUMBER OF MULTIPLICATIONS FROM
- TO� OPER TONE� 4HE SMALLEROIS� THE LOWER THE COMPUTATIONAL COMPLEXITY� BUT THE LARGER

�



THE APPROXIMATION ERROR BECOMES� &OLLOWING THE ANALYSIS IN 3ECTION ���� WE CAN EXPECT A GOOD
APPROXIMATION WHENOIS IN THE RANGE OF SAMPLES IN THE CYCLIC PREçX� WHICH IS USUALLY MUCH
SMALLER THAN THE NUMBER OF TONES�- �

! LEGITIMATE QUESTION AT THIS POINT IS WHAT HAPPENS FOR A SYSTEM WITH MANY TONES AND
MANY SAMPLES IN THE CYCLIC PREçX� 4HE NUMBER OF CALCULATIONS PER TONE CAN BE CONSIDERABLE IF
A RANK` OESTIMATOR IS USED DIRECTLY ON ALL TONES IN THE SYSTEM� /NE SOLUTION TO THIS PROBLEM
IS A PARTITIONING OF THE TONES INTO REASONABLE SIZED BLOCKS AND� AT A CERTAIN PERFORMANCE LOSS�
PERFORM THE ESTIMATION INDEPENDENTLY IN THESE BLOCKS� "Y DIVIDING THE CHANNEL ATTENUATIONS
INTO* EQUALLY SIZED BLOCKS� THE BANDWIDTH IN EACH BLOCK IS REDUCED BY A FACTOR* � 2EFERRING
AGAIN TO THE DIMENSION OF THE SPACE OF ESSENTIALLY TIME AND BANDLIMITED SIGNALS ;��=� THE
EXPECTED NUMBER OF ESSENTIAL BASE VECTORS IS REDUCED FROM+ 
 � TO+�* 
 � � (ENCE THE
COMPLEXITY OF THE ESTIMATOR DECREASES ACCORDINGLY�

4O ILLUSTRATE THE IDEA� LET US ASSUME WE HAVE A SYSTEM WITH- � ���� TONES AND A+ � ��
SAMPLE CYCLIC PREçX� 4HE UNIFORM CHANNEL CORRELATION BETWEEN THE ATTENUATIONSGL ANDGM IN
THIS SYSTEM IS� SEE !PPENDIX "�

QL�M �

�
�

�

� IF L � M
� ` D` I � {+ L ` M

-

I � {+ L ` M
-

IF L �� M
�

4HIS ONLY DEPENDS ON THE DISTANCE BETWEEN THE TONES�L ` M� AND THE RATIO BETWEEN THE LENGTH
OF THE CYCLIC PREçX AND THE NUMBER OF TONES�+�- � 4HE ���� TONE SYSTEM CAN BE DESCRIBED BY

�

�
�
�

X���

���
X����

�

�
�
� �

�

�
�
�

7 ���

� � �
7 ����

�

�
�
�

�

�
�
�

G���

���
G����

�

�
�
� 


�

�
�
�

M���

���
M����

�

�
�
� �

THAT IS� AS �� PARALLEL ��TONE SYSTEMS�

X� J� � 7 � J� G� J� 
 M� J� � J � � � � � � � � �� �

7E HAVE THE SAME CHANNEL CORRELATION IN EACH SUBSYSTEM AS WE HAVE IN THE ��TONE SCENARIO
IN THIS PAPER �+�- � � � �� � �� � ���� 	� "Y ESTIMATING THE CHANNEL ATTENUATIONSG� J� IN EACH
SUBSYSTEM INDEPENDENTLY� WE NEGLECT THE CORRELATION BETWEEN TONES IN DIdERENT SUBSYSTEMS�
BUT OBTAIN THE SAME -3% PERFORMANCE AS IN OUR ��TONE SCENARIO�

�



#HAPTER �

%STIMATOR PERFORMANCE AND DESIGN

7E PROPOSE A GENERIC LOWRANK FREQUENCYBASED CHANNEL ESTIMATOR�I�E� THE ESTIMATOR IS DESIGNED
FOR çXED� NOMINAL VALUES OF 3.2 AND CHANNEL CORRELATION� (ENCE� WE NEED TO ANALYSE HOW THE
RANK� CHANNEL CORRELATION AND 3.2 SHOULD BE CHOSEN FOR THIS ESTIMATOR SO THAT IT IS ROBUST TO
VARIATIONS IN THE CHANNEL STATISTICS�I�E� MISMATCH� !S A PERFORMANCE MEASURE� WE USE UNCODED
SYMBOLERROR RATE �3%2	 FOR ��1!- SIGNALLING� 4HE 3%2 IN THIS CASE CAN BE CALCULATED FROM
THE MEANSQUARED ERROR �-3%	 WITH THE FORMULAE IN ;��=�

��� 2ANK REDUCTION

4HE MEANSQUARED ERROR� RELATIVE TO THE CHANNEL POWER$
N
JGJJ�

O
� OF THE RANK` OESTIMATOR IS

MAINLY DETERMINED BY THE CHANNEL POWER CONTAINED IN THE TRANSFORM COEbCIENTS AND CAN BE
EXPRESSED� SEE !PPENDIX #�
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WHEREwJ ANDpJ ARE GIVEN BY ����	 AND ����	 RESPECTIVELY� 4HE -3% ����	 IS A MONOTONICALLY
DECREASING FUNCTION OF2-1 AND CAN BE BOUNDED FROM BELOW BY THE LAST TERM�

LRD�O� �
�
-

- ` �8

J� O

wJ v LRD �O� � ����	

WHICH IS THE SUM OF THE CHANNEL POWER IN THE TRANSFORM COEbCIENTS NOT USED IN THE ESTIMATE�
4HIS -3%âOOR�LRD�O� � WILL GIVE RISE TO A ERROR âOOR IN THE SYMBOLERROR RATES�

4HE ERROR âOOR IS THE MAIN LIMITATION ON THE COMPLEXITY REDUCTION ACHIEVED BY OPTIMAL
RANK REDUCTION� !S AN ILLUSTRATION� &IGURE ��� DISPLAYS THE 3%2 RELATIVE TO THE CHANNEL VARIANCE�
FOR THREE DIdERENT RANKS� AS A FUNCTION OF THE 3.2� 4HE RANKS CHOSEN AREO� � � � AND� � AND
THE CHANNEL USED IN THE EXAMPLE IS THE SYNCHRONIZED CHANNEL� 4HE CORRESPONDING 3%2âOORS
ARE SHOWN AS HORIZONTAL LINES� &ORO� � � THE 3%2âOOR IS RELATIVELY SMALL� AND THE 3%2 OF THE
RANK̀� ESTIMATOR IS COMPARABLE TO THE ORIGINAL� FULLRANK ESTIMATOR ����	 IN THE RANGE � TO ��
D" IN 3.2� "Y CHOOSING THE APPROPRIATE RANK ON THE ESTIMATOR� WE CAN ESSENTIALLY AVOID THE
IMPACT FROM THE 3%2âOOR UP TO A GIVEN 3.2� 7HEN WE HAVE FULL RANK�O� - � NO 3%2âOOR
EXISTS�

�



&IGURE ���� ,OWRANK ESTIMATOR SYMBOLERROR RATE AS A FUNCTION OF 3.2� WITH RANKSO� � � �
AND� � #ORRESPONDING 3%2âOORS SHOWN AS HORIZONTAL LINES� �3YNCHRONIZED CHANNEL	

"ASED ON THE CHANNEL POWERS PRESENTED IN &IGURE ���� WE SHOW THE CORRESPONDING 3%2âOORS�
RELATIVE TO THE CHANNEL VARIANCE� IN &IGURE ���� !FTER ABOUT RANK` � THE 3%2âOOR DECREASES
RAPIDLY� 7E ARE THEREFORE ABLE TO OBTAIN A GOOD ESTIMATOR APPROXIMATION WITH A RELATIVELY LOW
RANK�

&IGURE ���� %STIMATOR 3%2âOOR AS A FUNCTION OF ESTIMATOR RANK� #IRCLES SHOW THE 3%2âOORS
APPEARING IN &IGURE ����

��



��� 3%2 PERFORMANCE UNDER MISMATCH

)N PRACTICE� THE TRUE CHANNEL CORRELATION AND 3.2 ARE NOT KNOWN� 4O GET A GENERAL EXPRESSION
FOR THE ESTIMATOR 3%2� WE DERIVE IT UNDER THE ASSUMPTION THAT THE ESTIMATOR IS DESIGNED
FOR CORRELATION1 GG AND SIGNALTONOISE RATIO2-1 � BUT THE TRUE VALUES ARE1 EGEG AND G2-1 �
RESPECTIVELY� WHEREEG DENOTES A CHANNEL WITH DIdERENT STATISTICS THANG� 4HIS ALLOWS US TO
ANALYSE THIS ESTIMATORÚS SENSITIVITY TO DESIGN ERRORS� 5NDER THESE ASSUMPTIONS� THE RELATIVE
-3% OF THE RANK` OESTIMATE ����	 BECOMES� SEE !PPENDIX #�
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WHERExJ IS THEJSGDIAGONAL ELEMENT OF4 ' 1 EGEG4 � CF� ����	� )T CAN BE INTERPRETED AS THE VARIANCE
OF THE TRANSFORMED CHANNEL�4 ' EG UNDER CORRELATION MISMATCH SINCE

$
| r

4 ' EG
s r

4 ' EG
s'

}

� 4 ' 1 EGEG4

)T SHOULD BE NOTED THAT THE ELEMENTS OF4 ' EG ARE NO LONGER UNCORRELATED� (OWEVER DUE TO
THE FACT THAT THE POWERDELAY PROçLE IS SHORT COMPARED TO THE /&$- SYMBOL� THE çRSTO
ELEMENTS CAN BE EXPECTED TO CONTAIN MOST OF THE POWER� 4HIS PROPERTY WILL ENSURE ONLY A SMALL
PERFORMANCE LOSS WHEN THE ESTIMATOR IS DESIGN FOR WRONG CHANNEL STATISTICS�

)F RANK` OESTIMATORS ARE USED IN A REAL SYSTEM� THE SENSITIVITY TO MISMATCH IN BOTH CHANNEL
CORRELATION AND 3.2 ARE IMPORTANT� 7E WILL SHOW THAT A RANK` O ESTIMATOR BASED ON THE
UNIFORM CHANNEL MODEL AND A NOMINAL 3.2 CAN BE USED AS çXED GENERIC ESTIMATOR WITH ONLY
A SMALL LOSS IN AVERAGE PERFORMANCE� 7E DIVIDE THE MISMATCH ANALYSIS INTO TWO PARTS� çRST WE
ANALYSE THE 3%2 WHEN WE HAVE A MISMATCH IN CHANNEL CORRELATION AND LATER WE ANALYSE THE
3%2 WHEN WE HAVE A MISMATCH IN 3.2�

����� )NCORRECT CHANNEL CORRELATION

&ROM ����	� WITH NO 3.2 MISMATCH�2-1 � G2-1� � BUT INCORRECT CHANNEL CORRELATION��1 GG��
1 EGEG� � WE OBTAIN THE PERFORMANCE FOR THE CORRELATION MISMATCH CASES� 7E COMPARED THE PER
FORMANCE OF OUR CHANNEL ESTIMATOR IN TWO MISMATCH SITUATIONS� I	 USING THE A UNIFORM CHANNEL
WHEN THE TRUE CHANNEL MODEL WAS THE SYNCHRONOUS CHANNEL AND II	 USING THE SYNCHRONOUS CHAN
NEL WHEN THE TRUE CHANNEL MODEL WAS THE UNIFORM CHANNEL� 4HE RESULTING CHANNEL ESTIMATES
THAT WERE USED IN THE DETECTION OF THE DATA PRODUCED NO NOTICABLE DIdERENCE IN SYMBOL ERROR
RATES Ô LESS THAN ��� D" CHANGE IN EdECTIVE 3.2 FOR AN AVERAGE 3.2 UP TO �� D"� (OWEVER�
WHEN BOTH THE CHANNEL 3.2 AND THE CHANNEL CORRELATION MATRIX ARE MISMATCHED� THE NOMINAL
DESIGN 3.2 BECOMES MORE IMPORTANT� 4HIS CAN BE SEEN IN &IGURE �� WHERE WE PRESENT THE
RESULTING SYMBOL ERROR RATE FOR RANK� ESTIMATORS� &OR THE MISMATCHED CASES� MARKED WITH ÚOÚ�
THE UNIFORM DESIGN IS MORE ROBUST�I�E� THE ERROR IN CASE OF MISMATCH IS LOWER� 7ITH THE RESTRIC
TION THAT THE TRUE CHANNEL HAS A POWERDELAY PROçLE SHORTER THAN THE CYCLIC PREçX� DESIGNING
FOR A UNIFORM POWERDELAY PROçLE CAN BE SEEN AS A MINIMAX DESIGN�

��



&IGURE ���� -3% FOR CORRECT AND MISMATCHED DESIGN� 4HE LATTER IS MARKED WITH CIRCLES �o 	�

����� )NCORRECT 3.2

&INALLY WE EVALUATE THE SENSITIVITY TO MISMATCH IN DESIGN 3.2 FOR A RANK� ESTIMATOR� 7HEN
THERE IS NO MISMATCH IN CHANNEL CORRELATION� AND NOMINAL 3.2S OF ��� �� AND �� D" ARE USED
IN THE DESIGN� THE SENSITIVITY TO 3.2 MISMATCH IS NOT THAT LARGE� (OWEVER� IN &IGURE ���� WE
PRESENT THE 3%2 FOR THE SAME RANK� ESTIMATORS� BUT WITH THE DIdERENCE THAT THE TRUE CHANNEL
CORRELATION IS MISMATCHED WITH THE DESIGN CORRELATION� )N THIS SECOND CASE� THERE IS A CLEAR
DIdERENCE BETWEEN THE TWO DESIGNS� THE HIGHER THE NOMINAL DESIGN 3.2� THE BETTER THE OVERALL
PERFORMANCE OF THE ESTIMATOR IN THE RANGE � TO �� D" IN 3.2� )T SHOULD BE NOTED THAT A
,--3%ESTIMATOR DESIGNED FOR A LARGE 3.2 APPROACHES THE ,3ESTIMATOR�

&IGURE ���� 2ANK� ESTIMATOR 3%2 WHEN 3.2S OF ��� �� AND �� D" ARE USED IN THE DESIGN� 4HE
ESTIMATORS ARE DESIGNED FOR INCORRECT CHANNEL CORRELATION�

��



#HAPTER �

'ENERIC LOWRANK ESTIMATOR

)F WE WANT A ROBUST GENERIC CHANNEL ESTIMATOR DESIGN FOR /&$- SYSTEMS� OF THE LOWRANK TYPE�
THE ANALYSIS IN THE PREVIOUS SECTION SUGGESTS THE USE OF THE UNIFORM CHANNEL CORRELATION AND
A RELATIVELY HIGH 3.2 AS NOMINAL DESIGN PARAMETERS� 4HE DESIGN OF SUCH AN ESTIMATOR ONLY
REQUIRES KNOWLEDGE ABOUT THE LENGTH OF THE CYCLIC PREçX� THE NUMBER OF TONES IN THE SYSTEM AND
THE TARGET RANGE OF 3.2S FOR THE APPLICATION� )F THE RECEIVER CANNOT AdORD AN ESTIMATOR THAT
INCLUDES TRACKING OF CHANNEL CORRELATION AND 3.2� THIS CHANNEL ESTIMATOR WORKS REASONABLY WELL
FOR çXED 3.2 AND CHANNEL CORRELATION�

��� 0ERFORMANCE GAIN

&OR THE SCENARIO USED IN THIS PAPER� 3EC� ���� WE CHOOSE A RANK� ESTIMATOR WITH UNIFORM DESIGN
AND2-1 � �� D"� 4HE PERFORMANCE OF THIS ESTIMATOR IS PRESENTED IN &IG� ���� WHERE THE 3%2
FOR THE ,3ESTIMATE ����	 AND KNOWN CHANNEL ARE ALSO SHOWN� !S CAN BE SEEN� THE LOWRANK
ESTIMATOR IS� �� D" BETTER THAN THE ,3ESTIMATOR AND LESS THAN� D" FROM THE KNOWN CHANNEL�

��� #OMPARISON TO &)2çLTERS

!N ALTERNATIVE TO USING LOWRANK ESTIMATORS TO SMOOTH THE CHANNEL ESTIMATES IS TO USE A &)2
çLTER INSTEAD� (ENCE WE WILL COMPARE OUR PROPOSED LOWRANK ESTIMATORS TO &)2çLTERS OF THE
SAME COMPLEXITY� 4HE &)2çLTERS ARE� OTAPS 7IENER çLTERS ;��=�I�E� � OMULTIPLICATIONS PER
TONE THAT ARE DESIGNED FOR THE SAME CHANNEL CORRELATION AND 3.2 AS THE LOWRANK ESTIMATORS�
&IGURE ��� SHOWS THE 3%2 FOR RANK` OESTIMATORS IN COMPARISON WITH &)2çLTERS OF THE SAME
COMPUTATIONAL COMPLEXITY� 7HEN THE COMPLEXITY IS �� MULTIPLICATIONS PER TONE �!	 THE RANK` O
ESTIMATOR HAS ABOUT� �� D" ADVANTAGE IN 3.2 OVER THE &)2çLTER IN THE RANGE OF 3.2S SHOWN�
7HEN THE NUMBER OF CALCULATIONS GOES DOWN TO �� MULTIPLICATIONS PER TONE �"	 THE 3%2âOOR
OF THE RANK` OESTIMATOR BECOMES VISIBLE AND THE &)2çLTER PERFORMS BETTER AT 3.2S ABOVE ��
D"�

(OWEVER� IT SHOULD BE NOTED THAT THE PERFORMANCE OF THE LOWRANK ESTIMATORS DEPEND HEAVILY
OF THE SIZE OF THE CYCLIC PREçX� )F THE CYCLIC PREçX WERE TO BE DECREASED �RELATIVE TO THE /&$-
SYMBOL	� THE LOWRANK ESTIMATOR WOULD INCREASE ITS PERFORMANCE� 4HIS IS DUE TO THE FACT THAT
THE ÞDIMENSIONÞ OF THE CHANNEL �WHOSE DURATION IS ASSUMED TO BE SHORTER THAN THE CYCLIC PREçX	
DECREASES AND CAN THUS BE REPRESENTED WITH FEWER COEbCIENTS� /N THE OTHER HAND� IF THE CYCLIC

��



&IGURE ���� 3%2 FOR ��1!- TRAINING DATA AND A SYNCHRONIZED CHANNEL� 4HE GENERIC RANK` �
ESTIMATOR� DESIGNED FOR A UNIFORM CHANNEL AND �� D" IN 3.2� IS COMPARED TO THE ,3 ESTIMATOR
AND KNOWN CHANNEL AT THE RECEIVER�

&IGURE ���� 3%2 COMPARISON BETWEEN THE RANK` O ESTIMATORS AND &)2 7IENERçLTERS OF THE
SAME COMPLEXITY� "OTH ESTIMATORS ARE DESIGNED FOR THE UNIFORM CHANNEL AND �� D" 3.2� !	
�� MULTIPLICATIONS PER TONE AND "	 �� MULTIPLICATIONS PER TONE�

PREçX INCREASES IN SIZE� MORE COEbCIENTS ARE NEEDED TO AVOID LARGE APPROXIMATION ERRORS� (ENCE�
WHETHER OR NOT THE LOWRANK ESTIMATOR IS BETTER THAN THE &)2çLTER DEPENDS ON THE RELATIVE SIZE
OF THE CYCLIC PREçX AND THE ALLOWED COMPLEXITY�

��



��� 4HE USE OF TIME CORRELATION

4HE LOWRANK ESTIMATOR PRESENTED IN THIS PAPER IS BASED ON FREQUENCY CORRELATION ONLY BUT THE
TIMECORRELATION OF THE CHANNEL CAN ALSO BE USED� 4HE TWODIMENSIONAL ,--3% ESTIMATOR CAN
BE SIMPLIçED USING THE SAME TECHNIQUE WITH RANK REDUCTION AS DESCRIBED HERE� (OWEVER� IN ;��=
IT IS SHOWN THAT SUCH AN ESTIMATOR GIVES AN INFERIOR PERFORMANCE FOR A çXED COMPLEXITY� (ENCE�
IT SEEMS THAT SEPARATING THE USE OF FREQUENCY AND TIMECORRELATION IS THE MOST EbCIENT WAY OF
ESTIMATING THE CHANNEL�

/THER APPROACHES TO USE THE TIMECORRELATION ISE�G�TO USE A DECISIONDIRECTED SCHEME ;��=
OR &)2çLTERS ;�� ��=� 4HE FORMER CAN BE USED IN A SLOWFADING ENVIRONMENT� WHERE IT OdERS GOOD
PERFORMANCE FOR A MINIMAL COMPLEXITY AND THE LATTER IS PREFERRED IN CASE OF FAST FADING� )T IS
POSSIBLE TO USE A BANK OF &)2çLTERS AND CHOOSE THE MOST APPROPRIATE ACCORDING THE ESTIMATED
$OPPLER FREQUENCY ;��=�

��
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#HAPTER �

#ONCLUSIONS

7E HAVE INVESTIGATED LOWCOMPLEXITY LOWRANK APPROXIMATIONS OF THE ,--3% CHANNEL ESTI
MATOR FOR NONSAMPLESPACED CHANNELS� 4HE INVESTIGATION SHOWS THAT AN ESTIMATOR ERRORâOOR�
INHERENT IN THE LOWRANK APPROXIMATION� IS THE SIGNIçCANT LIMITATION TO THE ACHIEVED COMPLEXITY
REDUCTION� 7E SHOWED THAT A GENERIC LOWRANK ESTIMATOR DESIGN� BASED ON THE UNIFORM CHANNEL
CORRELATION AND A NOMINAL 3.2� CAN BE USED IN OUR ��TONE SCENARIO� #OMPARED WITH THE FULL
,--3% ����	� THERE IS ONLY A SMALL LOSS IN PERFORMANCE UP TO A 3.2 OF �� D" BUT A REDUCTION
IN COMPLEXITY WITH A FACTOR-� � O� � � &OR SYSTEMS WITH MORE SUBCHANNELS THIS GAIN IS EVEN
LARGER� 4HE GENERIC ESTIMATOR DESIGN ONLY REQUIRES KNOWLEDGE ABOUT THE LENGTH OF THE CYCLIC
PREçX� THE NUMBER OF TONES IN THE SYSTEM AND THE TARGET RANGE OF 3.2S FOR THE APPLICATION�

7E ALSO COMPARED LOWRANK ESTIMATORS TO &)2çLTERS ACROSS THE TONES� 4HE COMPARISON
SHOWED THAT AT LOW COMPLEXITIES AND HIGH 3.2S THE &)2çLTERS IS THE PREFERABLE CHOICE� DUE TO
THE ERROR âOOR IN THE LOWRANK APPROXIMATION� (OWEVER� IF WE CAN ALLOW UP TO �� MULTIPLICATIONS
PER TONE IN OUR SCENARIO� THE LOWRANK ESTIMATOR IS MORE ADVANTAGEOUS� !LSO� THE LOWRANK
ESTIMATORS IMPROVE THEIR PERFORMANCE AS THE CYCLIC PREçX DECREASES IN SIZE�
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!PPENDIX !

/PTIMAL RANK REDUCTION

4HE OPTIMAL RANK REDUCTION IS FOUND FROM THE CORRELATION MATRICES

1 GBGKR
� $

N
GBG'

KR

O
� 1 GG

1 BGKRBGKR
� $

N
BGKR

BG'
KR

O
� 1 GG


n
2-1

(

AND THE 36$
1 GBGKR

1 ` � � �
BGKRBGKR

� 0 � #0 '
� �!��	

WHERE0 � AND0 � ARE UNITARY MATRICES AND# IS A DIAGONAL MATRIX WITH THE SINGULAR VALUES
C� w C� w a a a wC- ` � ON ITS DIAGONAL� 4HE BEST LOWRANK ESTIMATOR ;��= IS THEN

BGO � 0 �

�
# O �
� �

�

0 '
� 1 ` � � �

GLSGLS
BGKR� �!��	

WHERE# O IS THEOb OUPPER LEFT CORNER OF# � I�E� WE EXCLUDE ALL BUT THEOLARGEST SINGULAR
VECTORS� )N THIS PAPER WE HAVE1 GBGKR

� 1 GG AND1 BGKRBGKR
� 1 GG
 n

2-1 ( AND WE NOTE THAT THEY
SHARE THE SAME SINGULAR VECTORS�I�E� THE ONES OF1 GG � 4c4 ' � 4HUS� WE MAY EXPRESS �!��	
AS
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4HE RANKOESTIMATOR �!��	 NOW BECOMES
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WHEREa O IS THEOb OUPPER LEFT CORNER OF

a � c
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.OTE THAT0 � � 0 � SINCE WE ARE ESTIMATING THE SAME TONES AS WE ARE OBSERVING �I�E� SMOOTHING	
AND AN EIGENVALUE DECOMPOSITION COULD BE USED TO ACHIEVE OPTIMAL RANK REDUCTION� )N THE
GENERAL CASE WHENE�G� PILOTSYMBOL ASSISTED MODULATION ;��= IS USED AND THERE ARE KNOWN
SYMBOLS �PILOTS	 ON ONLY A PART OF THE SUBCHANNELS� WE HAVE0 � �� 0 � SINCE1 GBGKR

AND1 BGKRBGKR

DONÚT SHARE THE SAME SINGULAR VECTORS �THE MATRICES ARE NOT EVEN OF THE SAME SIZE	� (ENCE� THE
MORE GENERAL 36$ MUST BE USED WHICH MOTIVATES THE NOMENCLATURE IN THIS ARTICLE�
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!PPENDIX "

#HANNELCORRELATION MATRICES

5SING THE CHANNEL MODEL IN ����	� THE ATTENUATION ON TONEJ BECOMES

GJ �
, ` �8

H��

mHD` I � { J
- ~H�

AND THE CORRELATION MATRIX FOR THE ATTENUATION VECTOR�G�

1 GG � $
N

GG'
O

� : QL�M <

CAN BE EXPRESSED AS �~JÚS INDEPENDENT	
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WHEREt �~� IS THE MULTIPATH INTENSITY PROçLE ANDE~J �~J� IS THE PROBABILITY DENSITY FUNCTION OF
~J�

4HE CORRELATION MATRICES OF THE THREE CHANNELS USED IN THIS PAPER ARE CALCULATED BELOW�

q 3YNCHRONIZED CHANNEL�

4HE PROBABILITY DISTRIBUTIONS FOR THE DELAYS ARE
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AND THE POWERDELAY PROçLE ISt �~� � " � D̀ ~�~QLR � 3UBSTITUTING IN �"��	� AND NORMALIZING
QJ�J TO UNITY� GIVES US
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q 5NIFORM CHANNEL�

4HE PROBABILITY DISTRIBUTIONS FOR THE DELAYS ARE
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AND THE POWERDELAY PROçLE IS CONSTANTt �~� � " � � 3UBSTITUTED IN �"��	� AND NORMALIZING
QJ�J TO UNITY� GIVES US
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!PPENDIX #

%STIMATOR MEANSQUARED ERROR

)N THIS APPENDIX WE DERIVE THE -3% OF THE RANK` OESTIMATOR IN ����	� 7E ALSO PRESENT THE
-3%âOOR� WHICH BOUNDS THE ACHIEVABLE -3% FROM BELOW IN LOWRANK APPROXIMATIONS OF THE
,--3% ESTIMATOR� 4O GET A GENERAL EXPRESSION FOR THE MEANSQUARED ERROR FOR THE RANK` O
APPROXIMATION OF THE ,--3% ESTIMATOR� WE ASSUME THAT THE ESTIMATOR HAS BEEN DESIGNED
FOR CHANNEL CORRELATION1 GG AND SIGNALTONOISE RATIO2-1 � BUT THE REAL CHANNELEG HAS THE
CORRELATIONF1 GG AND THE REAL SIGNALTONOISE RATIO ISG2-1 � &ROM ����	 AND ����	� WE HAVE
BGKR� EG
 EM� WHERE THE NOISE TERMEM� 7 ` � MHAS THE AUTOCOVARIANCE MATRIX1 EMEM � n

2-1 (� 4HE
ESTIMATION ERRORDO � EG` BGO OF THE RANK` OESTIMATOR ����	 IS

DO � 4
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AND THE MEANSQUARED ERROR IS
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4O SIMPLIFY THE EXPRESSION WE USE THAT�

q EG ANDEMARE UNCORRELATED� HENCE THE CROSS TERMS ARE CANCELLED IN THE EXPECTATION�

q 3Q@BD
r
4 4 '

s
� 3Q@BD IF4 IS A UNITARY MATRIX� AND3Q@BD � 
 ! � � 3Q@BD 


3Q@BD! ;��=�

q 3Q@BD �# # � �
0

J @J�J C�
J WHEN# IS A DIAGONAL MATRIX WITH THE ELEMENTSCJ ON ITS

DIAGONAL AND �NOT NECESSARILY A DIAGONAL MATRIX	 HAS DIAGONAL ELEMENTS@J�J �

5SING �#��	 IN �#��	� THE MEANSQUARED ERROR BECOMES
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WHERExJ IS THE CHANNEL POWER IN THEJTH TRANSFORM COEbCIENT�I�E�� THEJTH DIAGONAL ELEMENT
OF THE MATRIX4 ' F1 GG4 � 4HE -3% CAN BE LOWERBOUNDED�LRD �O� w LRD�O� � BY WHAT WE CALL
THE -3%âOOR
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)F THERE IS NO MISMATCH IN2-1 OR CHANNEL CORRELATION� WE HAVExJ � CH@F
r
4 ' 1 GG4

s
� wJ

AND G2-1 � 2-1 � AND THE -3% BECOMES
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