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Abstract 
This paper provides the first regional econometric decomposition of CO2 emissions from fuel 
combustion in eight regions of the world. Using the best publically-available time series data (1971–
2011), the analysis examines the key determinants and relationships of the ‘Green Energy Economy’ 
(GEE) in Africa, Asia, Latin America and the Caribbean, the Middle East, Non-OECD Europe and 
countries from the Former Soviet Union, Oceania, OECD Europe, and OECD North America. The 
results show that emissions continued to grow across all regions, at rates ranging from 0.1% y-1 to 7% 
y-1 for the period under analysis. Despite progress in energy intensity (e.g. Asia) and carbon dioxide 
intensity of the energy supply (e.g. OECD Europe), GDP per capita (or ‘affluence’) was found to be a 
key driver of accelerating CO2 emissions in most regions. In certain cases, a sharp but short term 
decrease in CO2 emissions was identified; however, these reductions did not appear to correlate with 
income levels or other explanatory variables, but rather to a historical exogenous shock. Findings 
show that the opportunity offered by the 2008–2009 global financial crisis to move towards a GEE, at 
least in terms of reduced CO2 emissions, was missed in nearly all regions. From a policy perspective, 
the analysis strongly suggests that regional policy portfolios aimed at market uptake of green energy 
technologies are still insufficient and/or ineffective and that great ambition level is needed. 

Keywords: CO2 emissions; gross domestic product; energy intensity of economy; carbon intensity of 
energy supply; econometric analysis; decomposition analysis 
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1. Introduction 
The concepts of the ‘Low-Carbon Economy’, the ‘New Green Economy’ and ‘Green Economic Growth’ 
received increasing policy and media attention following the 2008–2009 global financial crisis 
(Barbier 2010; Allen and Clouth 2012). The crisis was particularly significant as it highlighted that the 
traditional production-and-consumption economic model had led to significant loss of natural 
capital, disturbances in the climatic system, and had been the driver for social inequalities. 
Moreover, it proved that the system was economically unreliable (Jackson 2011). The crisis triggered 
numerous policy pledges to reform economic models towards a ‘green growth’ path that was not 
only environmentally and socially acceptable, but also was able to sustain the economic system.  

At this time, it was argued that the financial crisis provided an important opportunity to decrease 
fossil fuel dependency and capitalise on absolute reductions in CO2 emissions resulting from the 
economic downturn (IEA 2009; Peters et al. 2012). In turn, economic recovery packages were 
implemented in countries across the world, which aimed to stimulate green growth and support low-
carbon economies, among other policy objectives (e.g. employment). These stimulus packages were 
quickly portrayed as the dawn of the Green Energy Economy (GEE), in which clean energy would play 
a vital role. Green energy was the target of recovery packages in many countries, and China and 
South Korea soon became the world leaders in green spending. For instance, by 2010, South Korea 
had allocated nearly 95% of its US$38 billion fiscal stimulus program to green investments (Barbier 
2010). Of this, more than 30% was dedicated to energy-efficient buildings, renewable energy and 
low-carbon vehicles (UNEP and GEI 2009). China allocated more than 30% of its US$ 647 billion 
stimulus package to green measures (Barbier 2010). Of this, 13% targeted energy-efficiency 
measures related to buildings and low-carbon vehicles (UNEP and GEI 2009). In the United States, 
financial support for low-carbon technologies accounted for more than 70% of the US$ 92 billion 
devoted to green spending through the ‘American Recovery and Reinvestment Act’ (Council of 
Economic Advisers 2010). Despite these huge sums, the latest research (e.g. Peters et al. 2012; Jotzo 
et al. 2012) shows that the global economy does not appear to have seized the GEE opportunity―at 
least when measured in climate mitigation terms. In fact, CO2 emissions have risen faster in recent 
years than in previous decades. 

Although reports of global emission trends are consistent across the scientific literature, there is little 
data available regarding trends in regional CO2 emissions and their drivers, in particular progress 
towards a GEE from a climate mitigation point of view. We know there is a high level of 
heterogeneity in economic growth, climate and energy policy portfolios, energy supply mix, 
technology development, and the resulting CO2 emissions across regions in the world. However, to 
date most (econometric) decompositions have either focused on specific countries (e.g. the United 
States, China or Brazil) or particular regions (e.g. Europe, OECD, non-OECD) (e.g. Casler and Rose 
1998; Jotzo et al. 2012; Luukkanen and Kaivo-Oja 2002; Wang, Chen, and Zou 2005). We still know 
very little about key GEE indicators (such as energy or CO2 intensity), their relation to economic 
growth and resulting CO2 emissions, in for instance, Latin America, the Middle East or Africa. This is 
despite the fact that the causes and/ or impacts of climate change are usually presented or discussed 
in regional (or sectoral) terms (e.g. as reflected in the Intergovernmental Panel on Climate Change 
Assessment Reports). What is also striking is the lack of regional studies that analyse and test 
economic-environmental phenomena against theories and observations about the relative 
contribution of macroeconomic variables to CO2 emission trends. In addition there is a lack of 
regional quantitative knowledge regarding the effectiveness of the numerous economic recovery 
packages that were implemented following the financial crisis aimed at stimulating green economic 
growth through the deployment of low-carbon technologies. Data constraints may explain this 
knowledge gap, which this paper attempts to fill. 

We found two notable exceptions to these observations. Raupach et al. (2007) analysed both global 
and regional drivers of CO2 emissions. However, their analysis, which addressed four countries and 
five regions for the period 1980–2005, was limited compared to the research at hand (details below). 

- 2 - 



The second study by Mundaca et al. (2013) provides a decomposition for eight regions of the world 
(1971–2010), but lacks a statistical analysis of key determinants and estimated trends. Although 
these studies provide interesting insights, other questions remain to be answered: What have been 
the key regional drivers of increasing CO2 emissions in the past four decades? To what extent can 
theory and observation explain the historical and current economic-environmental phenomena seen 
across regions of the world? How important is ‘affluence’ in explaining emission patterns? Does 
population growth still play an important role in emission trends in less industrialised regions? What 
can be said about energy intensity or the decarbonisation of the fuel mix across regions? How strong 
(or weak) was the ‘carbon rebound effect’ across regions after the global financial crisis? In terms of 
climate mitigation efforts, which regions have made progress towards a GEE since ‘green’ stimulus 
packages were introduced? 

This paper is the first regional econometric decomposition of CO2 emissions from fuel combustion. It 
covers eight regions of the world and is based on the best publically-available time series data (1971–
2011). It provides a better understanding of regional economic-environmental phenomena based on 
contemporaneous theory and observations of macroeconomic variables. The quantitative analysis 
measures progress (or lack of it) towards a GEE. The methodology builds upon theoretical and 
empirical developments related to the ‘IPAT equation’ and the ‘Kaya Identity’ (see next section). It 
identifies the key GEE macro determinants for: (1) Africa, (2) Asia, (3) Latin America and the 
Caribbean (LATAM), (4) the Middle East, (5) Non-OECD Europe and countries from the Former Soviet 
Union (FSU), (6) Oceania, (7) OECD Europe, and (8) OECD North America. Overall, the paper offers a 
high-resolution regional econometric decomposition. It is structured as follows: Section 2 provides 
methodological details. Key findings are presented in Section 3 and we draw some conclusions in 
Section 4. 

2. Methodology 
The methodology was based on a top-down econometric decomposition aimed at finding significant 
statistical relationships between a dependent variable (CO2 emissions from fuel combustion) and 
various independent variables (e.g. economic activity, population growth). The world is divided in 
eight regions. Key elements of the empirical analysis are described below. 

2.1. Model specification 
The ‘I=PAT’ equation1 (Holdren and Ehrlich 1974) and the ‘Kaya Identity’ (Yamaji et al. 1991) are the 
theoretical frameworks used to initially define the model and pre-select regressors. The Kaya Identity 
builds upon the I=PAT equation; it is a macro decomposition of the energy, economic and 
demographic indicators used to quantitatively estimate CO2 emissions as a product of four key 
aggregated drivers. Scientific research into the Kaya Identity has been critical in the development of 
future emission scenarios (see e.g. Nakicenovic and Swart 2000). In this study, and consistent with 
previous work (e.g. Raupach et al. 2007), the analysis began with the definition of the following 
‘global’ structural model: 

𝐶𝐶𝑂𝑂2 = 𝑃𝑃𝑃𝑃𝑃𝑃 �𝐺𝐺𝐺𝐺𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃

�  � 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆
𝐺𝐺𝐺𝐺𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

�  � 𝐶𝐶𝑂𝑂2
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� =  𝑃𝑃𝑃𝑃𝑃𝑃 𝑔𝑔 𝑒𝑒_𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖    (1) 

where CO2 represents global emissions from fuel combustion and industrial processes. Global CO2 
emissions are the product of four (potential) driving factors: Pop is the population, 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑃𝑃𝑃𝑃𝑃𝑃
 = g is the 

per-capita GDPppp (or ‘affluence’), 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

 = e_int is the energy supply intensity of GDPppp, and 𝐶𝐶𝑂𝑂2
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 = 

c_int is the CO2 intensity of the total primary energy supply (TPES) (see also Table 1).  

1 The I=PAT equation evaluates the contribution of population P, affluence A (GDP per capita or level of consumption per 
person), and technology level T (environmental impact per unit of GDP) on the overall environmental impact I. 
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Table 1: Variables, definitions and data source 

Variable Definition Data source 

CO2 emissions 
Emissions from fuel combustion (in million tonnes of CO2[MtCO2]), 
excluding emissions from marine and aviation bunkers, and following the 
IPCC Sectoral Approach 

IEA(2013) 
 

Population All residents regardless of legal status or citizenship (in millions) 

Total Primary Energy 
Supply (TPES) 

Production + imports − exports − international marine bunkers − 
international aviation bunkers ± stock changes (in million tonnes of oil 
equivalent [Mtoe]) 

GDPppp per capita 
Total annual output valued in billion 2005 US$ dollars, adjusted by 
purchasing power parities (ppp), and divided by midyear population (in 
2005 US$) 

Energy intensity TPES per GDPppp 
Carbon dioxide intensity CO2 emissions per TPES (in tonnes of CO2 per Terajoule [tCO2/Tj]) 

 

Next the ‘global’ model was specified for eight regions: Africa, Asia, Latin America and the Caribbean 
(LATAM), the Middle East, Non-OECD Europe plus countries from the former Soviet Union (FSU), 
Oceania, OECD Europe, and OECD North America (see Table 2 for a definition of these regions). The 
disaggregated, ‘regional’ version of the original global model was then written as follows: 

𝐶𝐶𝑂𝑂2 =  ∑ 𝐶𝐶𝑂𝑂2𝑖𝑖𝑖𝑖 =  ∑ 𝑃𝑃𝑃𝑃𝑝𝑝𝑖𝑖  𝑔𝑔𝑖𝑖  𝑒𝑒_𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 𝑐𝑐_𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖      (2) 

where global emissions (CO2) from fuel combustion and industrial processes are the sum of regional 
emissions (CO2i). Regions and related (independent) variables are distinguished by the subscript i. 
Consequently, a regional multiple regression model was formulated as follows: 

𝑌𝑌𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑜𝑜𝑜𝑜 +  𝛽𝛽1𝑖𝑖𝑋𝑋1𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝑖𝑖 𝑋𝑋2𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝑖𝑖𝑋𝑋3𝑖𝑖𝑖𝑖 +  𝛽𝛽4𝑖𝑖 𝑋𝑋4𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖   (3) 

where Yit = CO2 emissions (in million tonnes) from fuel combustion (dependent variable) for region i, t 
= 1….. T years (=41); β0i is a constant region-specific intercept; β1i β2i β3i  and β4i are the regression 
coefficients to be estimated for X1it (Pop),  X2it (g), X3it (e_int) and X4it (c_int) respectively; and µit is an 
error (or disturbance) term. This initial model was used for testing of individual regions (see next 
section). The analysis was based on time series data from the International Energy Agency (IEA) for 
the period 1971–2011(see IEA 2013). 
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Table 2: Definition of regions in the model 

Region Geographical coverage 
Africa Algeria, Angola, Benin, Botswana, Cameroon, Congo, Dem. Rep. of Congo, Côte d'Ivoire, Egypt, 

Eritrea, Ethiopia, Gabon, Ghana, Kenya, Libya, Morocco, Mozambique, Namibia, Nigeria, Senegal, 
South Africa, Sudan, United Rep. of Tanzania, Togo, Tunisia, Zambia, Zimbabwe, other Africa 

Asia Bangladesh, Brunei, Cambodia, Hong Kong (China), India, Indonesia, Israel, Japan, DPR of Korea, 
Malaysia, Mongolia, Myanmar, Nepal, Pakistan, People's Rep. of China, Philippines, Singapore, 
South Korea, Sri Lanka, Taiwan, Thailand, Vietnam, other Asia 

Latin America and 
the Caribbean 

Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El 
Salvador, Guatemala, Haiti, Honduras, Jamaica, Netherlands Antilles, Nicaragua, Panama, 
Paraguay, Peru, Trinidad and Tobago, Uruguay, Venezuela, other Americas 

Middle East Bahrain, Islamic Rep. of Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syrian 
Arab Republic, United Arab Emirates, Yemen 

Non-OECD Europe 
and FSU 

Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Georgia, 
Gibraltar, Kazakhstan, Kosovo, Kyrgyzstan, Latvia, Lithuania, FYR of Macedonia, Malta, Republic of 
Moldova, Montenegro, Romania, Russian Federation, Serbia, Tajikistan, Turkmenistan, Ukraine, 
Uzbekistan, USSR (former), Yugoslavia (former) 

Oceania Australia, New Zealand 
OECD Europe Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 

Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Slovak Republic, 
Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom 

OECD North America Canada, Mexico, United States 
 

2.2. Correlation and regression tests 
Various correlation tests and regression statistics were used for assessing the relationships and 
contribution of variables to CO2 emissions in each region. The initial hypothesis was that GDPppp per 
capita (g) was most closely correlated with CO2 emissions and thus an important determinant. Three 
set of tests were carried out. First, bivariate correlation tests indicated correlation among the 
model’s variables. These tests evaluated the relative degree of ‘closeness’ (or association) between 
each pair of variables. Secondly, partial correlations were calculated. This step was necessary as 
more than one variable could convey the same information (i.e. the problem of multicollinearity, 
where independent variables are themselves highly correlated) leading to unreliable estimates and 
high standard errors. A more important problem is that multicollinearity can make it difficult to draw 
any inferences about the relative contribution of a particular driver. Therefore, tests were applied to 
measure the correlation between CO2 emissions and each independent variable while controlling for 
the effect of the remaining variables. 

Thirdly, using the multiple regression model defined in (3) a stepwise regression analysis quantified 
the contribution of the various drivers of CO2 emissions and made it possible to test the hypothesis 
that GDPppp per-capita (or ‘affluence’, gi) had (or not) the greatest impact. The analysis sequentially 
assessed the unique impact of each independent variable on CO2 emissions. If a variable partially 
explained the behaviour of Yi (CO2i) it was retained, while all other variables were re-tested to 
identify whether they were still significant contributors. When a variable no longer contributed 
significantly to the model, it was removed. This iterative process ran in parallel with multicollinearity 
tests. The aim was to identify the regression model that explained the greatest part of the variance 
of CO2 emissions (i.e. highest adjusted R2), where p-values were below 0.10 (for independent 
variables), the variation coefficient was lowest, and there was no indication of multicollinearity. For 
the latter, Variance Inflation Factors (VIF) were computed, with a maximum threshold value of five 
(i.e. a VIF greater than 5, or tolerance levels less than 0.20, were taken as evidence of 

multicollinearity). Variation coefficients 𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 𝑉𝑉𝑉𝑉𝑟𝑟𝑗𝑗 = �𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐶𝐶𝑂𝑂2𝑗𝑗 

� of the estimated 

regression models were also calculated in order to evaluate the variability of the dataset and thus 
the predictive capability (CO2 variability) of each regional model. A 10% maximum threshold was set 
(i.e. Coef Var j < 10%) and all estimates used a 90% confidence level (unless otherwise stated). 
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2.3. Measuring the ‘Regional Carbon Rebound’ effect 
Following the various green growth stimulus policy initiatives that were introduced in 2008–2009, we 
wanted to explore whether (or not) there are early signs that regions have moved towards a green 
energy (or low-carbon) economy. This is because it has been argued that the global financial crisis 
provided an opportunity for economies to move away from high carbon emissions. Taken into 
account the dependent and independent variables mentioned above, the year 2010 was used as the 
starting point for the regional comparison of recent and historical drivers of CO2 emissions. The 
percentage growth rates of CO2, TPES, GDPppp, e_int and c_int across all regions were estimated from 
following formula: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖𝑖𝑖 %) = �𝑋𝑋𝑛𝑛𝑛𝑛− 𝑋𝑋𝑛𝑛−1𝑖𝑖

𝑋𝑋𝑛𝑛−1𝑖𝑖 
� 100 , where Xni is the end of year 

value of a given variable and Xn-1i is the value of a given variable in the previous year. The subscript i 
denotes a given region. Estimates based on this time series data are an update to the trends 
reported by Mundaca et al. (2013). 

3. Results 

3.1. Bivariate and partial correlations 
The results of bivariate correlation tests are shown in the symmetrical matrices shown in Annex 1. In 
general, the estimates showed that nearly all independent variables have significant empirical 
relationships with CO2 emissions at a regional level. With the exception of OECD Europe (details 
below), the potential causality between each independent variable and CO2 emissions was 
significant. For instance, the correlation between CO2 and g (GDPppp per capita) was very high, 
positive and statistically significant in the cases of Asia (99.7%), LATAM (95.3%), Oceania (98.8%) and 
OECD North America (95.7%). Population was also statistically significant for Africa (98.8%), Asia 
(93.7%), LATAM (97.3%), the Middle East (99.1%), Oceania (99%) and OECD North America (92.6%). 
Similarly, e_int (TPES/GDPppp) was significant in Asia (−87.1%), Oceania (−91.3%) and OECD North 
America (−87.7%). However, another important finding was that independent variables were 
themselves highly correlated (e.g. 95.6% between Pop and g in Asia; 94.1% between Pop and e_int in 
the Middle East; 94.9% between e_int and c_int in OECD North America), which strongly suggested 
multicollinearity in the regional regression models. 

The OECD Europe region was the notable exception to the results reported above, as none of the 
variables were statistically significant (i.e. p-values > 0.10) and correlations were low in all cases: Pop 
(6.7%), g (13.9%), e_int (−3.2%) and c_int (−3.5%). Although correlation does not mean causality, 
these estimates provided an early indication that the independent variables included in the model 
may not be enough to explain CO2 emissions in OECD Europe.  

Partial correlation tests revealed important, albeit more complex indications of regional drivers or 
parameters that increased CO2 emissions. The key findings can be summarised as follows. First, when 
others variables were controlled, the correlation between CO2 and Pop was statistically significant for 
Africa (99.1%), LATAM (99.2%), the Middle East (92.5%) and Oceania (66.4%). Compared to bivariate 
tests, partial correlations for Africa and LATAM marginally increased, suggesting that the correlation 
between CO2 and Pop was slightly mediated by the other variables. Secondly, the partial correlation 
between CO2 and g was statistically significant for Africa (97%), Asia (98%), LATAM (98.2%), Non-
OECD + FSU (89.3%), Oceania (85.9%) and OECD North America (74.6%). For Africa, this value was 
much higher than the bivariate test (68.8%). Partialling out other variables individually suggested 
that c_int was the principle mediator, as it showed the lowest correlation with CO2 (−47.1%) when 
the effects of Pop, g and e_int were controlled. Thirdly, results for e_int and c_int, important macro 
indicators of a GEE, were mixed. Partial correlation estimates were significant for Africa (97% and 
−47.1%), Asia (64% and 73.4%), LATAM (92.5% and 88.4%), and Non-OECD Europe + FSU (81% and 
56.7%). Although significant, partial correlations for the OECD North America region were considered 
to be (relatively) low (54.1% and −0.27% for e_int and c_int respectively). With respect to the other 
regions, e_int was not a significant driver for the Middle East but a relevant variable in Oceania 
(89.6%), and c_int was found to be statistically significant in the Middle East (−48.4%) but not in 
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Oceania and OECD Europe. Other, significant but less powerful correlations were also found (e.g. 
27.3% between CO2 and c_int in OECD North America).  

For OECD Europe, partial correlations suggested that only g (65.7%) and e_int (56.6%) allowed 
inferences to be potentially drawn about the variability of CO2 emissions when other variables were 
controlled. Unlike bivariate tests, these partial correlations strongly suggested that significant 
relationships between CO2 and g and CO2 and e_int were mediated by Pop and c_int, which turned 
out to be statistically insignificant when partialled out individually. 

3.2. Estimated models 
The results of the stepwise multiple regressions are shown in Table 3 and key findings are shown 
below for each region. In general, and at the risk of oversimplifying, these results show that g is a 
(key) horizontal driver of CO2 emissions across most regions. Improvements in e_int and c_int in 
certain regions do not have the statistical strength to explain changes in CO2 emissions and do not 
appear to offset the larger absolute negative effects of economic growth and increased energy use. 

Table 3: Regional regressions for the years 1971–2011 and a summary of stepwise modelling outcomes (p-
values and VIF estimates in parentheses, respectively) 

Region Β0 (Intercept) β1 (Pop)  β2 (g) β3 (e_int) β4 (c_int) Adjusted R2 Std error 

Africa -299.64 1.12  
(0.00; 1.76) 

0.07 
(0.04; 1.76) - - 0.97 35.75 

Asia -1262.5 - 2.33 
(0.00; 1) - - 0.99 249.87 

LATAM & 
Caribbean -564.74 1.77 

(0.00; 4.30)  
0.09 

(0.00; 4.30) - - 0.99 22.48 

Middle East -205.93 10.23 
(0.00; 1.58) 

0.02 
(0.00; 1.43) - -11.42 

(0.00; 1.48) 0.99 38.53 

Non-OECD 
Europe + FSU -7495.24 - 0.46 

(0.00; 2.92) 
9427.20 

(0.00; 3.55) 
44.28 

(0.00; 1.49) 0.96 101.43 

Oceania -42.15 - 0.01 
(0.00; 1) - - 0.97 11.61 

OECD Europe - - - - - - - 
OECD North 
America 2883.49 - 0.10 

(0.00; 1) - - 0.91 180.88 

 
Results for Africa showed that the best-performing model was the one in which Pop and g were the 
main predictors of CO2 (F = 876.6; p-value = .000 [i.e. p < 0.1]). The adjusted R2 indicated that 
approximately 98% of the variability of CO2 emissions in Africa could be explained by Pop and g. 
Other independent variables only contributed marginally to a better goodness-of-fit (e.g. < 1.5%) and 
further statistical tests (e.g. collinearity) showed that these variables were irrelevant. Estimated 
coefficients showed that Pop had the greatest impact on the average change in CO2 emissions when 
g is held constant. The coefficient of variation of this estimated regression model (Coef_Varreg_Africa = 
Std. error estimate [± 35.75]/ mean CO2 emissions [627.67 MtCO2]) was 5.69%, which suggested that 
the estimated model that included Pop and g as key independent variables was useful in predicting 
CO2 emission interval values, as the estimated ratio was lower than the 10% maximum allowed 
threshold. Collinearity statistics revealed no evidence of correlation among predictors. 

In Asia, the statistical strength of g as a key predictor was clearer than any of the other tested 
variable(s) (F = 6745.7; p-value = .000). The stepwise analysis lead to an adjusted R2 of 0.994, which 
indicated that approximately 99% of the variability of CO2 emissions was explained solely by g. For 
this single predictor, the estimated coefficient of variation in the Asian model was 4.18%, lower than 
the 10% allowed threshold. Although statistically significant, when e_int and c_int were introduced 
into the original model their contribution to the adjusted goodness-of-fit was marginal (< 0.4%) and 
caused multicollinearity problems (VIF > 5). Contrary to our early expectations (from bivariate tests), 
the regression showed that Pop played no statistically significant role in explaining changes in CO2 
emissions in Asia in the period under analysis. 
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The case for LATAM turned out to be similar to that of Africa; Pop and g explained 99% of the 
variability of CO2 emissions. The Coef_Varreg_LATAM was 3.14% (i.e. < 10%), suggesting that large 
fluctuations in CO2 emissions could be explained by the estimated model. This model (Model 
1_LATAM) performed slightly better than another statistically significant model that was tested, in 
which Pop and e_int (Model 2_LATAM) also played important roles as predictors. The standard error 
was slightly higher in Model 2_LATAM (±42.8 MtCO2) and thus the adjusted R2 was lower (96.2%) 
than in Model 1_LATAM. No multicollinearity problems were identified in either model (i.e. VIF < 5). 

As for the Middle East, the stepwise regression approach showed that Pop, g and c_int were 
significant variables that explained 99.2% of changes in CO2 emissions in the region (F = 1695.6; p = 
.000). Consistent with the region’s oil dependency (Grubler et al. 2012), c_int turned out to be a 
significant predictor. When e_int was introduced as explanatory variable, its contribution to the 
model was irrelevant and led to serious multicollinearity problems. Of all of the Middle Eastern 
models, the set of predictors Pop, g and c_int had the lowest standard error (± 38.53 MtCO2) and VIF 
(around 1.5). Used predictively, this model was able to explain large CO2 fluctuations for the period 
1971–2011, with an estimated Coef_Varreg_Middle_East equivalent to 5.55%. 

For the Non-OECD+FSU region, estimates and tests suggested that the model based on g, e_int and 
c_int as predictors showed the most significant relationships (F = 403.9; p-value = .000). These 
independent variables explained up to 96.8% of variability in CO2 emissions for this region, with e_int  
as the most influential predictor. Four other models did not have multicollinearity problems, and this 
set of predictors had the lowest standard error (± 101.43 MtCO2) and the lowest 
Coef_Varreg_Non_OECD+FSU (3.21%). Overall, and despite the sudden decline in CO2 emissions that 
characterised post-Soviet states in the 1990s, the results of this regression seem to be consistent 
with the economic (and energy use) transition that took place in the region. 

Concerning Oceania, g turned out to be the single significant driver of CO2 emissions. The growth of 
GDPppp per capita (or ‘affluence’) in Oceania explained up to approximately 98% of the variability of 
CO2 emissions, and thus there is relatively little fluctuation that cannot be explained by the dataset 
(approximately 3.96%). Similarly, results for OECD North America showed that g explained most of 
the fluctuation in CO2 emissions (91.3%). From a regional perspective and taking into account the 
study’s limitations (e.g. observations from different countries are pooled into one region), these 
results do not support the so-called ‘Environmental Kuznets Curve’ (EKC) hypothesis (see e.g. Barbier 
1997). This hypothesis states that as per capita income grows, environmental pollution (in our case 
CO2 emissions) increase to a maximum and then decline, indicating an inverted U-shaped 
relationship between GDP per capita and CO2 emissions. 

For OECD Europe the results were inconclusive. Consistent with correlation tests, the model did not 
indicate any statistically significant relationship(s). None of the independent variables had the 
strength to explain variability in CO2 emissions. When explanatory variables were “forced” into the 
model, the results were unconvincing (e.g. adjusted R2 = −25%) and clearly statistically insignificant 
(e.g. p-values for e_int = 0.84). Although further work may demonstrate reliable outcomes (e.g. an 
alternative functional form or a non-parametric approach), we note that our results appear to be 
consistent with regression analyses (parametric and non-parametric) that have found mixed 
evidence of the relationship between CO2 emissions and g (regardless of data source) in the region2. 
Taking the case of a single country regression analysis, which reduces the potential bias caused by 
pooling data from different countries into one region (i.e. ‘regional homogeneity’), results diverge 
(e.g. positive correlations, stabilising patterns) and autocorrelation problems remain even if other 
explanatory variables (e.g. population) are included (Dijkgraaf and Vollebergh 1998). Although an 
alternative (Weibull) functional form may yield estimates that are consistent with the EKC hypothesis 
in some European OECD countries (Galeotti, Lanza, and Pauli 2006), single country analyses have 
shown that neither a 'U-inverted' relationship between CO2 and g, nor the third order polynomial 'N'-

2 For a review of studies about EKC and CO2 emissions see Galeotti et al. (2006). 
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shaped relationship between CO2 emissions and income enable reliable inferences to be made for 
more than 10 OECD countries (Moomaw and Unruh 1997). 

3.3. The ‘Carbon Rebound’ effect 
Overall, our results show that the 2010 ‘Carbon Rebound’ effect was much more pronounced in 
certain regions; it was neither a global scale phenomenon, nor was it confined to less industrialised 
countries (see Figure 1). 

Regions that did show a pronounced carbon rebound effect were LATAM, Non-OECD Europe + FSU, 
OECD Europe and OECD North America. In these regions, estimates showed that emission growth hit 
a record high in 2010 compared to their historical averages and the rebound effect quickly offset the 
2008–2009 emission reductions during the global financial crisis (e.g. −6.6% in OECD Europe and 
−9.6% in Non-OECD Europe + FSU). The emission surge correlated directly with increased economic 
activity (GDPppp) and energy supply (TPES) (see Table 4) (c.f. Jotzo et al. 2012; Mundaca, Markandya, 
and Nørgaard 2013). For both OECD and Non-OECD Europe regions, the historical decline in energy 
intensity not only stopped, but the trend reversed (e.g. +1.8% in OECD Europe). However, estimates 
suggest that OECD Europe is the only region that has been making consistent progress in 
decarbonising its energy mix. Although there was a decrease in energy intensity in OECD North 
America (−0.6%) in 2010, recent figures show a slight weakening of a historically relatively strong 
decline (−1.8%). In addition, the CO2 intensity of its energy supply mix has increased. Of these four 
regions, Non-OECD Europe + FSU experienced the highest rebound in emissions in 2010 (from −9.6% 
in 2009 to +8.2% in 2010). This was despite the fact that the region showed progress in decarbonising 
its energy mix. Nevertheless, our estimates showed that progress in reducing energy intensity has 
slowed and the trend has reversed. In the LATAM region emissions grew much faster than both 
GDPppp and TPES, which grew more than twice (7.1%) its average historical rate (2.9%). Estimates 
indicated that there was no improvement in energy and CO2 intensities, which confirmed the 
historical lack of progress. 

 
Figure 1: Regional decomposition of annual change in CO2 emissions from fuel combustion 2000–2010 

In Asia (and to some extent Africa) there were signs of a rebound effect; however emission 
reductions in 2008–2009 were less pronounced than the regions mentioned above and the annual 
change remained positive. Asia, which has been the world’s highest CO2 emitter since the mid-1990s 
(see Figure 2), showed record growth in emissions in 2010 (+9%); a rate that was much higher than 
historical annual averages. Like LATAM, emissions in Asia grew faster than energy use and GDPppp. In 
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addition, the region did not show any progress in the decarbonisation of its energy supply mix; CO2 
intensity rates also reached record levels. Estimated absolute figures revealed a distressing, marked, 
upward historical trend: 51.3 tCO2/TJ in 1971, 56.9 tCO2/TJ in 1990, and 66.2 tCO2/TJ in 2010. 
Although energy intensity in 2010 decreased by 0.4%, the improvement was primarily due to an 
increase in economic activity (8.3%) rather than reductions in energy use. 

Table 4: Regional decomposition of CO2 emissions. All figures are in precentages (%) and represent annual 
changes 

Annual % changes in Africa Asia Latam & 
Caribb 

Middle 
East 

Non-
OECD 

Europe 
& FSU 

Oceania OECD 
Europe 

OECD 
North 

America 

CO2 emissions 
2010 2,4% 9,0% 8,6% 5,1% 8,2% -0,8% 3,2% 2,2% 

1972-2011 average 3,8% 4,9% 3,0% 7,0% 0,3% 2,2% 0,1% 0,7% 
Decadal averages 

1972-1980 5,7% 4,9% 5,0% 12,3% 3,7% 3,3% 1,5% 1,6% 
1981-1990 4,1% 4,5% 1,0% 6,1% 1,4% 2,2% -0,4% 0,3% 
1991-2000 2,0% 3,6% 3,3% 5,3% -4,9% 2,5% -0,1% 1,6% 
2001-2010 3,8% 6,3% 2,9% 5,7% 1,0% 1,2% -0,2% -0,3% 

Energy (TPES) 
2010 2,8% 7,9% 7,1% 5,3% 8,3% 0,9% 4,3% 2,1% 

1972-2011 average 3,2% 4,2% 2,9% 7,1% 0,9% 2,2% 0,9% 1,0% 
Decadal averages 

1972-1980 4,0% 4,3% 4,2% 11,5% 4,2% 3,4% 2,1% 1,9% 
1981-1990 3,5% 3,9% 1,7% 6,6% 2,2% 2,4% 0,8% 0,8% 
1991-2000 2,5% 3,3% 2,8% 5,5% -4,1% 2,4% 0,8% 1,7% 
2001-2010 3,3% 5,1% 3,1% 6,0% 1,3% 1,2% 0,4% -0,1% 

GDPppp 
2010 4,8% 8,3% 6,2% 5,0% 4,0% 2,2% 2,5% 2,7% 

1972-2011 average 3,3% 5,5% 3,4% 3,3% 2,0% 3,0% 2,4% 2,9% 
Decadal average 

1972-1980 3,9% 5,2% 5,4% 7,2% 5,2% 2,7% 3,2% 3,6% 
1981-1990 2,1% 5,9% 1,3% -1,5% 1,5% 2,9% 2,5% 3,1% 
1991-2000 2,5% 4,8% 3,1% 3,3% -3,7% 3,5% 2,3% 3,4% 
2001-2010 4,9% 6,0% 3,9% 4,5% 5,1% 3,0% 1,6% 1,6% 

CO2/TPES 
2010 1,4% 1,0% 1,4% -1,1% -1,6% -1,7% -1,1% 0,1% 

1972-2011 average 0,2% 0,6% 0,1% 0,2% -0,3% -0,1% -0,8% -0,3% 
Decadal averages 

1972-1980 1,5% 0,6% 0,7% 1,9% 0,5% 0,0% -0,6% -0,3% 
1981-1990 -0,4% 0,5% -0,7% -0,2% -0,6% -0,2% -1,3% -0,5% 
1991-2000 -0,2% 0,3% 0,5% -0,3% -0,8% 0,1% -0,7% -0,1% 
2001-2010 0,3% 1,1% -0,2% -0,5% -0,4% 0,0% -0,6% -0,2% 

Energy/GDPppp 
2010 -2,0% -0,4% 0,8% 0,3% 4,1% -1,3% 1,8% -0,6% 

1972-2011 average 0,0% -1,2% -0,5% 4,0% -1,0% -0,7% -1,4% -1,8% 
Decadal averages 

1972-1980 0,0% -0,8% -1,2% 4,3% -0,8% 0,7% -1,0% -1,7% 
1981-1990 1,4% -1,9% 0,5% 8,8% 0,7% -0,5% -1,6% -2,3% 
1991-2000 0,0% -1,4% -0,2% 2,2% -0,2% -1,1% -1,5% -1,6% 
2001-2010 -1,6% -0,8% -0,8% 1,5% -3,6% -1,8% -1,2% -1,6% 

 
Regarding the other regions, results were mixed. In Africa the growth in emissions was slower than 
both GDPppp and TPES (with the exception of the years 1991–2000). Despite a significant 
improvement in energy intensity (−2% in 2010), the carbonisation of its energy mix was similar to the 
period 1972–1980. However, our results showed that Africa has made consistent reductions in 
energy intensity since the mid-1990s and is still a relatively marginal global contributor to CO2 
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emissions (Figure 2). Oceania was the only region with decreased emissions in 2010. This was despite 
the fact that the region experienced an increase in economic activity. Only this region showed a 
simultaneous reduction in energy and CO2 intensities. However, although there was a relative 
decrease in CO2 intensity of 1.7% (historically the lowest annual change rate), there was no 
significant absolute historical progress, and Oceania’s CO2 intensity has been the highest in the world 
for the past three decades (69.2 tCO2/TJ). Finally, the Middle East region did not experience a carbon 
rebound effect in the immediate post-financial crisis period. Although emissions grew slightly faster 
than GDPppp and TPES in 2010, this was slower than historical rates (the highest rate across all 
regions, see Table 4). Additionally, although energy intensity in 2010 increased more slowly (0.3%) 
than the historical annual average (4%), absolute values showed a very disturbing upward trend. In 
fact, the Middle East recorded the most dramatic increase in energy intensity (by a factor of five) 
than any other region in the world historically. 

 

 
Figure 2: CO2 emissions from fuel combustion for eight regions of the world for the years 1971–2011 

 
4. Conclusions 
This paper provided the first regional econometric decomposition of CO2 emissions. The aim was to 
quantitatively analyse the extent of progress towards a Green Energy Economy (GEE). Using the best 
publically-available time series data, the method and analysis focused on the key aspects of a GEE, 
namely, economic growth, energy intensity (a macro indicator of energy efficiency), CO2 intensity (a 
macro indicator of a low-carbon energy supply) and CO2 emissions from fuel combustion (the 
dominant anthropogenic greenhouse gas [GHG] flux). 

Overall, our results show that from a regional perspective, region have made variable progress 
towards a GEE. Using CO2 as an entry point for the analysis, our estimates clearly show that 
emissions continue to grow across most regions (annual growth in the range of 0.1–7.0%) although 
the last decade has seen some declines in OECD Europe and OECD North America. It seems therefore 
that another opportunity has been missed to limit this type of GHG. When estimates were based on 
energy intensity or CO2 intensity (as indicators of a GEE), some progress was identified in certain 
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regions (e.g. reduced energy intensity in Asia, lower carbon intensity in OECD Europe). However, this 
relative progress has not offset the effects of economic growth and energy use. In fact GDPppp per 
capita, or affluence, was found to be a (significant) key driver of accelerating CO2 emissions in most 
regions. In other cases, there was no evidence of even relative progress (e.g. growing energy 
intensity in the Middle East). Our estimates revealed that in recent times the performance of most 
regions is worse than historical trends. Our figures suggest that the opportunity to reduce carbon 
dependency, created by the 2008–2009 global financial crisis, was missed. 
From a modelling perspective, the regional model and subsequent tests provided useful insights into 
the principal relationships and drivers of CO2 emissions and some key aspects of a GEE at a regional 
level. In cases where there was a sharp decrease in CO2 emissions (e.g. Non-OECD Europe + FSU 
region, and the years 2008–2009 for most regions), CO2 emissions did not appear to correlate with 
either income or other explanatory variables included in the model, but rather to a historical 
exogenous shock to regional economies (e.g. the global financial crisis). In the particular case of the 
relationship between CO2 emissions and GDP per capita, our findings do not support the EKC 
hypothesis in Oceania and OECD North America. Our results were unconvincing for OECD Europe and 
seem to indicate that the model needs refinement if it is to be applied to this region (e.g. non-
parametric approaches or an alternative regression function). Moreover, further examination of 
other (potential) explanatory variables is necessary (e.g. energy prices). The fact that single country 
data was pooled implied that the outcome of the socio-economic and energy development process is 
relatively homogeneous across all OECD European countries with respect to CO2 emissions. This 
underlying assumption is open to challenge and the more common single-country analytical 
approach may be more suitable for this region. However, our literature review showed that single 
country regression analyses do not seem to provide more robust results for OECD countries. 

From a policy perspective, our analysis indicates that CO2 emissions may fall in the future in Europe 
and North America if countries in these regions show similar rates of decarbonisation as in the past. 
To achieve the target of an 80% reduction by 2050, aggressive and highly ambitious energy efficiency 
and renewable energy policies need to be implemented. Clear policy commitments and meaningful 
behavioural change across all regions are needed. Policies to reduce fossil fuel-based energy use and 
CO2 emissions in absolute terms are urgently needed in rich regions. This would leave room for 
economic development in less-developed regions, where the needs are apparent. 
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Annex 1: Bivariate correlation tests 

Africa CO2 Pop g e_int c_int 

CO2 Correlation 1 .988 .688 .151 -.122 
p-value  .000 .000 .173 .223 
N 41 41 41 41 41 

Pop Correlation .988 1 .658 .130 -.158 
p-value .000  .000 .209 .163 
N 41 41 41 41 41 

g Correlation .688 .658 1 -.572 .247 
p-value .000 .000  .000 .060 
N 41 41 41 41 41 

e_int Correlation .151 .130 -.572 1 -.339 
p-value .173 .209 .000  .015 
N 41 41 41 41 41 

c_int Correlation -.122 -.158 .247 -.339 1 
p-value .223 .163 .060 .015  
N 41 41 41 41 41 

 

 
Asia CO2 Pop g e_int c_int 

CO2 Correlation 1 .937 .997 -.871 .992 
p-value  .000 .000 .000 .000 
N 41 41 41 41 41 

Pop Correlation .937 1 .956 -.980 .951 
p-value .000  .000 .000 .000 
N 41 41 41 41 41 

g Correlation .997 .956 1 -.902 .990 
p-value .000 .000  .000 .000 
N 41 41 41 41 41 

e_int Correlation -.871 -.980 -.902 1 -.889 
p-value .000 .000 .000  .000 
N 41 41 41 41 41 

c_int Correlation .992 .951 .990 -.889 1 
p-value .000 .000 .000 .000  
N 41 41 41 41 41 

 
 

Latin America & Caribbean CO2 Pop g e_int c_int 
CO2 Correlation 1 .973 .953 -.785 -.102 

p-value  .000 .000 .000 .262 
N 41 41 41 41 41 

Pop Correlation .973 1 .876 -.713 -.236 
p-value .000  .000 .000 .069 
N 41 41 41 41 41 

g Correlation .953 .876 1 -.905 -.033 
p-value .000 .000  .000 .419 
N 41 41 41 41 41 

e_int Correlation -.785 -.713 -.905 1 -.042 
p-value .000 .000 .000  .397 
N 41 41 41 41 41 

c_int Correlation -.102 -.236 -.033 -.042 1 
p-value .262 .069 .419 .397  
N 41 41 41 41 41 
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Middle East CO2 Pop g e_int c_int 
CO2 Correlation 1 .991 -.421 .901 -.549 

p-value  .000 .003 .000 .000 
N 41 41 41 41 41 

Pop Correlation .991 1 -.505 .941 -.531 
p-value .000  .000 .000 .000 
N 41 41 41 41 41 

g Correlation -.421 -.505 1 -.734 .454 
p-value .003 .000  .000 .001 
N 41 41 41 41 41 

e_int Correlation .901 .941 -.734 1 -.531 
p-value .000 .000 .000  .000 
N 41 41 41 41 41 

c_int Correlation -.549 -.531 .454 -.531 1 
p-value .000 .000 .001 .000  
N 41 41 41 41 41 

 
Non-OECD+FSU CO2 Pop g e_int c_int 
CO2 Correlation 1 .069 .456 .197 .626 

p-value  .333 .001 .109 .000 
N 41 41 41 41 41 

Pop Correlation .069 1 .213 -.041 -.641 
p-value .333  .091 .399 .000 
N 41 41 41 41 41 

g Correlation .456 .213 1 -.764 -.079 
p-value .001 .091  .000 .311 
N 41 41 41 41 41 

e_int Correlation .197 -.041 -.764 1 .428 
p-value .109 .399 .000  .003 
N 41 41 41 41 41 

c_int Correlation .626 -.641 -.079 .428 1 
p-value .000 .000 .311 .003  
N 41 41 41 41 41 

 

 
Oceania CO2 Pop g e_int c_int 
CO2 Correlation 1 .990 .988 -.913 .055 

p-value  .000 .000 .000 .367 
N 41 41 41 41 41 

Pop Correlation .990 1 .989 -.938 .011 
p-value .000  .000 .000 .473 
N 41 41 41 41 41 

g Correlation .988 .989 1 -.960 .110 
p-value .000 .000  .000 .246 
N 41 41 41 41 41 

e_int Correlation -.913 -.938 -.960 1 -.159 
p-value .000 .000 .000  .161 
N 41 41 41 41 41 

c_int Correlation .055 .011 .110 -.159 1 
p-value .367 .473 .246 .161  
N 41 41 41 41 41 
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OECD Europe CO2 Pop g e_int c_int 
CO2 Correlation 1 .067 .139 -.032 -.035 

p-value  .338 .193 .422 .415 
N 41 41 41 41 41 

Pop Correlation .067 1 .990 -.995 -.978 
p-value .338  .000 .000 .000 
N 41 41 41 41 41 

g Correlation .139 .990 1 -.988 -.963 
p-value .193 .000  .000 .000 
N 41 41 41 41 41 

e_int Correlation -.032 -.995 -.988 1 .980 
p-value .422 .000 .000  .000 
N 41 41 41 41 41 

c_int Correlation -.035 -.978 -.963 .980 1 
p-value .415 .000 .000 .000  
N 41 41 41 41 41 

 
 

OECD North America CO2 Pop g e_int c_int 
CO2 Correlation 1 .926 .957 -.877 -.787 

p-value  .000 .000 .000 .000 
N 41 41 41 41 41 

Pop Correlation .926 1 .990 -.981 -.930 
p-value .000  .000 .000 .000 
N 41 41 41 41 41 

g Correlation .957 .990 1 -.967 -.887 
p-value .000 .000  .000 .000 
N 41 41 41 41 41 

e_int Correlation -.877 -.981 -.967 1 .949 
p-value .000 .000 .000  .000 
N 41 41 41 41 41 

c_int Correlation -.787 -.930 -.887 .949 1 
p-value .000 .000 .000 .000  
N 41 41 41 41 41 
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