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Segerberg on the Paradoxes of
Introspective Belief Change

Sebastian Enqvist Erik J. Olsson

October 31, 2011

1 Introduction

Theories of rational belief change [1, 4, 5] are traditionally presented in a
semi-formalized manner. While a formalized language is used to speak about
the content of a state of belief, the theory of belief revision is, like most math-
ematical theories, presented in mathematical English rather than a formal
language in the strict sense.

It is possible to formulate axioms of belief change, like the well-known
AGM postulates [1], in a fully formalized language. This is the purpose of the
socalled Dynamic Doxastic Logic (henceforth DDL, or “full” DDL) developed
by Krister Segerberg [10, 12], in which epistemic states are modelled using
modal operators of belief in the style of Jaakko Hintikka’s classic [7], and
belief changes are modelled using dynamic operators reminiscent of those
studied in propositional dynamic logic [6].

Reasoning about belief in a formal language has the advantage of added
expressive strength. Rather than just speaking about beliefs about the exter-
nal world, we can now also reason about introspective beliefs, i.e. beliefs that
an agent has about her own state of belief. For instance, I can believe that
the world is round, which presumably means that I don’t believe it is flat.
Suppose now that someone asks me whether I believe the Earth is round; I
answer that I do believe it. In these circumstances I am apparently aware
that I believe the Earth is round, that is, I believe that I believe that the
world is round. In the same manner, I might be asked whether I believe the
Earth is flat, and I answer that I do not believe that. In this case, I have
revealed that I believe that I do not believe that the Earth is flat. If r stands
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for “the Earth is round” and f for “the Earth is flat”, we can formalize these
beliefs as

BBr

and
B¬Bf

respectively.
In the case of DDL, where we have the capacity to speak about not

only beliefs but also belief change, it turns out that this added expressive
power comes with a price: given that we adopt the AGM postulate known
as Vacuity, we arrive at some disturbing paradoxes of introspective belief
change. These paradoxes are discussed at length by Sten Lindström and
Wlodek Rabinowicz in [8], where a modification of the semantics of DDL is
presented as a solution to the problem.

In this paper, we present and criticize Krister Segerberg’s own solution
to this problem. We present three alternative ways that the paradoxes of
introspective belief change may be avoided: the first is a solution due to Sten
Lindström and Wlodek Rabinowicz, using a two-dimensional semantics for
DDL. The second solution is found in a logic for belief change suggested by
Giacomo Bonanno, in which the operator for belief is replaced by a class
of operators for belief, each supplied with a temporal index [3]. The third
solution we present is a logic for belief change due to Johan van Benthem
[14], founded on the method of Dynamic Epistemic Logic where dynamics is
modelled by operations on entire models, rather than some structure within
the models. We shall argue that, while there are some differences between
these approaches, there is a strong structural similarity between them, and
the they avoid the paradoxes of DDL in essentially the same way. Further-
more, the way that these logics avoid the paradoxes is both different from
and, we think, more natural than Segerberg’s own solution.

Throughout the discussion we presuppose familiarity with the AGM model
of belief revision, as well as the basics of modal logic.

2 DDL and the paradoxes

We begin by introducing the system DDL and the paradoxes it gives rise
to. Throughout the paper, we work with a fixed, countably infinite supply
of propositional variables Prop. The language of DDL is then defined in
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Backus-Naur form as follows, where p ∈ Prop:

LDDL : p | ¬α | α ∨ α | Bα | [∗α]α

Classical connectives ∧,→,↔ are defined as usual. Informally, Bα means
“the agent believes α”, and [∗α]β means “after revision by α, it will be the
case that β”.

We now provide semantics for this language. Throughout the paper, given
a binary relation R over a set W and given an element u ∈ W , we use the
notation

R(u) =df. {v ∈ W : uRv}
The logic of revision inherent in the semantics will be rather minimal, since
the details of belief revision are irrelevant to the problem we address and its
solutions. All we shall require of revision in this semantics, and in the other
semantics presented in the paper, are the following conditions:

• after revision by α, the agent believes α

• revision by any consistent sentence results in a consistent belief state
and

• Some semantic version of the Vacuity postulate holds.

We recall that, in the standard AGM framework for belief revision, the Vacu-
ity postulate is:

¬α /∈ K =⇒ K ∗ α = Cn(K ∪ {α})
where Cn is the logical closure operator of the propositional logic underlying
the epistemic states. This postulate says that if some input proposition is
consistent with the agent’s beliefs, then revision by that proposition amounts
to simply adding the proposition to the initial stock of beliefs and forming
the logical closure of the results; in other words, no information is lost in
consistent revision.

Semantics for LDDL is given as follows.

Definition 1. A revision model is a structure

〈W,B,R∗, V 〉

defined as follows: B is a binary relation over W , and R∗ : 2W → 2W×W is a
function from subsets of W (sometimes called propositions) to relations over
W . Furthermore we require that for each X ⊆ W , if vR∗(X)w then
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1. B(w) ⊆ X

2. if X 6= ∅ then B(w) 6= ∅

3. if B(v) ∩X 6= ∅ then B(w) = B(v) ∩X

Finally, V : Prop → 2W is an evaluation function in the usual sense. A
pointed revision model is a pair (A, u) where A is a revision model and
u ∈ W .

The reader should note that the last item on the list in this definition is
the obvious way to formulate the Vacuity postulate in the present framework.
The truth definition for formulas of LDDL in a pointed revision model is given
as follows:

• (A, u) � p iff u ∈ V (p)

• standard clauses for Boolean connectives

• (A, u) � Bα iff (A, v) � α for each v such that uBv

• (A, u) � [∗α]β iff (A, v) � β for each v such that uR∗(‖α‖)v

Here, ‖α‖ denotes the set

{w ∈ W : (A, w) � α}

From this semantics we define the consequence relation �DDL over LDDL by
setting, for all sets of formulas Γ ∪ {α}, Γ �DDL α iff

(A, u) � Γ =⇒ (A, u) � α

for any pointed revision model (A, u). Here, (A, u) � Γ means that (A, u) � β
for each β ∈ Γ.

We will need to be precise about what we mean by a logical system in this
paper. Formally, a logic will here be taken to be a pair (L,�) where L is a
set containing the set of variables Prop and �⊆ 2L×L. Thus, (LDDL,�DDL)
is a logical system, which we denote by SDDL.

To see why SDDL is paradoxical, we ask the reader to verify that the
following validity holds:

�DDL ¬B¬α ∧Bβ → [∗α]Bβ
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and, furthermore, that we have the following validity:

�DDL [∗α]Bα

The former validy is called Preservation by Lindström and Rabinowicz, and
the latter validity is called Success. The validity of Preservation is a direct
consequence of the fact that the Vacuity postulate is built into the semantics.
From Preservation, in turn, we derive the paradoxes: let α, β be any formulas.
Then as a instance of Preservation we have

�DDL ¬B¬α ∧B¬Bα→ [∗α]B¬Bα

On the other hand, from Success follows trivially by classical logic that:

�DDL ¬B¬α ∧B¬Bα→ [∗α]Bα

But clearly the operator [∗α] is normal, so that we have

[∗α]Bα ∧ [∗α]B¬Bα �DDL [∗α](Bα ∧B¬Bα)

By classical logic we can now derive:

�DDL ¬B¬α ∧B¬Bα→ [∗α](Bα ∧B¬Bα)

This is the formula deemed paradoxical by Lindström and Rabinowicz, and
it would be hard to deny that it is quite bizarre. To see why, toss a coin,
without looking at it when it lands. Presumably, given that the coin is fair,
you now have no opinion at all on whether the coin landed heads or tails. Let
α stand for the proposition that the coin landed heads. Since you have no
opinion on whether the toss came out heads or tails, you do not believe that
the coin did not land heads. That is, your current belief state satisfies the
condition ¬B¬α. But you do not believe that the coin did land heads, and
we think that you have the required powers of introspection to be aware of
this fact. Thus, your current belief state also satisfies the condition B¬Bα.
But then, according to DDL, the condition [∗α](Bα ∧ B¬Bα) should also
be true. This means that if you were to take a look at the coin and learn
that it did in fact land heads, as a result you should believe that the coin
landed heads, but at the same time you should believe that you do not believe
it. Under perfectly ordinary circumstances, revision of beliefs has lead to a
curious, or even incoherent, state of belief.
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If we simply dropped the Vacuity postulate, then the problem would
disappear. But for those who are strongly convinced of the validity of Vacuity,
the more attractive route would be to try and retain some semantic version of
the Vacuity postulate, while employing some strategy to avoid the paradoxes.
In the following section, we present Segerberg’s own strategy for doing so.

3 Segerberg’s solution

Segerberg treats the paradoxes of introspective belief change, which he refers
to as “Moore problems”, in a paper from 2006 [11]. In this paper, he proposes
a solution based on Sorensen’s notion of a blindspot from his 1988 book [13].

In Segerbergs terminology, an agent has a Moore problem (of rank 0) if
B(φ∧¬Bφ) or B(φ∧B¬φ) is true (in a certain situation and with respect to
his beliefs). In the former case, the problem is said to be acute, in the latter
grave. More generally, the agent has a Moore problem of rank n, where
n is a nonnegative integer, if, for some formula φ, either Bn(φ ∧ ¬Bφ) or
Bn(φ ∧B¬φ), where Bn abbreviates

B . . . B︸ ︷︷ ︸
n times

Segerberg is very clear on the desirability of avoiding Moore problems:

It is probably impossible to compile a complete list of all the ways
in which a doxastic agent may be incoherent or exhibit some de-
gree of inconsistency, but certainly an agent with a Moore prob-
lem of any rank is not perfect. Doxastically ambitious agents will
stay clear of Moore problems as far as possible! ([11], p.96)

Segerbergs solution seems radical on first sight: he proposes to reject the
assumption that the star operator correctly formalizes revision. Revision by
φ is not to be formalizes as ∗φ but rather as

Rφ =df. ∗(φ ∧Bφ)

As Segerberg points out, the Preservation and Success conditions are not
affected by this definition, meaning that the derivations of the Moorean
sentences are still valid inferences. Yet, the conclusions are no longer an
embarrassment:
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[...] for the fact that , in a certain possible situation, a star change
leads to a Moore problem is not embarrassing, however plausible
the situation - why would one want to perform a star change
anyway? ([11], p. 101).

What would be troublesome is if the corresponding sentences could be derived
for revision, i.e. if we could derive

(¬B¬φ ∧B¬Bφ)→ [Rφ]B(φ ∧ ¬Bφ)

and
(¬B¬φ ∧BB¬φ)→ [Rφ]B(φ ∧B¬φ)

But these sentences are not derivable. Hence his new definition of revision
avoids the Moore problems of rank 0. However, as Segerberg shows, some new
problems crop up in their stead. Suppose φ is such that before revision by φ,
¬B¬(φ ∧ Bφ) is true, and that, before revision, either B¬BBφ or BB¬Bφ
or BBB¬φ is true. Then it follows, using Preservation and Success, that
after revision by φ, on the new understanding of revision, at least one of
B(Bφ ∧ ¬BBφ) or BB(φ ∧ ¬Bφ) or BB(φ ∧ B¬φ) is true. Thus the agent
is confronted with a Moore problem of rank 1.

How can this situation be avoided? Segerberg’s main idea is that the
predicament can be avoided by making the problematic sets of sentences in-
consistent, “for inconsistent sets describe (what according to the logic) are
impossible situations, and it is of no concern that Moore problems arise in
impossible situations” ([11], p. 100). In the present case, this strategy trans-
lates into finding a plausible underlying logic that makes each of the following
sets inconsistent: {¬B¬(φ ∧ Bφ), B¬BBφ}, {¬B¬(φ ∧ Bφ), BB¬Bφ} and
{¬B¬(φ∧Bφ), BBB¬φ}. Segerberg notes that the weakest normal logic sat-
isfying this condition is the normal extension of K by the following schemata:

(1A) B¬BBφ→ B¬(φ ∧Bφ)

(1B) BB¬Bφ→ B¬(φ ∧Bφ)

(1C) BBB¬φ→ B¬(φ ∧Bφ)

Segerberg shows that all three are derivable, for instance, in KD4 which is
a favorite with many doxastic logicians ([11], p. 102). He then goes on to
generalize this approach to Moore problems at rank n and of rank ω, show-
ing that the problematic situations can be excluded by a reasonable choice
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of underlying doxastic logic. Finally, Segerberg connects his approach to
Sorensens concept of a blindspot by defining a blindspot as a sentence φ
such that either φ is not entertainable or revision by it leads to an incon-
sistent state and showing that the following principle comes out as valid on
his approach: revision by an entertainable proposition leads to a consistent
doxastic state if and only if the sentence in question is not a blindspot. Since

[R(φ ∧ ¬Bφ)]B ⊥

and
[R(φ ∧B¬φ)]B ⊥

are theorems in all logics recommended by Segerberg, in those logics the
original Moore sentences φ ∧ ¬Bφ and φ ∧B¬φ are blindspots.

This is certainly an impressive treatment of the Moore problems, espe-
cially considering the proposal, which we will grant, that the Moore problems
arise in impossible situations where what is impossible or not is defined in a
principled manner relative to logical frameworks that have an independent
standing in the literature. Segerberg can hardly be accused of adhockery
in that respect. However, Segerberg’s strategy may still be ad hoc in an-
other regard. Consider again Segerberg’s new definition of revision by φ, i.e.
Rφ =df. ∗(φ ∧ Bφ). First of all, it surely is less simple and striking than
the old one. But second and more important, Segerberg does not give any
independent motivation for his new definition of revision. Certainly, defin-
ing revision in this way does the job of providing a framework within which
Moore problems can be avoided, but apart from this fact little speaks in favor
of the new definition. And, one might ask, why should every revision by φ
be, as it were, accompanied by a revision by Bφ? Suppose φ is an object level
sentence such as it is raining. Why should updating by it is raining involve
updating by I believe that it is raining? Of course, it may often be the case
that these two propositions are accommodated in one swoop, but it is less
clear that it has to be that way. For certain kinds of introspective agents the
new definition of revision may be fine. But what about agents that adopt
beliefs routinely without reflecting on those beliefs at the time of adoption?
So there is still a sense in which Segerberg’s approach is, at least to some
extent, ad hoc.

Another way of putting it is that Segerberg gives but a partial solution
to the Moore problems, a solution that takes care of those problems for
reflective agents (by which we mean agents for which an update by φ is
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always accompanied by an update by Bφ), but that he has little to say
about the prospects of dealing with those problems from the perspective of
unreflective agents.

In the light of these remarks, it is natural to ask whether there is some
other way to treat the paradoxes of full DDL. In the next section, we present
three different logics for belief revision that can be found in the literature,
each of which can be shown to avoid the paradoxes of introspective belief
change. We shall begin by introducing each variant formally, and then discuss
what we believe is the common structure behind each approach.

4 Three alternative solutions

4.1 First solution: two-dimensional DDL

The first solution we consider is due to Sten Lindström and Wlodek Rabi-
nowicz. The approach suggested by Lindström and Rabinowicz is to adopt
a modified, two-dimensional semantics for DDL in which formulas are no
longer evaluated at single worlds, but rather at pairs of worlds. Here, the
idea is that in an evaluation point (u, v), the left component u serves as a
point of reference, while v functions as a point of evaluation. In addition,
rather than an accessibility relation B over the universe of a model, a class
of accessibility relations is used, on relative to each world in the universe.
Each accessibility relation Bv, where v ∈ W , represents the agent’s beliefs
about the point of reference v.

Formally, the definition of a model from the system SDDL is modified as
follows:

Definition 2. A two-dimensional revision model is a structure

〈W, {Bu}u∈W , {R∗u}u∈W , V 〉

defined as follows: for each u ∈ W , Bu is a binary relation over W . For
each u ∈ W R∗u : 2W → 2W×W is a function from propositions to relations
between possible worlds, such that for each X ⊆ W , if vR∗u(X)w then

1. Bu(w) ⊆ X

2. if X 6= ∅ then Bu(w) 6= ∅

3. if Bu(v) ∩X 6= ∅ then Bu(w) = Bu(v) ∩X
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A pointed two-dimensional revision model is a triple (A, u, v) where A is a
two-dimensional revision model and u, v ∈ W .

To speak about these models, we use an extension of the language LDDL.
Formally, the language L2D is given by the following definition where, again,
p ∈ Prop:

L2D : p | ¬α | α ∨ α | Bα | [∗α]α | † α
The truth definition for formulas is given as follows:

• (A, u, v) � p iff v ∈ V (p)

• standard Boolean clauses

• (A, u, v) � Bα iff (A, u, w) � α for each w such that vBuw

• (A, u, v) � [∗α]β iff (A, u, w) � β for each w such that vR∗u(‖α‖u)w

• (A, u, v) � † α iff (A, v, v) � α

The consequence relation �2D is defined from this semantics as before, and
we let S2D denote the logical system (L2D,�2D). The new component of the
language of this logic is the †-operator, although the meanings of the modal
operators present in LDDL have changed. This operator has the effect of
making the current point of evaluation the current point of reference as well.
The formula † α can informally be interpreted as saying that α is true about
the present point of evaluation.

How does this avoid the paradoxes of DDL? As noted by Lindström and
Rabinowicz, for each formula α the paradoxical formula of SDDL which we
recall was:

¬B¬α ∧B¬Bα→ [∗α](Bα ∧B¬Bα)

is still valid in this semantics. But, as we said, the meaning of the connectives
has changed. Consider an evaluation point (u, u) in a model A (here, the
point of reference and the point of evaluation is the same). Suppose that

(A, u, u) � ¬B¬α ∧B¬Bα

so that the agent does not disbelieve α at (u, u) and she believes that she does
not believe α. According to the validity of the previously deemed paradoxical
formula, we must have

(A, u, u) � [∗α](Bα ∧B¬Bα)

10



This means that
(A, u, v) � Bα ∧B¬Bα

But this is not incoherent, since the righthand conjunct here means that at
the present point of evaluation (v), the agent believes that the condition ¬Bα
holds for the point of evaluation prior to revision by α (u). By contrast, the
formula

¬B¬α ∧B¬Bα→ [∗α] † (Bα ∧B¬Bα)

is paradoxical, since the beliefs described as resulting after revision by α are
now beliefs about the point of evaluation after revision, not the one prior to
it. But this formula is not valid in S2D. Thus, the system S2D is free of this
paradoxical feature of SDDL.

4.2 Second solution: temporally indexed beliefs

The second solution, present in Giacomo Bonanno’s “simple” modal logic
for belief revision, consists in letting a model represent an ω-ordered discrete
time-line and use belief operators supplied with indexes representing points
in the succession of time. Each move forward in time corresponds to an act
of revision by some new piece of information. The expression Bnα, where
n ∈ ω, says that the agent believes α at the nth point in the succession of
time.

Formally, the language LTemp for Bonanno’s system is defined as follows,
where n is any natural number:

LTemp : p | ¬α | α ∨ α | Bnα | Inα

The new operator In is interpreted so that Inα means, informally, that α is
the last piece of information received at the nth point in time, or that α it
is the input of the revision that results in the belief state at time n.

Semantics for LTemp is given by the following definitions:

Definition 3. A temporal belief model is a structure

〈W, {Bn}n∈ω, {In}n∈ω, V 〉

such that:

1. Bn(u) ⊆ In(u)
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2. if In(u) 6= ∅ then Bn(u) 6= ∅

3. if Bn(u) ∩ In+1(u) 6= ∅ then Bn+1(u) = Bn(u) ∩ In+1(u)

A pointed temporal belief model is a pair (A, u) where A is a temporal belief
model and u ∈ W .

Truth definitions of formulas in a pointed temporal belief model are:

• (A, u) � p iff u ∈ V (p)

• standard clauses for Boolean connectives

• (A, u) � Bnα iff (A, v) � α for each v such that uBnv

• (A, u) � Inα iff In(u) = ‖α‖

Here, as before, ‖α‖ = {v ∈ W : (A, v) � α}. From this semantics we
define the consequence relation �Temp as before, and we define STemp to be
the logical system (LTemp,�Temp). To get a grasp of how the language works,
consider the syntactic form of the Success postulate in this system; this is
captured by the validity

�Temp Inα→ Bnα

This says that if the belief state at time n is the result of the revision of a
prior belief state by α, then α is believed at time n.

The way that the paradoxes of DDL are avoided in this system is simple.
We do have a form of the Preservation formula valid in STemp, namely:

�Temp ¬Bn¬α ∧Bnβ → (In+1α→ Bn+1β)

That is, if α is consistent with the agent’s beliefs at time n, and the next
revision at time n + 1 has the input formula α, then everything the agent
believes at time n she believes at time n + 1 also. But we cannot derive
any paradoxes from this formula, since belief operators come with temporal
indexes. To see this, let’s try to derive a paradox in the same manner as
before. Consider any formula α. As an instance of the previous validity we
get

�Temp ¬Bn¬α ∧Bn¬Bnα→ (In+1α→ Bn+1¬Bnα)

From this, using the STemp-version of Success above together with classical
logic, we can derive

�Temp ¬Bn¬α ∧Bn¬Bnα→ (In+1α→ Bn+1α ∧Bn+1¬Bnα)
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The informal content of this formula looks a lot like that of the paradoxical
formula we derived in SDDL. But of course, it is not paradoxical. It says that
if α is consistent with the agents beliefs at time n, and the agent is aware
that she does not believe α at time n, then after revision by α at time n+ 1,
she believes α and believes that she did not believe it at time n. By contrast,
the formula

�Temp ¬Bn¬α ∧Bn¬Bnα→ (In+1α→ Bn+1α ∧Bn+1¬Bn+1α)

is paradoxical but not valid.

4.3 Third solution: the DEL method

The third alternative way of getting out of the paradoxes of DDL we con-
sider in this paper is found in Johan van Benthem’s dynamic logic for belief
revision. The system is built on a method used in Dynamic Epistemic Logic
(DEL), a framework for studying dynamics of multi-agent epistemic scenar-
ios. The relevant aspect of DEL here is not the multi-agent feature, but
rather the way in which dynamics is modelled semantically and reasoned
about syntactically.

The method can be described in this way: to model changes of some type
of states, one should first develop a static base language for reasoning about
the states and provide it with a semantics, i.e. define models for it. Then,
changes of states are modelled as operations on models for the static base
language, which is extended with dynamic operators to reason about these
operations. If the static base logic is rich enough in expressive strength,
then it is often possible to translate any dynamic formula into a semantically
equivalent formula of the static base logic via socalled reduction axioms.

For brevity we will present the static and the dynamic part of van Ben-
them’s system all in one swoop. For a gentler presentation of the system we
refer to [14]. For an introduction to DEL, see [15].

We begin by defining the models for the static part of the logic:

Definition 4. A conditional belief model is a structure

〈W, {σu}u∈W , V 〉

defined as follows. For each u ∈ W , σu : 2W → 2W is called a selection
function and satisfies the following properties:
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1. σu(X) ⊆ X

2. X 6= ∅ implies σu(X) 6= ∅

3. if σu(X) ∩ Y 6= ∅ then σu(X ∩ Y ) = σu(X) ∩ Y

V is a valuation function as before, and pointed conditional belief models are
defined as before.

The central component of these models is the set of selection functions,
which can be thought of as encoding the conditional beliefs of the agent. The
intuitive explanation is that, for each proposition X ⊆ W , the set σu(X)
consists of the “most plausible” worlds from the agent’s point of view at
the world u. Actual beliefs of the agent are defined as beliefs conditional on
the trivial proposition. That is, the set of possible worlds compatible with
the agent’s actual beliefs at the world u is the set σu(W ). The semantics
presented in [14] is a bit different from the presentation here and uses orders
of plausibility rather than selection functions, but this is irrelevant to the
current issue.

To model dynamics of the models, we will use an operation that van
Benthem calls lexicographic upgrade. Or, rather, we use a version of this
operation, adapted to the semantics here based on selection functions which is
slightly more general than van Benthem’s semantics. Consider a proposition
X ⊆ W in a model A; we want a way to revise the selection function u at a
world u by X. This is provided by the following definition:

Definition 5. σ⇑Xu (Y ) =

{
σu(Y ) ∩X if σu(Y ) ∩X 6= ∅
σu(X) if σu(Y ) ∩X = ∅

Given a conditional belief model A = 〈W, {σu}u∈W , V 〉 and X ⊆ W , we
define the revised model A ⇑ X by

A ⇑ X =df. 〈W, {σ⇑Xu }u∈W , V 〉

We leave it to the reader to check that this is always a well defined conditional
belief model. Notice that we have

σu(W ) ∩X 6= ∅ =⇒ σ⇑Xu (W ) = σu(W ) ∩X

With the definition of actual beliefs as beliefs conditional on the trivial propo-
sition, this property can be seen as a semantic formulation of the Vacuity
postulate.
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Turning to the syntactic side of the system, we define the language LDEL:

LDEL : p | ¬α | α ∨ α | B(α | α) | Aα | [⇑ α]α

Here, B(α | β) says that α is believed conditionally on β, and [⇑ α]β says
that the condition β will hold after revision by α. The operator A is the
global necessity operator (see [2]). Aα means that α holds in all possible
worlds of a model; it can be thought of as expressing logical necessity. A
static formula of LDEL is a formula without any occurrences of the dynamic
operators. We define an operator for actual beliefs by Bα =df. B(α | p∨¬p),
where p is a propositional variable.

Truth definitions for formulas in a pointed model are:

• (A, u) � p iff u ∈ V (p)

• standard clauses for Boolean connectives

• (A, u) � B(α | β) iff σu(‖β‖) ⊆ ‖α‖

• (A, u) � Aα iff (A, v) � α for each v ∈ W

• (A, u) � [⇑ α]β iff (A ⇑ ‖α‖ , u) � β

The consequence relation �DEL and the system SDEL are now defined as
before.

It is instructive to look at the reduction axioms for SDEL. These are as
follows (we follow van Benthem’s axiomatization almost without any modi-
fication):

⇑1: [⇑γ] q ↔ q, q a propositional atom

⇑2: [⇑ γ]¬α↔ ¬[⇑ γ]α

⇑3: [⇑ γ](α ∨ β)↔ ([⇑ γ]α ∨ [⇑ γ]β)

⇑4: [⇑ γ]Aα↔ A[⇑ γ]α

⇑5: [⇑ γ]B(α | β)↔
↔ (E(γ ∧ [⇑ γ]β) ∧B([⇑ γ]β → [⇑ γ]α | γ) ∨
∨ (¬E(γ ∧ [⇑ γ]β) ∧B([⇑ γ]α | [⇑ γ]β))
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The reader can check that these axioms are sound in the semantics for SDEL.
These axioms can be thought of as providing recursive definitions of the truth
conditions of dynamic formulas in terms of static formulas. Together with a
suitable set of complete axioms for the static fragment of SDEL and a rule for
substitution of equivalents, they provide a complete axiomatization of SDEL.
To prove this result, one exploits the soundness of the reduction axioms to
prove the following proposition as a lemma. The proof is excluded here.

Proposition 1. There exists a function ρ : LDEL → LDEL such that for each
formula α ∈ LDEL, the formula ρ(α) is a static formula and, furthermore,
for each pointed conditional belief model (A, u),

(A, u) � α⇐⇒ (A, u) � ρ(α)

To get a feel for the system, let us look at some validities. Here, p, q are
two propositional variables and ⊥ is any tautological contradiction. First,
revision by p leads the agent to believe p:

�DEL [⇑ p]Bp

Second, revision by a consistent sentence results in a consistent belief state:

�DEL ¬A¬p→ [⇑ p]¬B ⊥

What about Preservation? We do indeed have a form of the Preservation
principle valid in this system:

(i) �DEL ¬B¬p ∧Bq → [⇑ p]Bq

Now, if validity in SDEL were closed under substitutions for propositional
variables (as is the case in most logics), then obviously we could derive a
paradox in the same manner as in SDDL. However, this is not the case, and
it is in fact this feature of SDEL that makes it non-paradoxical. In particular,
the following substition instance of (i):

(ii) ¬B¬α ∧B¬Bα→ [⇑ α]B¬Bα

is invalid. This is exactly the formula that would be required to derive a
paradox in SDEL. By contrast, the following formula is valid:

(iii) ¬B¬α ∧B¬Bα→ B(¬Bα | α)
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Now, what does this formula say? it says that, if ¬B¬α and B¬Bα are
true at some world in a model, than from the point of view of the agent in
that world, ¬Bα will be true in the most plausible worlds where α is true.
Now, the most plausible worlds where α is true, prior to revision by α, are
exactly those worlds that are compatible with the agent’s actual beliefs after
revision. But since the truth values of formulas involving beliefs will change
at every world in a model through the act of revision by α, it does not follow
from this that ¬Bα will be true at all worlds that are compatible with the
agent’s beliefs after the revision. This is why (ii) fails to be valid.

5 Comparison of the solutions

5.1 What the three approaches have in common

The three solutions we have just presented are, we think, essentially one and
the same. All three of them are based on making a distinction between two
different perspectives, the state of affairs prior to revision and the one after
revision. This is perhaps clearest in Lindström and Rabinowicz’s system;
it is embodied quite explicitly in the distinction between the point of refer-
ence (typically being the state prior to revision) and the point of evaluation
(typically the state after revision).

But we see the same distinction very clearly in Bonanno’s temporal sys-
tem of belief revision, although in a different form. Here, it turns up through
the temporally indexed belief operators. In particular, in the formula

¬Bn¬α ∧Bn¬Bnα→ (In+1α→ Bn+1α ∧Bn+1¬Bnα)

which is provable in STemp, the state prior to revision corresponds to the time-
point represented by the number n, and the state after revision corresponds
to n+ 1.

It is perhaps a bit less obvious how van Benthem’s system SDEL fits into
this picture, but we think it does. We postpone the task of explaining this to
section 5.3, where we will be better prepared to do so. The fact that the same
solution to the paradoxes can be found in three seemingly rather different
frameworks for belief revision counts, we think, as evidence in favor of this
approach as a particularly natural way to resolve the paradoxes. Think of
it in analogy with the case of various definitions of computable functions,
for example in terms of recursive functions or in terms of Turing machines.
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The wellknown fact that these definitions turn out to be equivalent speaks
strongly in favor of the idea that they all capture the pre-formal notion of
computability in a natural way. The present situation, where three different
formalisms can be seen to resolve the paradoxes of DDL in the same way, is
similar.

To strengthen these claims, we shall establish a formal correspondence
between the three logical systems S2D, STemp and SDEL. More specifically,
we shall show that the system S2D can in a precise sense be interpreted in
STemp, and in turn, SDEL can be interpreted in S2D. From this will follow
that SDEL can be interpreted in STemp also. These interpretation results
will help to clarify the deeper connection that we think exists between the
different systems, particularly with respect to how they handle the paradoxes
of DDL. In order to formally prove these claims, we need to make precise
what it means that a logical system can be interpreted in another. This is
captured by the following definition.

Definition 6. Given logical systems S1 = (L1,�1) and S2 = (L2,�2), an
interpretation of S1 in S2 is any function F : L1 → L2 such that F (p) = p
for any p ∈ Prop. The interpretation F is said to be a sound interpretation
of S1 if, for all sets of formulas Γ ∪ {α} ⊆ L1, we have

Γ �1 α =⇒ F (Γ) �2 F (α)

So a sound interpretation of a logical system S1 in S2 is a translation that
maps sentences of S1 to sentences of S2 in a way that preserves logically valid
consequences. Just like when we interpret a logical system in a semantics,
we might consider the question of whether an interpretation is complete in
addition to being sound. We could say that an interpretation F of S1 in S2

is sound and complete if, for all Γ ∪ {α} ⊆ L1, we have

Γ �1 α⇐⇒ F (Γ) �2 F (α)

The issue of completeness will not concern us in this paper. Rather, we
will focus on soundness. Completeness is a welcome property of any in-
terpretation of a logical system, but soundness is absolutely crucial. If an
interpretation is not sound, it is doubtful whether it can be called a proper
interpretation at all. Also, as we shall see in the next section, the soundness
propery of the interpretations we provide is enough to make the correspon-
dence quite enlightening.
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5.2 Interpreting S2D in STemp

Our first result is that, in the sense of Definition 6, there exists a sound
interpretation F of S2D in STemp. First, by induction over the complexity of
formulas, we define the class of functions

τn,m : L2D → LTemp

where n,m ∈ ω as follows:

1. τn,m(p) = p

2. τn,m(¬α) = ¬τn,m(α)

3. τn,m(α ∨ β) = τn,m(α) ∨ τn,m(β)

4. τn,m(Bα) = Bmτn,n(α)

5. τn,m([∗α]β) = Im+1τn,n(α)→ τn,m+1(β)

6. τn,m(† α) = τm,m(α)

We then set F =df. τ0,0. For this mapping F we have the following result,
proved in Appendix A.1:

Theorem 1. The translation F constitutes a sound interpretation of the
system S2D in the system STemp.

To see how this interpretation relates the two systems to each other, let
us consider the interpretation of the formula

¬B¬p ∧B¬Bp→ [∗p](Bp ∧B¬Bp)

given by F . This formula is an instance of the paradoxical schema we de-
rived in SDDL. As we mentioned earlier, the formula is valid in S2D also, and
therefore by soundness its interpretation under F is valid in STemp. Now,
Lindström and Rabinowicz claim that this formula is not paradoxical un-
der the interpretation given to it in two-dimensional semantics. Then, its
interpretation under F had better not be paradoxical either!

Indeed it is not. For the formula

(1) F (¬B¬p ∧B¬Bp→ [∗p](Bp ∧B¬Bp))
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is identical to

(2) (¬B0¬p ∧ ¬B0¬B0p)→ (I1p→ B1p ∧B1¬B0p)

which is perfectly fine. We can derive this as follows: first, recalling that F =
τ0,0 and using translation clauses for Boolean connectives, atomic formulas
and B, the formula (1) becomes

¬B0p ∧B0¬B0p→ τ0,0([∗p](Bp ∧B¬Bp))

Carrying out the translation further, we get

¬B0p ∧B0¬B0p→ (I1p→ τ0,1(Bp) ∧ τ0,1(B¬Bp))

Applying the function τ0,1 to its arguments here, we get

¬B0p ∧B0¬B0p→ (I1p→ B1p ∧B1τ0,0(¬Bp))

But τ0,0(¬Bp) = ¬B0p, so now we arrive at (2) as desired.
By contrast, let’s look at the translation of the formula

¬B¬p ∧B¬Bp→ [∗p] † (Bp ∧B¬Bp)

which is paradoxical. Applying the translation F to this formula, instead of
(2) we will get the formula

(3) (¬B0¬p ∧ ¬B0¬B0p)→ (I1p→ B1p ∧B1¬B1p)

which is indeed paradoxical, and not valid in STemp. To see what happens
here, we can carry out the translation step by step and check that we even-
tually arrive at the formula

¬B0p ∧B0¬B0p→ (I1p→ τ0,1(†(Bp ∧B¬Bp))

Applying the translation clause for †, this becomes

¬B0p ∧B0¬B0p→ (I1p→ τ1,1(Bp ∧B¬Bp)

But
τ1,1(Bp ∧B¬Bp) = B1p ∧B1τ1,1(¬Bp) = B1p ∧B1¬B1p

and so we arrive at (3).
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5.3 Interpreting SDEL in S2D

We now show how to interpret SDEL in S2D. The central observation here is
that, since we know that there is a translation ρ that sends every formula α to
an equivalent static formula ρ(α), it suffices to interpret the static formulas
of SDEL in order to get a full interpretation of SDEL in S2D.

Formally, we define the mapping τ as follows:

1. τ(p) = p

2. τ(¬α) = ¬τ(α)

3. τ(α ∨ β) = τ(α) ∨ τ(β)

4. τ(Aα) = [∗¬τ(α)]B ⊥

5. τ(B(α | β)) = [∗τ(β)]Bτ(α)

Clearly, every static formula of LDEL receives an interpretation by this map-
ping. Letting ρ be any translation function as specified in Proposition 1, we
define an interpretation F : LDEL → L2D by setting

F (α) = τ(ρ(α))

for each α ∈ LDEL. As before, we have the following soundness result for
this interpretation:

Theorem 2. The translation F constitutes a sound interpretation of the
system SDEL in the system S2D.

The proof of this result is in Appendix A.2. Furthermore, the composition
of two sound interpretations (whenever it is well defined) is obviously a sound
interpretation. So by the existence of a sound interpretation of SDEL in S2D

and a sound interpretation of S2D in STemp, we get:

Corollary 1. There exists a sound interpretation of SDEL in STemp.

An interesting aspect of the translation F presented in this section is that,
clearly, for any LDEL-formula α, the corresponding L2D-formula F (α) will
never contain any occurrence of the operator †. Our analysis of this state of
affairs is this: consider a formula

(A) B(α | β)
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contrasted with
(B) [⇑ β]Bα

What is the difference in meaning between these two formulas? We think
it can be understood in terms of Lindström and Rabinowicz’s distinction
between point of evaluation and point of reference. Both (A) and (B) can be
thought of as expressing that the formula α is believed after revision by β,
but the formula α has different meaning in the two cases. In (A), the point
of reference is held fixed, while in (B), the formula α is evaluated against
a different point of reference than β. However, since the interpretation F
takes a detour through the static fragment of the system SDEL, in which
no formulas of the form (B) occur, it makes sense that the operator † does
not occur in the interpretation of any formulas: it has exactly the effect of
changing the point of reference.

Thus, by extracting this insight from our interpretation of SDEL in S2D,
we have managed to show how S2D also fits into the picture we described
earlier. The distinction between a perspective corresponding to the states
of affairs before and after revision, respectively, is mirrored in SDEL by the
distinction between expressions of the form (A) and (B). Expressions of the
first kind describe our revised beliefs about the state prior to revision, and
expressions of the second kind describe our revised beliefs about the state
of affairs after revision. Really, we do not have three different solutions; we
have three different logical systems, each of which solves the problem with
full DDL in one and the same way.

6 Discussion

We have argued that the systems S2D, STemp and SDEL all solve the prob-
lems of full DDL by distinguishing between two perspectives, expressed
most explicitly in Lindström and Rabinowicz’s two-dimensional approach.
Given this, it is striking to find that Segerberg himself has suggested a two-
dimensional approach to resolve another well-known paradox, namely Fitch’s
paradox (in a paper from 1994 with Rabinowicz [9]). Given the obvious sim-
ilarities between Fitch’s paradox and the paradoxes of full DDL, and given
that Segerberg argued for a two-dimensional approach to the former, one
would have expected him to embrace a two-dimensional approach to the lat-
ter as well. Thus it is surprising that Segerberg instead bases his solution
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on Sorensen’s notion of a blindspot, which is essentially unrelated to the
two-dimensional approach.

In fact, it is not only surprising but, we think, it is questionable from
a methodological point of view. Given the affinities between these para-
doxes it would be desirable to treat them in a uniform fashion. Thus,
for Segerberg, who is associated with two-dimensional semantics and the
blindspot approach, the following uniform approaches suggests themselves:

(1) Treating both paradoxes as involving blindspots

(2) Treating both paradoxes in a two-dimensional semantics

By contrast, the following would seem less attractive from a systematic per-
spective:

(3) Treating Fitchs paradox in a two-dimensional semantics and Moores
paradox as involving blindspots

(4) Treating Fitchs paradox as involving blindspots and Moores paradox in
a two-dimensional semantics

And yet, as we saw, Segerbergs published responses to the paradoxes corre-
spond to option (3), a suboptimal strategy from a systematic perspective.
Finally, the result of the present article suggests that option (2) is, in a sense,
considerably more plausible than meets the eye. More precisely, (2) is but a
specific variant of a more general approach:

(2′) Treating both paradoxes as arising from failure to distinguish between
different perspectives

As we have argued, two-dimensional DDL, Bonannos temporal system and
van Benthem’s DEL-style system are all instances of (2′). They all resolve
the paradoxes by distinguishing between two different perspectives, in the
two-dimensional case the point of reference and the point of evaluation, in
Bonanno’s case the time before and after revision, and in van Benthem’s
logic between conditional beliefs and beliefs after revision. Thus, the main
competitor to the blindspot approach, as things must look from Segerberg’s
point of view, is more widely adopted, and thus has a stronger standing in
the research community, than the apparent diversity could lead one to be-
lieve. Perhaps even more important is the fact that the main competitor -
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the perspectival strategy - is a very natural way of dealing with the problems,
or else researchers with widely different starting points would not have con-
verged on it. Furthermore, to reconnect with our discussion of Segerberg’s
own solution, the perspectival strategy is perfectly compatible with the tra-
ditional view that we often revise simply by α rather than by α ∧ Bα, and
are quite rational in doing so. Not only does this accord better with our
pre-theoretical conceptions of things (at least those of the present authors),
but it means that this strategy works for reflective agents and unreflective
agents alike. Unlike the perspectival strategy, Segerberg’s solution is depen-
dent on the assumption that the agent in question is reflective. Thus, unless
an independent motivation is provided for not taking unreflective agents into
consideration, the perspectival strategy stands out as the more general solu-
tion.

A Proofs of main results

A.1 Proof of Theorem 1

The proof is based on constructing models for S2D out of models for STemp,
in the following manner:

Definition 7. Given a temporal belief model A = 〈W, {Bn}n∈ω, {In}n∈ω, V 〉,
we define the two-dimensional revision model

A2D = 〈W ∗, {Bu}u∈W , {R∗u}u∈W , V ∗〉

as follows. We set

W ∗ = {(u, n) : u ∈ W & n ∈ ω}

For all (u, n), (v,m), (w, k) ∈ W ∗, we set (u, n)B(v,m)(w, k) iff uBnw and
k = m. We set (u, n)R∗(v,m)(X)(w, k) iff

• u = w,

• k = n+ 1 and

• Z = Ik(u), where Z = {t ∈ W : (t,m) ∈ X}

Finally, we set (u, n) ∈ V ∗(p) iff u ∈ V (p).
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The construction is sound by the following proposition:

Proposition 2. A2D is a two-dimensional revision model, for any temporal
belief model A.

Proof. We need to check that, for each X ⊆ W ∗, if (u,m)R∗(v,n)(X)(w, k)
then

1. B(v,n)(w, k) ⊆ X

2. if X 6= ∅ then B(v,n)(w, k) 6= ∅

3. if B(v,n)(u,m) ∩X 6= ∅ then B(v,n)(w, k) = B(v,n)(u,m) ∩X

So suppose (u,m)R∗(v,n)(X)(w, k). Then u = w, k = m+ 1 and

Im+1(u) = {t ∈ W : (t, n) ∈ X}

Now, since
Bm+1(u) ⊆ Im+1(u)

item (1) follows easily by definition of the relation B(v,n): for if
(u,m+1)Bv,n(w′, k′), then k′ = n and uBm+1w

′, so w′ ∈ Im+1(u), so (w′, n) =
(w′, k′) ∈ X.

For (2), note that X 6= ∅ implies Im+1(u) 6= ∅, so Bm+1(u) 6= ∅. Pick w′

such that uBm+1w
′. Then (u,m+ 1)Bv,n(w′, n) so B(v,n)(u,m+ 1) 6= ∅.

Lastly, for (3), suppose B(v,n)(u,m)∩X 6= ∅. Let (w′, k′) ∈ B(v,n)(u,m)∩
X 6= ∅; then k′ = n and uBmw

′. Since (w′, n) ∈ X, w′ ∈ Im+1(u). So

Bm(u) ∩ Im+1(u) 6= ∅

and hence
Bm+1(u) = Bm(u) ∩ Im+1(u)

This means that
B(v,n)(u,m+ 1) = B(v,n)(u,m) ∩X

To see this, suppose (u,m + 1)B(v,n)(s, i). Then i = n, and uBm+1s. But
then uBms and s ∈ Im+1(u). So (u,m)B(v,n)(s, n) and (s, n) ∈ X.

Conversely, suppose (u,m+ 1)B(v,n)(s, i) and (s, i) ∈ X. By definition of
Bv,n, i = n. So (s, n) ∈ X and therefore s ∈ Im+1(u). Furthermore, uBm+1s.
So s ∈ Bm(u) ∩ Im+1(u), hence s ∈ Bm+1(u). By definition this means that
(u,m+ 1)Bv,n(s, n), i.e. (u,m+ 1)B(v,n)(s, i) as required.
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We now define a mapping G from pointed temporal belief models to
pointed two-dimensional revision models by setting

G(A, u) =df. (A2D, (u, 0), (u, 0))

for each pointed temporal revision model (A, u). We then have the following
result, which gives the key to the soundness result for F :

Lemma 1. For any pointed temporal model (A, u) and any L2D-formula α,
we have

(A, u) � F (α)⇐⇒ G(A, u) � α

Proof. We show, for any formula α, that for each world u in the universe of
A, we have both

(1) (A, u) � τn,m(α) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) � α

and
(2) (A, u) 2 τn,m(α) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) 2 α

for all v ∈ W . From (1) and (2) together it follows that

(A, u) � τ0,0(α)⇐⇒ (A2D, (u, 0), (u, 0)) � α

i.e.
(A, u) � F (α)⇐⇒ G(A, u) � α

as desired.
The proof goes by induction on the length of α. For propositional vari-

ables, both clauses are immediate, and the steps for Boolean connectives are
easy.

Step for B: Suppose (A, u) � τn,m(Bα), i.e. (A, u) � Bmτn,n(α). Let
v ∈ W and let (w, k) be such that (u,m)Bv,n(w, k). Then by definition uBmw
and k = n, so we must have (A, w) � τn,n(α) and by clause (1) of the IH
we get (A2D, (v, n), (w, n)) � α. So we must have (A2D, (v, n), (u,m)) � Bα.
This shows that

(1) (A, u) � τn,m(Bα) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) � Bα

Suppose that (A, u) 2 τn,m(Bα), i.e. (A, u) 2 Bmτn,n(α). Then there exists
w ∈ W such that uBmw and (A, v) 2 τn,nα. Let v ∈ W ; then we have
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(u,m)B(v,n)(w, n) and by clause (2) of IH we have (A2D, (v, n), (w, n)) 2 α,
hence (A2D, (v, n), (u,m)) 2 Bα. We have shown that

(2) (A, u) 2 τn,m(Bα) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) 2 Bα

as required.
Step for ∗: Suppose (A, u) � τn,m([∗α]β), i.e.

(A, u) � Im+1τn,n(α)→ τn,m+1(β)

We note that by the IH we have, for each v ∈ W ,

(‡) ‖τn,n(α)‖A = {t ∈ W : (t, n) ∈ ‖α‖(v,n)}

Suppose for v ∈ W that (u,m)R∗(v,n)(‖α‖(v,n))(w, k). Then k = m + 1.

Furthermore, by definition and by (‡) we get

Im+1(u) = {t ∈ W : (t, n) ∈ ‖α‖(v,n)} = ‖τn,n(α)‖A

So (A, u) � Im+1(τn,n(α)). Thus, we get (A, u) � τn,m+1(β). By clause (1) of
the IH, this gives (A2D, (v, n), (w,m + 1)) � β, i.e. (A2D, (v, n), (w, k)) � β.
So (A2D, (v, n), (u,m)) � [∗α]β. We have thus shown

(1) (A, u) � τn,m([∗α]β) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) � [∗α]β

Suppose (A, u) 2 τn,m([∗α]β), i.e. (A, u) � Im+1τn,n(α) but (A, u) 2 τn,m+1(β).
Pick v ∈ W . Using (‡) we obtain

Im+1(u) = ‖τn,n(α)‖A = {t ∈ W : (t, n) ∈ ‖α‖(v,n)}

From this we can conclude that (u,m)R∗(v,n)(‖α‖(v,n))(u,m + 1). Further-

more, by clause (2) of the IH we have (A2D, (v, n), (u,m + 1) 2 β), so
(A2D, (v, n), (u,m) 2 [∗α]β). We have thus shown

(2) (A, u) 2 τn,m([∗α]β) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) 2 [∗α]β

as required.
Step for †: Given that the IH holds for α, suppose first that we have

(A, u) � τn,m(† α), i.e. (A, u) � τm,m(α). Then we have by clause (1) of IH:
for all v ∈ W , (A2D, (v,m), (u,m)) � α. In particular, (A2D, (u,m), (u,m)) �
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α. This means that, for all v ∈ W , (A2D, (v, n), (u,m)) � † α. We have
established:

(1) (A, u) � τn,m(† α) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) � † α

On the other hand, suppose (A, u) 2 τn,m † α, i.e. (A, u) 2 τm,m(α). Then
we have by clause (2) of IH: for all v ∈ W , (A2D, (v,m), (u,m)) 2 α. In
particular, (A2D, (u,m), (u,m)) 2 α. This means that, for all v ∈ W ,
(A2D, (v, n), (u,m)) 2 † α. We have established:

(2) (A, u) 2 τn,m(† α) =⇒ ∀v ∈ W : (A2D, (v, n), (u,m)) 2 † α

This ends the proof.

We now prove Theorem 1 as follows: suppose F (Γ) 2Temp F (α). Then
there is a pointed temporal belief model (A, u) such that (A, u) � F (Γ) but
(A, u) 2 F (α). By the previous theorem, G(A, u) � Γ but G(A, u) 2 α.
Hence Γ 22D α. This ends the proof of the theorem.

A.2 Proof of Theorem 2

We use the same strategy as in the previous section:

Definition 8. Given a two-dimensional model A and a world v in the uni-
verse of A, we define the conditional belief model

ADEL[v] = 〈W ∗, {σu}u∈W ∗ , V ∗〉

as follows: we set W ∗ = W and V ∗ = V . For each u ∈ W and X ⊆ W , we
set

σu(X) = {w ∈ W : ∃p ∈ W [uR∗v(X)p and pBvw]}

It is easily checked that ADEL[v] is a conditional belief model. We define
the mapping G from pointed two-dimensional revision models to pointed
conditional belief models by setting G(A, v, u) = (ADEL[v], u) for a pointed
two-dimensional revision model (A, v, u). We have the following result:

Lemma 2. For any pointed two-dimensional model (A, u, v) and any static
LDEL-formula α we have

(A, u, v) � τ(α)⇐⇒ G(A, u, v) � α
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Proof. By induction over the length of static formulas we show that, for all
v ∈ W we have

(A, u, v) � τ(α)⇐⇒ (ADEL[u], v) � α

The steps for atomic formulas and Boolean connectives are trivial.
Step for A: suppose (A, u, v) � τ(Aα), i.e. (A, u, v) � [∗¬τ(α)]B⊥. By

seriality of R∗u(‖¬τ(α)‖Au) there must be some w such that vR∗u(‖¬τ(α)‖Au)w.

Furthermore, clearly we have Bu(w) = ∅, and this means that ‖¬τ(α)‖Au = ∅.
Hence ‖τ(α)‖Au = W = W ∗. By the IH, ‖α‖ADEL[u]

= W ∗, and so we have
(ADEL[u], v) � Aα as required.

Conversely, suppose (A, u, v) 2 τ(Aα), i.e. (A, u, v) 2 [∗¬τ(α)]B⊥. Then
there is some w such that vR∗u(‖¬τ(α)‖Au)w and Bu(w) 6= ∅. Hence there
is some s such that wBus. By the definition of a two-dimensional model,
s ∈ ‖¬τ(α)‖ i.e. (A, u, s) � ¬τ(α). Hence (A, u, s) 2 τ(α), and by the IH
(ADEL[u], s) 2 α. Hence (ADEL[u], v) 2 Aα as required.

Step for B: suppose (A, u, v) � τ(B(α | β)), i.e.

(A, u, v) � [∗τ(β)]Bτ(α)

Suppose w ∈ σv(‖β‖ADEL[u]
). By the IH this means that w ∈ σv(‖τ(β)‖Au),

so there is some s such that vR∗u(‖α‖Au)s and sBuw. Since (A, u, v) �
[∗τ(β)]Bτ(α) we have (A, u, s) � Bτ(α) so (A, u, w) � τ(α). By IH we
get (ADEL[u], w) � α. We have thus shown that (A, u, v) � B(α | β) as
required.

Conversely, suppose that (A, u, v) 2 τ(B(α | β)), i.e.

(A, u, v) 2 [∗τ(β)]Bτ(α)

Then there is some s such that vR∗u(‖τ(β)‖Au)s and (A, u, s) 2 Bτ(α). This
means that for some w we have sBuw and (A, u, w) 2 τ(α). By the IH we
have vR∗u(‖β‖ADEL[u]

)s, and thus we have w ∈ σv(‖β‖ADEL[u]
). Furthermore,

by the IH again, we have (ADEL[u], w) 2 α. Thus (ADEL[u], v) 2 B(α | β) as
required.

Using the fundamental property of the translation ρ used in the construc-
tion of F , this lemma immediately entails:

Corollary 2. For any pointed two-dimensional model (A, u, v) and any LDEL-
formula α we have

(A, u, v) � F (α)⇐⇒ G(A, u, v) � α

From this result, we can prove Theorem 2 just like we proved Theorem 1.
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