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Abstract 
Recently, a great deal of effort has been focused on 
developing the so called �fully unconstrained� approach 
to noncollinear magnetism. This approach allows the 
magnetization density within a material to be calculated 
as a continuous vector variable of position, as opposed to 
using the atomic moment approximation (AMA) where a 
fixed quantization direction is assumed for a volume-
filling sphere surrounding each atomic site, i.e., the 
constrained approach. In this paper a number of 
applications of the method are reviewed. Initially, only 
small clusters of Iron (Fe) and Chromium (Cr) atoms 
were studied which nicely illustrated some possible 
noncollinear magnetic arrangements. However, later 
research has been applied to triangular free-standing Cr 
and Manganese (Mn) monolayers and overlayers on Cu 
substrates. Finally, noncollinear magnetism has been 
investigated within the different phases of Mn, including 
the complex α-Mn phase, which has been shown 
experimentally to have a noncollinear magnetic structure. 

1 INTRODUCTION 

1.1 Related Studies 
The motivation for a fully unconstrained approach is to 
allow the magnetization density to be correctly treated in 
the interstitial regions between atomic sites. While many 
materials have well localized magnetization densities for 
which the AMA is valid, others may exhibit a de-
localized magnetization density, which is more 
appropriately treated with a fully unconstrained approach. 
Oda et al. [1] were the first to implement such an 
approach within a plane-wave pseudopotential scheme. 
Both the atomic and magnetic structures were allowed to 
relax simultaneously and self-consistently. Ivanov and 
Antropov [2] developed a wavelet technique for 
calculating the electronic and noncollinear magnetic 
structures in the framework of spin-density functional 
theory, again without imposing shape restrictions on the 
magnetization density by studying the spin-structures of 
H3 and Cr3 clusters.  

In parallel with our efforts, Nordström and Singh [3], and 
Asada et al. [4] have concentrated on developing the 
method within the full-potential linearized augmented 
plane-wave (FLAPW) formalism. The approach of 
Nordström and Singh [3] is fully unconstrained in the 
sense discussed above, while that of Asada et al. [4] is 
adapted to suit the film geometry for surfaces and open 
structures. This adaptation imposes a constraint. The 

magnetization density is treated as a continuous vector 
field in the interstitial region and in a vacuum, while 
inside each muffin-tin sphere they allow only a fixed spin 
quantization axes. Since in the FLAPW the muffin-tin 
spheres are significantly smaller than the volume filling 
atomic spheres, this extra constraint is a reasonable one. 

1.2 Origins of Noncollinear Magnetism  
A large number of compounds exhibit magnetic behavior. 
This can be ferromagnetic (FM), where spins are aligned 
in parallel directions, anti-ferromagnetic (AFM), where 
the spins are anti-parallel, or noncollinear, where the spins 
are not parallel and may be disordered. Often, Mn is one 
of the elements in these compounds. Although it not 
perfectly understood why, Mn lies in the middle of the 
transition metal series and can have competing FM and 
AFM interatomic exchange interactions lying between 
those of the early transitions metals, which are largely 
AFM, and those of the late transition metals, which are 
largely FM.  Examples of competing exchange 
interactions include disordered systems such as 
topological glasses, spin-glasses and substitutional alloys. 

Noncollinear magnetism can also arise naturally due to 
geometric frustration of AFM interactions. For example, 
in an equilateral triangular structure with atoms at each 
apex the frustrated spins have a 120º angle between them, 
if we assume a Heisenberg model with equal exchange 
interactions. Such triangular arrangements can exist in 
real solids and, as we shall see later, the α- and β- phases 
of Mn have an atomic structure that contains triangular 
planes. Thus, we can expect noncollinear magnetic 
structures to arise from geometric frustration.  

Other effects giving rise to noncollinear magnetism 
include magnetic anisotropy, which arises due to a 
preferred direction of magnetization. There are several 
different types of anisotropy: 

• Magnetocrystalline which results from interactions of 
the spin magnetic moments with the crystal lattice. 
This relativistic effect enters via spin-orbit coupling 
and is strongly dependent on the crystal symmetry.  

• Surface due to broken symmetry at the surface.  
• Stress which is induced on the crystal structure due to 

magnetization, and vice versa.  
• Shape due to the shape of individual mineral grains.  

Magnetic anisotropy strongly affects the shape of the 
material�s hysteresis loop and is also of practical 
importance because it is exploited in the design of most 
magnetic materials of commercial importance. Finally, 



competition between exchange interactions and magnetic 
anisotropy also contribute to noncollinear magnetism. 

2 THE NONCOLLINEAR FORMALISM 

2.1 Theory of Noncollinear Magnetism 
A generalization of von Barth and Hedin�s [5] local spin-
density functional (LSDF) theory to noncollinear 
magnetism was first proposed by Kübler et al. [6] within 
the framework of the augmented-spherical-wave (ASW) 
method and the atomic-sphere approximation. The 
effective single particle equations for noncollinear 
magnets were derived by allowing the spin-quantization 
axis to vary from site to site in crystalline systems. The 
orientation of the axis with respect to the reference frame 
is a property of the ground state. They predicted well-
defined sets of directions for the spins, which are 
uncoupled from the crystal lattice unless spin-orbit 
coupling effects are included in the Hamiltonian (even 
though such effects are small in comparison to the spin�
spin interactions).  

The spin-polarized density functional theory is expressed 
in terms of a 2×2 density matrix with elements )(rn

rαβ . 
The electron density is then: 

[ ] ∑=≡
α

αααβ )()()( rnrnrnTr Tr
rrr

 

The total-density matrix may then be defined as: 
( ) 2/)()()( αβ

αβ
αβ σδ rrrrr

⋅+= rmrnrn Tr  
In addition, for the density matrix, we can make a 
transformation to the equivalent magnetization density 
using the following formula: 
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where ),,( zyx σσσσ =
r  are the Pauli spin matrices. As 

the electron density becomes a 2×2 density matrix in the 
noncollinear spin-polarized theory this leads to a 
significant increase in the computational effort. 

2.2 Projector-Augmented-Wave Method 
The fully unconstrained method has been developed 
within the all-electron projector augmented-wave (PAW) 
method, which is based on the generalized local spin 
density theory. This method allows both the atomic and 
magnetic structures to relax simultaneously and self-
consistently. The algorithms have been implemented 
within a powerful and widely used package called VASP 
(Vienna ab-initio simulation package), which has been 
used successfully for a large variety of different systems 
such as crystalline and amorphous semiconductors, 
simple liquids and transitional metals. 

The PAW method is an all-electron method for electronic 
structure, total-energy, and force calculations, which is 
closely related to the ultrasoft-pseudopotential technique. 

In the PAW approach, charge and spin densities are 
decomposed into pseudo-densities and compensation 
densities accounting for the difference between the 
pseudo-densities and all-electron densities. The pseudo-
densities consist of a smooth part expressed in a plane-
wave representation, and localized augmentation charges 
accounting for the violation of norm conservation. Both 
augmentation and compensation charges are represented 
on radial support grids. For each of the atom-centered 
radial support grids the spin-quantization axis is fixed 
and, in this respect, our approach resembles the 
unconstrained non-collinear FLAPW technique, but 
unlike the FLAPW method, in the PAW approach the 
plane-wave description is not restricted to the interstitial 
region, but extends over the complete volume of the 
system. Hence, variations of the magnetization direction 
are allowed also within the augmentation spheres. For 
further details of the non-collinear PAW formalism we 
refer to Hobbs et al. [7]. 

3 APPLICATIONS 

3.1 Magnetic Properties of Fe and Cr 
Small clusters of Fen (n<5) have been studied extensively 
in the past and represent ideal systems for testing our 
implementation of noncollinear magnetism. As fcc Fe is 
known to have a spin-spiral ground-state, noncollinear 
magnetism is suspected to be important in Fe clusters, 
largely as they have less symmetry constraints than bulk 
materials. In addition to Fe, we have also investigated the 
ground states of Crn (n<5) clusters. For crystalline Fe and 
Cr it has been shown that the local-density-approximation 
(LDA) leads to incorrect predictions of the structural and 
magnetic ground state, e.g., Fe is predicted to be 
hexagonal-close-packed and nonmagnetic (NM) instead 
of body-centered-cubic and FM. The LDA also fails in 
assessing the strength of the magneto-volume effect. The 
generalized gradient approximation (GGA) contains non-
local corrections to the exchange-correlation functionals, 
which depend on the absolute values of the gradients of 
charge and spin density, and leads to a correct prediction 
of the structural and magnetic phase diagram. As 
examples of noncollinear magnetic arrangements in Fe we 
focus on the Fe3 linear chain and an Fe5 bipyramidal. For 
Cr, examples include a Cr3 triangular structure, which we 
shall see in the next section is important in the context of 
triangular layer structures, and the Cr4 pyramidal 
structure. The full details of our cluster studies can be 
found in Hobbs et al. [7]. 

For Fe3 we considered an equilateral triangle and a linear 
chain. For the triangular structure a collinear FM state 
was found to be the ground state with a magnetic moment 
of ~2.97 μB/atom. However, the linear chain, while not 
the ground state for Fe3 clusters, is of particular interest as 
Oda et al. [1] have reported noncollinear magnetic 
arrangements for this structure using a plane wave 
pseudopotential scheme. In contrast, all our results are 
collinear even when we initiate a noncollinear 



arrangement similar to the ground state found by them. 
Interestingly, during these calculations we found such 
noncollinear arrangements, but when the accuracy was 
increased to obtain full convergence, a magnetic phase 
transition occurs, reducing the total energy, to give a 
collinear result. This metastable noncollinear state is 
illustrated in Figure 1 together with the Fe5 solution. For 
Fe5, a noncollinear ground state is found for a bipyramidal 
structure which has a roughly FM ground state but also 
contains tilted magnetic moments on the apical atoms of 
the bipyramid. Intuitively such solutions seem to be 
unphysical as they break the normal collinear symmetry 
and one would expect the total energy to be higher. 
Nevertheless, in both GGA and LDA we have been able 
to stabilize such solutions some 14 meV/atom and 32 
meV/atom below the collinear results, respectively. How 
such frustration might arise is not immediately clear. The 
coupling between the apical atoms must play a crucial 
role in establishing the frustration. As the moments on the 
apical atoms tilt in opposite directions, it appears that the 
exchange interactions between the apical atoms are AFM 
and, hence, act against the FM nearest neighbor coupling 
between apical and central atoms. Hence, a rotation of the 
apical moments relative to those in the central triangle 
allows the magnetic energy to be optimized. 

 
Figure 1 : Three dimensional views of the magnetization 
density for metastable Fe3 atoms in a linear chain and a 
stable Fe5 bipyramidal structure. 

For triangular Cr3 clusters the ground state was found to 
be a ferrimagnetic distorted triangular structure. In 
addition, we have also found a metastable ��spiral�� 
arrangement, which is illustrated in Figure 2 together with 
a stable noncollinear solution for Cr4. In this case the Cr3 
triangular structure is undistorted. The figure illustrates 
that this solution corresponds to the classical frustrated 
AFM trimer. The Cr ions have rather localized magnetic 
moments and the transition from one direction of 
magnetization to another goes through zero magnetization 
at the ��Bloch wall�� rather than through a rotation of 
magnetization. Cr4 is interesting in terms of noncollinear 
arrangements of the magnetic moments. We find three 
solutions: a metastable FM with small bulk-like moments, 
a noncollinear metastable state, which is a generalization 
of the spiral arrangement found in Cr3 with the 
magnetization directions on the neighboring atoms 

forming a tetrahedral angle of 109.5°, and an AFM 
ground state. In the noncollinear case the total atomic 
magnetic moment is 4.02 μB/atom using GGA and is 
symmetric on all sites. To summarize, the figures 
presented here illustrate, firstly, that the magnetization 
density varies smoothly with position; secondly, that the 
spin direction only changes at the ��Bloch wall�� between 
atoms where the charge and spin densities are small; and 
thirdly, that the magnetization density is roughly uniform 
in the magnetic region of the atoms. This justifies the use 
of the atomic-sphere approximation applied to materials 
with strong atomic magnetization. 

 
Figure 2 : The metastable magnetization density for Cr3 in 
a triangular structure and a Cr4 pyramidal structure. 

3.1 Triangular Cr and Mn Layers 
Subsequent to demonstrating the potential of this method, 
it has also been applied to study the magnetic ground state 
of triangular free-standing Cr and Mn monolayers and 
overlayers on Copper (Cu) substrates [8]. Such systems 
represent a physical realization of a frustrated two-
dimensional antiferromagnet. Previous calculations of this 
type neglected the fact that the magnetic configuration 
can break the symmetry of the surface. In our study of 
small magnetic clusters, we found that for triangular Fe3 
and Cr3 clusters the expected result, that the magnetic 
ground state is non-collinear, is circumvented because the 
structure relaxes away from the equilateral triangle, thus 
allowing a collinear AFM ground state to be formed.  The 
present calculations consider: 
• the FM p(1×1) structure with one surface atom in the 

two-dimensional unit cell, 
• the collinear row-wise AFM structure with c(2×2) 

periodicity and two atoms in the unit cell, 
• the non-collinear 120º configuration of nearest 

neighbor magnetic moments with a ( ) °× 3033 R unit 
cell containing three surface atoms. 

Figure 3 shows the latter structure. Unlike the planar FM 
model, where only global spin-rotation symmetry is 
broken, an additional reflection symmetry is broken in 
this case. The figure indicates two topologically distinct 
patterns, characterized by different helicities. Each 
elementary triangle is assigned a helicity according to the 
way the three spins at the vertices of the triangle are 
aligned. A positive helicity describes an arrangement in 
which the spins are rotated sequentially by 120º clockwise 



when the triangle is traversed in a clockwise direction, 
while a negative helicity refers to anticlockwise rotations 
traversing the triangle in a clockwise direction. In the 
following we shall first discuss the properties of free-
standing monolayers. 

 
Figure 3 : Noncollinear magnetic structure of a triangular 
Cr layer on Cu(111) with the magnetization density 
superimposed. 

Figure 4 summarizes our results for the magnetic 
moments and total energies of the three possible magnetic 
configurations as a function of the nearest-neighbor bond-
length. In both Cr and Mn monolayers, a FM high-spin 
phase with a magnetic moment of nearly 4 μB is stable 
only at expanded interatomic distances. In Cr monolayers 
the magnetic moment breaks down rather suddenly at a 
bond-length of about 2.57 Å, the FM minimum being 
about 280 meV higher in energy than the non-magnetic 
minimum. In Mn monolayers we find a transition from a 
FM high-spin phase at bond-lengths larger than 2.47 Å to 
a FM low-spin phase at closer interatomic distances. The 
low-spin phase (M ≤ 1:5 μB) loses its magnetic moment 
only at strongly reduced bond-lengths. The row-wise 
AFM c(2×2) Cr monolayer has an equilibrium bond-
length of 2.70 Å at a magnetic moment of 3.75 μB. Under 
compression the magnetic moment is strongly reduced, 
disappearing at a bond length of 2.31 Å, corresponding 
roughly to the bond length of the NM phase. 

The noncollinear 120º phase represents the magnetic 
ground state, and the equilibrium bond length is about 
2.65 Å. At these distances, the magnetic moment is 
slightly smaller than in the AFM phase. Under 
compression, the noncollinear magnetic moments are 
gradually reduced. They disappear at distances somewhat 
smaller than the equilibrium distances in the NM phase. 
In Mn monolayers the relative stability of the AFM and 
noncollinear phase is reversed, the equilibrium bond 
lengths and magnetic moments being almost the same in 
both phases. Under compression, the magnetic energy 
difference is quickly reduced, at bond lengths smaller 
than about 2.35 Å, both phases are energetically almost 
degenerate. The AFM ground-state in Mn is somewhat 
surprising, - to investigate this point further we have also 

considered the same three configurations adsorbed on 
Cu(111) substrates. For comparison, the vertical lines in 
Figure 4 show the lateral lattice constant of the Cu(111) 
substrate. We find that triangular Mn-layers show an 
almost ideal epitaxial match to the substrate, whereas 
adsorbed Cr-layers undergo a small compressive strain. In 
both the AFM and the noncollinear phases, the magnetic 
moments are reduced compared to the freestanding 
monolayer. The important point is that for Mn/Cu(111) 
the AFM phase remains energetically favored. The 
different behavior of triangular layers of Cr and Mn is 
clearly related to the rather long-range nature of the 
exchange interactions in the Mn layers.  

 
Figure 4 : Total energy and magnetic moments of the FM, 
the AFM, and the noncollinear phases of free-standing 
triangular Cr and Mn monolayers as functions of the 
nearest-neighbor bond length. The vertical lines mark the 
lateral interatomic distance of a Cu(111) substrate. 

Figure 3 shows the magnetization density calculated for 
the noncollinear phase of Cr on Cu(111). The local 
direction of the magnetic moment is indicated by the 
arrows, the length of the arrows being proportional to the 
absolute value of the magnetization density. In addition, 
around each site iso-surfaces of the magnetization 
densities are drawn. At first glance, one tends to conclude 
that the magnetization densities are fairly well localized 
and, as the iso-surfaces are also almost spherical at 
reasonably large values, the conclusion that the AMA is a 
reasonable choice in this system seems to be appropriate. 
However, the regions around the atoms in which the 
direction of magnetization is approximately constant are 
distinctly smaller than the muffin-tin spheres of the 
FLAPW method or the overlapping atomic spheres of the 
LMTO approach. Interesting new aspects of this study are 
seen precisely in the bonding and interstitial regions 
where the direction of the magnetization changes. 



3.2 Noncollinear Magnetism in α-Mn 

 
Figure 5 : Crystalline and magnetic structure of antiferro-
magnetic α-Mn. Atomic positions in the full cubic unit 
cell and magnitude and directions of the magnetic 
moments are shown. Atoms on crystallographically 
inequivalent sites are marked by different colors: dark 
blue: MnI, light blue: MnII, green and turquoise: MnIII 
(a) and (b), yellow and yellow-green: MnIV (a) and (b). 

As an example of another application we review the 
different phases of Mn [9][10], which is an element with 
outstanding structural and magnetic properties. While 
most metallic elements adopt a simple crystalline 
structure and order magnetically - if at all - in a simple 
FM or AFM configuration, the stable phase of Mn, 
paramagnetic α-Mn, adopts a complex crystal structure 
with 58 atoms in the cubic cell. At a Neél1 temperature of 
95 K, a transition to a complex noncollinear AFM phase 
takes place. The magnetic phase transition is coupled to a 
tetragonal distortion of the crystalline structure. The 
strange properties of Mn arise from conflicting tendencies 
to simultaneously maximize the magnetic spin moment 
and the bond strength. Short interatomic distances 
produced by strong bonding tend to quench magnetism.  

Figure 6 shows the total energy of paramagnetic and both 
collinear and noncollinear AFM α-Mn as a function of 
volume. Also shown is the variation of the magnitude of 
the magnetic moments on the crystallographically 
inequivalent sites. The magnetic structure is found to be 
strongly coupled to the crystal structure. The onset of 
magnetic ordering occurs at an atomic volume of about 
9.5 Å, up to a volume of about 12 Å the magnetic 
structure remains collinear, with NM Mn atoms on sites 
IV. For larger atomic volumes, a metastable collinear 
magnetic configuration coexists with the stable 
noncollinear phase. 

                                                 
1 The temperature at which ferrimagnetic and 
antiferromagnetic materials become paramagnetic 

 
Figure 6 : Total energy of NM, collinear AFM and 
noncollinear AFM α-Mn as a function of volume. The 
absolute values of the calculated magnetic moments on 
the crystallographically inequivalent sites in noncollinear 
AFM α-Mn are also shown.  

To find this noncollinear structure we started with a 
strongly expanded volume of 16 Å, and an experimental 
noncollinear magnetic structure but with artificially 
enhanced magnetic moments on the Mn IV sites. This 
calculation converged to a noncollinear minimum 
substantially lower in energy than the still metastable 
collinear structure. Noncollinear solutions at lower 
volumes could than be found by using a rescaled atomic 
and magnetic structure as the starting point for the 
optimization. As long as the Mn IV atoms are NM, the 
collinear AFM structure is only weakly frustrated. The 
coupling between Mn I and Mn II is AFM, and the 
frustration of the magnetic coupling in the triangular 
groups of Mn III atoms are released by distorting the 
equilateral triangles to isosceles triangles. Beyond a 
critical volume, magnetic moments on the Mn IV develop 
and a weak distortion of the crystalline structure occurs as 
the spin canting relieves the magnetic frustration.  

To conclude, the crystal structure of α-Mn is essentially a 
consequence of these conflicting tendencies. The 
noncollinear magnetic structure is due to the fact that the 
Mn IV atoms arranged on triangular faces are not entirely 
NM - their frustrated AFM coupling leads to the 
formation of a local spin structure reminiscent of the Neél 
structure of a frustrated triangular antiferromagnet. 
Consequently, the other magnetic moments are rotated out 
of their collinear orientation. The calculated crystalline 
and magnetic structures are in good agreement with 
experiment. However, it is suggested that the magnetism 
leads to a splitting of the crystallographically inequivalent 
sites into a larger number of magnetic subgroups than that 
deduced from the magnetic neutron diffraction, but in 
accordance with NMR experiments. 



3.3 Geometric Frustration in β-Mn 
Finally, we briefly review the properties of the remaining 
four polymorphs of Mn [10].  At 1000 K, a structural 
phase transition to the β phase occurs. β-Mn is simple 
cubic with 20 atoms in the unit cell. In the high-
temperature state, where it is stable, it is paramagnetic. 
The face-centered cubic (fcc) γ-phase is stable in the 
narrow temperature interval between 1368 and 1406 K. 
At higher temperatures up to the melting point of 1517 K 
the δ-phase has a body-centered cubic (bcc) structure. γ-
Mn quenched to room temperature is face-centered 
tetragonal; the small tetragonal distortion ~0.17% is 
caused, similar to the distortion of the α-phase, by AFM 
ordering.  At high pressure a structural phase transition to 
the ε-phase occurs, which has a hexagonal structure.  

 
Figure 7 : Total energy, internal structural parameters and 
local ferrimagnetic moments for β-Mn. 

Frustration of the AFM exchange interaction (which is the 
driving force leading to noncollinearity in α-Mn) is found 
to be even stronger in β-Mn. However, in contrast to the 
current assumption that the magnetic frustration is 
restricted to the sublattice of the Mn II atoms, with the 
Mn I atoms remaining NM, these studies showed that the 
AFM Mn I - Mn II coupling is strongest, leading to the 
stabilization of a FM phase upon slight expansion. At 
equilibrium, a NM and a weakly ferrimagnetic phase are 
energetically virtually degenerate. Our results for the total 
energy, internal structural parameters, and magnetic 
moments of β-Mn are summarized in Figure 7.  At all 
atomic volumes lower than about 11.8 Å, a NM and an 
almost ferrimagnetic β-Mn are energetically degenerate 
within the accuracy of our calculations, which is a few 
meV/atom. At expanded volumes, a ferrimagnetic state 
with large moments exist on Mn II sites and smaller, but 
by no means negligible, moments on Mn I sites.  We have 
also made attempts to find a noncollinear spin 

configuration, but the calculations always relaxed to a 
NM or to a nearly collinear ferrimagnetic state, depending 
on volume. AFM ground states are also found for face-
centered γ-Mn and body-centered δ-Mn, while hexagonal 
ε-Mn is only marginally magnetic at equilibrium. In 
summary, magnetism strongly influences the mechanical 
properties of all polymorphs. The structural and magnetic 
phase diagram of even the complex metallic element Mn 
is well explained by the density-functional theory. 

4 CONCLUSIONS 
In this paper we have shown how the PAW method is 
used to calculate the noncollinear magnetic structures of 
materials. The magnetization density is treated as a 
continuous vector variable of position. The approach 
allows the atomic and magnetic structures to relax 
simultaneously and self-consistently. Applications have 
ranged from small Fe and Cr clusters to triangular Cr and 
Mn monolayers and overlayers on Cu substrates. Finally, 
we investigated the interesting magnetic properties of the 
complex metallic element Mn. Magnetization density is 
observed to vary smoothly with position. The spin 
direction only changes at the Bloch wall between atoms 
where the charge and magnetization densities are small, 
and not due to a rotation of the magnetization. These 
conclusions support the widely used approximation of a 
single spin direction for each atomic sphere. 
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