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Preface 

Since there is limited possibility for reflection about the world beyond science in a 
scientific publication, I want to seize the opportunity to add a few comments in this 
preface. 

Science deals with the aspects of the physical world that could be investigated 
through “unbiased observations and systematic experimentation”1. However, 
anyone who has been dealing with research, or studied philosophy of science, 
knows that this idealised view is far from the real progress of our organized 
knowledge. Humans are not objective unprejudiced observers, facts are not simply 
obtained from experiments because experiments rely on facts and all facts are not 
explained theories. Furthermore, commonly accepted theories could be 
contradictory to each other.2 Science requires a certain amount of belief. 

A conviction about the existence of things that are not controllable, repeatable 
or easily observable is usually referred to religion. From my own experience and 
from the testimony by others, whom I consider trustworthy, I have come to share 
the Christian view that there are such things. Moreover, I think that these should 
not be neglected since they are of vital importance to our lives. 

Christianity claims that a man called Jesus, who preached in Palestine during 
three years almost two millenniums ago, was the Son of God. “For God so loved 
the world, that he gave his only Son, that whoever believes in him should not perish 
but have eternal life.”3 If this is true, the passages in the bible that seem obscure to 
most readers, and maybe also to those who once wrote it, have a meaning which is 
perfectly clear to God. Where theology is insufficient to clarify the mysteries, maybe 
science could help. Some texts are of special interest from an aerosol perspective. 
What is the point of using incense? What kind of signs in the nature could cause 
anguish and perplexity for the nations?4 Why should the sky become dark?5 And is 
it not fascinating that God often is found in the aerosol? He uses clouds to hide 
himself, to reveal himself and to show the way forward.6

Even if these questions do not constitute a main driving force in my work, they 
undoubtedly add an extra dimension. 

 
Jakob Löndahl 

October 2006, Lund 

                                                 
1 Encyclopædia Britannica
2 Chalmers, A.F., 1999, “Vad är vetenskap egentligen?”, Bokförlaget Nya Doxa 
3 John 3:16 (English Standard Version) 
4 Luke 21:25, Matt 24:30 
5 Matt 24:29, Isaiah 13:10, Ezekiel 32:7, Joel 2:10, Rev 6:12 and others 
6 Exod 34:5, Matt 17:5, Rev 14:14, Exod 13:21 
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Introduction 

Less than a century ago huge chimneys emitting thick black plumes was a sign of 
success. Thus, a fourth smokestack was built on the showpiece Titanic to make it 
look more impressive. But, analogous to the sudden end of Titanic when it met an 
iceberg on its first overconfident journey, our admiration of industrial emissions 
faded as soon as we began to understand the downsides of air pollution. Nature 
limits our progress and it is not always we discover it in time. 

First to be noticed among the consequences of air pollution was the effects on 
human health, which, although known since the Classical Antiquity, attracted 
serious attention after an episode in London in the early fifties. Since then there 
have been regular reports about the negative outcomes of our emissions into the 
atmosphere. They damage ecosystems and harvests, reduce visibility in heavily 
populated areas, destroy historical heritage and lead to millions of premature deaths 
every year. Most serious is the influence on global climate. Nevertheless climate 
change has not been given the medial attention it deserves, probably because it is a 
complex, slow and uncertain process with consequences not yet dramatic enough 
to visualise (Jagers and Thorsell 2003). Often the poor, who contribute least to the 
pollution, are the most affected from both a health and a climate perspective. 

Aerosol science, which is the area of research where this dissertation belongs, is 
engaged in all the problems mentioned above. An aerosol is a suspension of solid 
or liquid particles in a mixture of gases. Both the particles and the gas, which most 
often is air, are included by the concept. Particle sizes range from about 0.002 µm, 
a gathering of molecules, to more than 100 µm, which is clearly visible and where 
forces exerted by the gas no longer are able counteract the gravitation and keep the 
particles in the air more than a few minutes. The atmosphere is an aerosol as well 
as wind blown dust from a sand storm, sea spray or the local smoke from a 
cigarette. Because of the wide variety of circumstances involving aerosols, the 
research area stretches from applied chemistry and physics to medicine and 
meteorology. The present work is concerned with some aspects of the impact of 
aerosol particles on human health. 

The first objective of this dissertation is to develop and apply a method to 
determine the deposition of fine (< 2.5 µm) and ultrafine (< 0.1 µm) environmental 
aerosol particles in the respiratory tract. The second objective is to develop and 
apply a methodology for source determination of particles in indoor environments. 
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Background 

Health Effects of Aerosols 
Pollution episodes in Meuse Valley, Belgium, in 1930, Donora, Pensylvania, 1948 
and in London 1952 provided early evidence that extremely high levels of airborne 
particulate matter had negative effects on public health. However, during the last 
decades a number of epidemiological studies has shown that also low 
concentrations of particulate matter, as in most of the populated areas, have an 
impact on the mortality (Abbey et al. 1999;Dockery et al. 1993;Pope et al. 1995). 
Together these studies estimated a relative risk (the probability of an effect for the 
exposed group compared to the unexposed) of premature death to be about 
1.06 ± 0.03 per 10 µg/m3 increase of PM2.5. The relationship between 
concentration and response seem to be linear and no threshold has been found 
below which the pollution could be considered harmless (Samoli et al. 2005). It has 
been estimated that urban particulate matter (PM10) causes 800 000 premature 
deaths annually in the world, whereof 100 000 in Europe and 5 000 in Sweden 
(Ezzati et al. 2002;Forsberg et al. 2005;World Health Organization 2002). These 
figures do not include indoor smoke from solid fuels, which is reckoned to lead to 
another 1.6 million deaths, or tobacco smoke, which is guilty of shortening 4.9 
million lives. It is thus vital to seek an understanding of the relationship between 
the pollutants in the air and their effects on human health. 

A substantial number of outcomes have been linked to PM exposure, whereof 
most are cardiovascular and respiratory diseases. Other responses, as for example 
damages on the central nervous system, has also been suggested (Oberdorster et al. 
2004). Susceptible subgroups have been identified that are more vulnerable to PM 
exposure than the average population. Among these are people with pre-existing 
heart and lung diseases, elderly, children and possibly infants (Air Quality Criteria 
for Particulate Matter 2004). Other factors that probably contribute are genetic 
predisposition, socioeconomic status and possibly also diabetes, medication use, 
gender, health care availability, educational attainment, housing characteristics and 
amount of outdoor activity (Pope and Dockery 2006). 

Inhaled particles interact with the body in a variety of different ways. They 
trigger inflammation in the lungs by production of reactive oxygen species (Nel 
2005). This could in turn worsen asthma, chronic bronchitis, airway obstruction, 
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decrease gas exchange or lead to damages of proteins, membranes and DNA. The 
pathways leading to severe cardiac effects are not fully understood. Part of the 
cause could be due to ultrafine particles (UFPs), which have been shown to be able 
to pass rapidly into the blood circulation and brain (Nemmar et al. 
2002;Oberdorster et al. 2004). However, not all studies confirm these results 
(Brown et al. 2002).  

It has not been possible to identify a single characteristic of particles that 
accounts for the toxicity. Air quality guidelines have so far focused relatively rough 
measures as PM10 or PM2.5. Nevertheless, PM is dominated by the larger particles 
and both epidemiological and toxicological studies indicate that small particles are 
more closely linked with adverse health outcomes than larger ones (Schlesinger et 
al. 2006). Many toxicological studies show a better fit of the dose-response 
relationships if the dose is expressed as surface area of the particles rather than 
mass (Brown et al. 2001;Donaldson and Tran 2002;Nygaard et al. 2004;Stoeger et 
al. 2006;Tran et al. 2000). But also other parameters are of importance for the 
toxicity such as biopersistence (the durability in the lungs), shape (especially for 
fibres, [Lippmann 1990]) and chemical composition (carbon compounds, 
secondary inorganic material, sulphates, nitrates or metals).   

Parts of the work in this dissertation deal with UFPs, which have been of much 
concern in recent years. UFPs typically originate from combustion processes or 
condensation of gases with low volatility and appear in high number concentrations 
in many environments. Several epidemiological studies show an association 
between UFPs and adverse health effects (Peters et al. 1997;Wichmann and Peters 
2000;von Klot et al. 2005), but not all agree (Pekkanen et al. 1997;Tiittanen et al. 
1999). The mechanisms of interaction between UFPs and the human body are not 
fully understood. A number of reasons have been suggested for a higher toxicity of 
UFPs compared to corresponding masses of fine particles. For example their high 
probability to deposit deep in the respiratory tract, their large surface area, oxidative 
capacity and their ability to form radical species is thought to induce inflammatory 
effects, cause cellular DNA damage or inhibit macrophage phagocytosis (Kreyling 
et al. 2004). 

There has often been scepticism about the results from the health assessments 
of particle exposure, especially about those from the epidemiological studies. It has 
been argued that, since the effects usually are small they are likely to be due to 
confounding factors not controlled by the investigators. One such factor, was an 
error in S-Plus, a common program for statistical evaluation, which led to a re-
analysis of many of the studies (Knight 2002). Another factor was a publication 
bias noticed for time-series studies, but after correction the associations were still 
positive (Anderson et al. 2005). An additional problem with the epidemiological 
studies is the exposure assessment. A majority of the studies rely on ambient 
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monitoring data and not on personal exposure measurements. This is misleading 
considering that people spend most of their time indoors (Jenkins et al. 1992;Leech 
et al. 2002) where the exposure is uncertain. Moreover there are often large local 
differences in the concentration of pollutants. The estimates of PM mortality tend 
to be higher when the exposure is calculated with more focused spatial resolution 
or when local sources, such as traffic, are accounted for (Pope and Dockery 2006). 
For example the relative risk of mortality has been estimated to 1.17-1.41 for 
people living near major roads (Finkelstein et al. 2004;Hoek et al. 2002). Previously 
it was a question mark that no known mechanisms could explain how exposure to 
very low concentrations of particles could cause an effect as serious as death (Vedal 
1997). But as our knowledge improves, the connection between air pollution and 
health is becoming clearer. 

It is not certain that inhalation of ambient aerosol is solely damaging. For 
instance, it has been shown that farmer’s children, exposed to high amounts of 
bacterial components and endotoxins from the animals, suffer less from allergy, 
hay fever and allergic sensitization (Braun-Fahrlander et al. 1999;Riedler et al. 
2000). It has been discussed if the exposure could be an explanation (von Mutius et 
al. 2000). Furthermore, antioxidants have been found in wood smoke (Kjallstrand 
and Petersson 2001). These reduce oxygen radicals and are suggested to counteract 
other negative effects of the emissions. 

 

Respiratory Tract Deposition 
A key parameter to understand the health effects of aerosol particles is their 
probability to deposit in the respiratory tract. A recent review states that 
“ultimately, it is the deposited dose that determines any response” but “such 
characterization is rarely performed in contemporary toxicological evaluations” 
(Schlesinger et al. 2006). The deposited dose of the inhaled particles depends on a 
number of factors, including exposure concentration, exposure duration, 
ventilation parameters, respiratory tract anatomy and particle characteristics. Most 
important of the particle characteristics regarding deposition are the size and the 
ability to grow by absorption of water vapour. It is complex to model the dose and 
it necessarily involve simplifications. Therefore, to validate the models and increase 
our comprehension there is a need to measure the deposition of inhaled particles 
from different sources for different people (Air Quality Criteria for Particulate 
Matter 2004). 
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The respiratory tract 
The respiratory system can be divided into three regions – the head airways, the 
lung airways and the alveolar region as shown in Figure 1 and Table 1 (Hinds 1999; 
Seeley et al. 2003). 
 

Region Function Anatomy Surface (m2)
Head 
airways 
Extra 
thoracic 
 

Nose 
Mouth 
Pharynx 
Larynx 

4.5 × 10-3 

Trachea 2.9 × 10-2 

Main 
Bronchi 

 

Bronchi  
Bronchioles 2.4 × 10-1 

Lung 
airways 
Tracheo-
bronchial 

Air 
conditioning; 
temperature 
and 
humidity, 
air 
conducting, 
cleaning 

Terminal 
Bronchioles 

 

Air 
conduction, 
gas 
exchange, 
slow particle 
clearance 

Respiratory 
Bronchioles 

7.5 

Alveolar 
Ducts 

140 

Alveolar 
 

Gas 
exchange, 
very slow 
particle 
clearance 

Alveolar 
Sacs 

 

Figure 1 The respiratory tract (Hinds, 1999) Table 1 Function of the respiratory system1 

 
The head airways or extrathoracic region includes nose, mouth, pharynx and 

larynx. In this region the incoming air is heated, moistened and cleaned from most 
of the coarse particles before moving further down into the trachea and the lungs. 
Nasal breathing heats, humidifies and cleans the air more efficiently than oral 
breathing. Though pure oral breathing almost only occurs when the nose is 
blocked, as during a cold. For nasal breathing removal of particles begins by inertial 
impaction and diffusion in the nostrils and continues with filtration of large 
particles as the air passes the hairs in the vestibule behind the nostrils. The nasal 
septum, the partition dividing the nasal cavity into right and left parts, and the nasal 
conchae, three bony ridges on the side of the cavity, increases the surface area and 
make the airflow more turbulent, which leads to a more efficient absorption of 
particles (Seeley et al. 2003). 

The pharynx is connecting the nasal and oral cavity with the digestive system 
and the lungs. The larynx, which contains the vocal cords, follows after the 
pharynx. The deposition due to inertial impaction is high just before entering the 

                                                 
1  From (Annals of the ICRP 1994) and (Hinds 1999) 



 6 

larynx, because of the sharp change in direction of the stream, and in the area 
around the vocal cords where the passage is narrower. 

The lung airways or tracheobronchial region is branching like a tree turned 
upside down in about sixteen generations and it encompasses the parts from the 
trachea to the terminal bronchioles. This region can also be called the conducting 
zone since it functions as a passageway for air movement. It begins with the 
trachea, a tube approximately 12 mm in diameter and a decimetre long stretching 
from the larynx down to the carina where it divides into the main bronchus. The 
main, or primary, bronchi branch off to form five secondary bronchi that in turn 
split up into smaller bronchi and so forth down to the terminal bronchioles with a 
diameter around 1 mm. All these tubes are surrounded by muscles, that contracts 
when air is exhaled. 

The tube walls in the tracheobronchial region are lined with ciliated epithelium, 
which catch debris and remove it in a mucus escalator. The rate of removal is 4-
6 mm/min in the trachea and much slower further down, probably between 1-
100 µm/min in the terminal bronchioles (Air Quality Criteria for Particulate Matter 
2004; Morrow et al. 1967; Yeates et al. 1975). As a scientific curiosity can be 
mentioned that if all the 6 µm long ciliated cells, which are waving back and forth 
with 13 beats per second, were moving simultaneously the mucus would not be 
transferred anywhere. Instead they move individually so that adjacent cells differ 
slightly in phase not unlike the legs of a running centipede. How this is coordinated 
is still not known since there is no links between the cells. Each of them seems to 
be working by itself. Possibly they can feel positions of their neighbours through 
the mucus (Wentzel 2003). 

Finally the air reaches the parts where gas exchange takes place – the alveolar 
region. This is the respiratory zone with about seven generations of branching. It 
begins with respiratory bronchioles, followed by alveolar ducts and finally comes 
the alveolar sacs. Alveoli are attached to all parts of the region. There are around 
300 million alveoli in the lungs, each with a diameter of approximately 50 – 250 µm 
(Jonson et al. 1998; Seeley et al. 2003) and together these constitute the main part 
of the total lung volume. The area of the alveoli is roughly corresponding to half 
the size of a tennis court. 

The tissue surrounding the alveoli contains elastic fibres allowing expansion and 
contraction during breathing. The epithelium of the alveolar region is not ciliated as 
the lung airways region is, but particles can be cleared out by macrophages. The 
alveolar cells can be activated to function as macrophages. The macrophages do 
not accumulate, but move either to the terminal bronchioles where they are 
trapped by the mucus or into the lymphatic vessels. 

Clearance of deposited particles depends on region in the respiratory tract, but 
also on particle properties (Oberdorster et al. 2005). Solid particles are either 
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removed by physical translocation or chemical clearance processes. The physical 
translocation mechanisms are mucociliary movement, macrophage phagocytosis, 
epithelial endocytosis, interstitial translocation, lymphatic drainage, penetration into 
the blood circulation or by sensory neurons. The chemical processes are 
dissolution, leaching and protein binding. There are still gaps in the knowledge of 
how these mechanisms are affected by particle size. Especially for UFPs the 
clearance, translocation and retention is not fully understood (Kreyling et al. 2002; 
Kreyling et al. 2006; Semmler et al. 2004). 

The ventilation cycle is driven by both active muscle labour and of passive 
forces. During inspiration the lung volume is increased by contraction of the 
diaphragm and by muscles elevating the ribs. Expiration normally consists of 
relaxation of the muscles, which lead to a passive decrease in volume. If the 
breathing is laboured muscles of expiration depress the ribs. When the lung volume 
decreases there are two forces leading to contraction of the alveoli. Firstly elastic 
fibres, as mentioned above, surround the alveoli and make them recoil. Secondly a 
thin layer of water lines the walls of the alveoli and the surface tension arising draw 
the alveoli together. But if this surface tension where acting alone it would be far 
too strong and lead to collapse of the lungs (Seeley et al. 2003). For this reason a 
mixture of lipoprotein molecules, so-called surfactant, is produced that reduce the 
surface tension. 

The surfactant is a mixture of phospholipids, proteins and ions. It spreads 
uniformly over the surface of the alveoli because one part of each molecule is 
hydrophilic and dissolves in the water whereas the other part is hydrophobic giving 
a hydrophobic surface exposed to air (Guyton and Hall 2000). The purpose of the 
surfactant is not only to decrease the surface tension. It is also important in 
preventing hydrophilic molecules to dissolve and reach the blood. 

Spirometry 
The lung volumes and respiratory capacities are studied with spirometry. During 
the 19th century it was discovered that these volumes changed in connection with 
certain lung diseases and spirometry is now an established method in making 
diagnoses. Below is a short summary of the respiratory volumes (ICRP Publication 
66 1995; Stocks and Quanjer 1995; Roca et al. 1998). 

There are four pulmonary volumes and four pulmonary capacities, which are the 
sum of two or more volumes (Figure 2): 
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Figure 2 Respiratory volumes 

 
Respiratory volumes Average adult value (L) 

VT Tidal volume, volume inspired or expired during normal breathing 0.6 
IRV Inspiratory reserve volume, volume that can be inspired after VT 2 
ERV Expiratory reserve volume, volume that can be expired after VT 1.5 
RV Residual volume, volume remaining after maximum expiration 1.6 
VC Vital capacity, volume between full inspiration and maximum expiration 4.3 
IC Inspiratory capacity, (IRV + VT) 2.6 
FRC Functional residual capacity, (ERV + RV) 3 
 ITGV or TGV, intra thoracic gas volume, if measured with plethysmography 
TLC Total lung capacity, TLC, sum of all the volumes 5.8 

 
Other common pulmonary tests are: 
 

Respiratory airflows Average adult value 

PEF Peak expiratory flow, maximum exhaled flow rate 10 L/s 
FEV1 Forced expiratory volume in one second 4 L 
MMEF Maximum midexpiratory flow 
FVC Forced vital capacity, maximum forcefully expired volume 
IVC Inhaled vital capacity, maximum inhaled volume 
EVC Exhaled vital capacity, maximum exhaled volume 
FEF Forced expiratory flow 
FIF Forced inspiratory flow 
FET Forced expiratory time, the length of expiration in seconds 

 
It should also be noted that according to international conventions the 

spirometric volumes should be given at “body temperature and pressure, 
saturated”, BTPS, which is 37 ºC and 100 % humidity (Jonson et al. 1998). Values 
measured at ambient conditions, ATPS, must be converted to BTPS. 



 9

Factors influencing the deposition 
The most important mechanisms for deposition within the respiratory system are 
inertial impaction, diffusion and gravitational settling (Brain and Valberg 1979). 

Coarse particles mainly deposit by impaction. Impaction occurs when the air 
changes direction and is therefore highest at the dividing point of the tracheal 
bifurcation and in the tracheobronchial region where the streamlines bend sharply 
at every branching. Settling is most efficient in the narrow, horizontally oriented, 
airways further down in the lungs. Deposition by diffusion is the principal 
mechanism for particles with a diameter below 0.5 µm and it takes primarily place 
in small airways where residence time is long. Diffusion, in contrast to the 
mechanisms important for larger particles, decreases with particle diameter and is 
less dependent of particle density and flow rate. Deposition by interception is only 
of interest for fibers, which have a small aerodynamic diameter if they are oriented 
axial to the airflow but a large extension. If the particles are highly charged it is 
worth considering electrostatic attraction, but otherwise this mechanism is of 
minor importance since the surfaces inside the lung can be regarded as conducting 
since they contain ions. However, measurements with a hollow-cast model shows 
that it could be of significance for UFPs (Cohen et al. 1998). 

The probability of an inhaled particle to deposit is dependent on its size, 
hygroscopicity, shape, density, breathing pattern, airway geometry and on the 
density and viscosity of carrier gas. The size dependent total and regional deposited 
number fraction (DF) according to the ICRP model is illustrated in Figure 3 (ICRP 
Publication 66 1995). 
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Figure 3 Total and regional respiratory tract deposition of unit density spheres for a sitting male 

adult according to the ICRP model. Mouth breathing, tidal volume 0.75 L/min and frequency 
12 breaths/min. 

 
The diameter of the particles in the respiratory tract is highly influenced by their 

ability to alter size due to hygroscopic growth via uptake of water vapour. The 
relative humidity (RH) in the lungs is close to 99.5% (Anselm et al. 1990; Ferron et 
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al. 1988a). Therefore an inhaled hygroscopic particle will grow by condensation of 
water vapour to a diameter up to six times the original size. Calculated estimations 
of the change in respiratory tract deposition for hygroscopic compared to 
hydrophobic particles is shown in Figure 4 (Asgharian 2004;Ferron et al. 1988b). 

        
Figure 4 Modelled respiratory tract deposition of hydrophobic and hygroscopic particles. Left 

(Asgharian 2004) and right (Ferron et al. 1988b). 

A detailed description of the theory and the calculations of hygroscopic growth 
could be found in a recent thesis by (Rissler 2005). The growth factor (Gf) is the 
size of the diameter of the droplet (dd) compared to the diameter of the dry particle 
(dp): 

p

d

d
dGf =  

Below are given three basic equations to estimate Gf with reasonable precision at 
high RH: 
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Here i is the van’t Hoff factor (in a first approximation the number of soluble ions 
per molecule), Mp and ρp are the average mole weight and density of the particle, Mw 
and ρw the mole weight and density of water, aw, the water activity (RH at the 
surface of the particle), Ck, the Kelvin curvature correction factor, σsol, the surface 
tension of the solution, R, the ideal gas constant and T, the temperature. 

Deposition fraction is partly determined by the breathing pattern. Important 
parameters are tidal volume (VT), breathing frequency and flow rate. A large VT 
increases deposition. A high breathing frequency increases the efficiency of 
impaction and thus the deposition of particles larger than 1 µm, while the 
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deposition of smaller particles is favoured by a low frequency (Kim and Jaques 
2004). A pause between inspiration and expiration increases deposition. A main 
part of the deposition studies for submicrometer particles uses a square wave 
breathing pattern; equal flow rate at inspiration and expiration without pause in 
between. Nevertheless, spontaneous breathing is much more complex which alters 
the deposition. This is illustrated in Figure 5 where DF is calculated with the ICRP 
model. In both cases breathing frequency, VT and minute volume flow are equal, 
but for “spontaneous breathing” the flow rate during expiration is 30% lower than 
during inspiration and a pause of 0.3 s is added between inspiration and expiration. 
Most likely this explains the difference between model and measurement in Paper 
II, Figure 6. 
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Figure 5 Deposition fraction with similar breathing frequency (12.9 breaths/min), total breathing 

flow (9 L/min) and tidal volume (0.7 L), but different flow rate at inhalation and exhalation 
calculated with the ICRP model. Mean values from measurement with RESPI inserted for 

comparison (frequency 12.3 breaths/min, flow 7.9 L/min and VT 0.73 L). 

The shape of the particles is of significance especially for deposition of fibres 
(Lippmann 1990). The deposition by interception increases when the fibre deviates 
from axial alignment. The alignment is altered at each bifurcation in the respiratory 
tract, which leads to an enhanced deposition. The shape is also of relevance for 
agglomerated particles, which are far from spherical. The deposited mass can be 
estimated if the effective density and mobility size are known. 

Density influences the deposition by inertial impaction and gravitational settling. 
Hence, it is the particles above ~0.5 µm that are affected. A particle with a high 
density will have a longer stopping distance and higher settling velocity than a 
particle with similar geometric diameter but a lower density. Consequently the 
probability of deposition will increase. However, two particles with similar 
aerodynamic diameter, which is a more common diameter in many applications, 
have the same stopping distance and settling velocity. The aerodynamic diameter is 
defined as the diameter of a sphere with standard density (1000 kg/m3) and the 
same settling velocity. It is used as the density is often unknown, while the settling 
velocity can be measured. 
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John Tyndall 

(1820-1893) 

Airway geometry differs between individuals and in particular for those with a 
diseased lung the DF may be altered. DF has been shown to be higher for 
asthmatics (Chalupa et al. 2004;Kim and Kang 1997;Svartengren et al. 1990), for 
patients with airway obstructions (Anderson et al. 1990;Bennett et al. 1997;Kim et 
al. 1989;Segal et al. 2002) and for smokers (Kim and Kang 1997). It has been 
suggested that DF measurements could be used to identify lung abnormality (Kim 
et al. 1988). In Paper II intersubject variability is measured for healthy subjects. It is 
likely that the variability is explained partly by respiratory tract morphological 
factors such as dimension and structure of the airways (Heyder et al. 
1982;Hofmann et al. 2002). 

The deposition is furthermore dependent on whether the airflow is turbulent or 
laminar. Turbulence in a tube arises when the Reynolds number, Re, exceed 1800. 
Reynolds number is the ratio between the inertia and the frictional forces, and is 
given by  

 η
vD

Re gρ
=  

where ρg the density of the gas, v is the gas velocity, D the diameter of the tube and 
η the viscosity of the fluid. A comparison of deposition when particles were inhaled 
with air respectively a helium/oxygen mixture, which have a three times lower Re, 
indicated that turbulence was important, especially in constricted airways 
(Svartengren et al. 1989). It is noteworthy that a minor airway constriction could 
cause a significant resistance in the gas flow. According to Poiseuille’s equation the 
resistance (Φ), is inversely proportional to the fourth power of the radius (r): 

 4r
ηΦ ∝  

Finally, volatile components on the particles may evaporate because of the 
heating when they are inhaled, if it is colder than 37 °C outside. Because of the 
rapid diffusion of gaseous molecules they are likely to hit the airway surface and 
maybe also deposit. 

Measurements of respiratory tract deposition 
John Tyndall was the first to study respiratory tract deposition 
of aerosol particles (Thomas 2005). He observed light 
scattering of his own breathing and reported that it was 
astonishingly free of floating matter – in particular at the end 
of the expiration. Inspired by Lister, a contemporary 
researcher, he considered the discovery as an argument that 
diseases could spread through microorganisms in the air. This 
conclusion was controversial at the time and when he 
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presented his results to the Royal Institution 1870 he became much criticised by 
physicians who thought that a physicist needed more knowledge about disease 
before investigating it. 

The particle detection in the appended papers of this dissertation are, as 
Tyndall’s, based on light scattering, although the performance of the instruments 
have been developed since 1870 and a size classifier has been added. A main part 
of the previous studies of DF have been made with monodisperse aerosols, where 
the inspired and expired concentrations are compared. These results are reviewed 
by, among others, the International Commission on Radiological Protection (ICRP 
Publication 66 1995). In Paper I a novel instrument is described, where the 
deposition of polydisperse aerosol is measured. Previous deposition studies with 
polydisperse aerosols are summarized further down. 

Respiratory tract deposition of aerosol particles can be studied with a number of 
different techniques apart from light scattering (Bailey 2006;Brain and Valberg 
1979). Radioactive tracers can be used, as in SPECT (single photon emission 
computed tomography), PET (positron emission tomography) and 
autoradiography. With SPECT a cross-sectional view of the lung, free of overlying 
tissue, is obtained. Furthermore, it could provide a 3D image of the clearance rate. 
PET is useful for studying the gas exchange and metabolism in the lungs. Methods 
based on magnetic fields can contribute with additional structural information. 
Most common are MRI (magnetic resonance imaging), MRS (magnetic resonance 
spectroscopy; a combination of MRI and NMR [nuclear magnetic imaging]) and 
MEG (magneto-encephalography). Structural information could also be provided 
with CT (X-ray computed tomography). However CT is most suitable for dense 
tissue, while for non-calcified tissue, MRI is preferable. EIT (electrical impedance 
tomography) can provide 3D information of the ventilation. Dissection of animals 
exposed to aerosol particles has answered questions about the spatial distribution 
of the deposition. Electron microscopy is used to achieve information about the 
deposition with a high precision, for instance to examine if the particles have been 
ingested by macrophages (Karlsson et al. 2005). Finally the deposition can be 
estimated from model calculations, but these need to be verified by experiments. 
 
Polydisperse measurements 

It is laborious to cover a large size range when measuring respiratory tract 
deposition with monodisperse particles and especially for ambient particles long 
sessions would be needed to achieve good statistics. To improve time resolution 
and counting statistics, polydisperse methods can be used. The deposited fraction is 
then determined for each size channel by comparing complete size distributions of 
the inhaled and exhaled aerosol. Thereby the DF can be determined on a time-scale 
of minutes. 
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Respiratory tract deposition experiments with polydisperse aerosols have been 
made in a few previous studies. It was first suggested by Hiller et al. (1980; 1982), 
who described an inhalation system with sampling from bags. Using this system 
Wilson et al. (1985) were probably the first to measure DF from polydisperse 
aerosols. In their pioneer work they studied DF with an Electrical Aerosol Analyzer 
in the range 20-400 nm for five male subjects inhaling hydrophobic aerosol. The 
time for each breathing session was less than two minutes. The results for DF were 
in accordance with theoretical predictions at the time, but considerably higher than 
estimations by today’s models and experiments, including the measurements in 
Paper I and II. Anderson et al. (1990) later used this system to compare deposition 
for five subjects with obstructive or restrictive lung disease with ten normal 
subjects. They found that ultrafine hydrophobic particles were deposited to a 
higher extent in the subjects with diseased lungs, but also got a higher DF than 
more recent estimations. 

Morawska et al. (1999) studied respiratory deposition of Environmental 
Tobacco Smoke (ETS) in 12 individuals and found that the average DF was ~0.56 
which is much higher than predicted (~0.17) when taking the breathing parameters 
for each subject into account (Hofmann et al. 2001). Subjects inhaled aerosol with 
a silicon mask connected to a large chamber. Exhaled aerosol was directed into a 
smaller (9 dm3) chamber. Particle size distributions were measured with a scanning 
mobility particle sizer (SMPS, 90 s total scan time, see Methods section, (Baron and 
Willeke 2005) from both chambers. In addition this group reported a higher 
deposition fraction than theoretically predicted in measurements of aerosols from 
diesel and petrol engines (Hofmann et al. 2003; Morawska et al. 2005). The 
sampling procedure is not entirely clear from the publications and errors caused by 
size shifts are not taken into account (see Method section). 

Rosati et al. (2002) presented a method where inhaled and exhaled aerosol 
samples are collected in 25 dm3 latex bags. The exhaled bag was heated to 38 °C to 
avoid condensation. The aerosol was passed through a diffusion drier and sampled 
with an SMPS system for 15-700 nm particles and an aerodynamic particle sizer 
(APS, see Methods section) for particles > 500 nm. Internal losses in the system 
were on the order of a few percent for 300 nm particles. Later Rosati et al. (2003) 
used the system to determine particle deposition in a packed bed filter and found 
good agreement between DF determined from discrete sections of polydisperse 
aerosol and monodisperse particles for sizes larger than 300 nm. No studies 
involving human subjects have been reported with this set-up. 

Daigle et al. (2003) determined respiratory deposition of artificially generated 
spark discharged soot particles (geometric mean mobility diameter, GMD 26 nm) 
at high particle concentrations (~2·106 cm-3) in groups of 12 and 7 healthy subjects 
at rest and exercise, respectively. At rest the mean deposition (0.66) was in 
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agreement with modelled data, while the deposition at exercise (0.80) was 
significantly higher than modelled data. They used a flow-through system (Chalupa 
et al. 2002) with short residence time and only electrically conducting parts. An 
SMPS system with a scan time of 10 minutes was used in the size-range 7.5-75 nm 
to measure the particle size distribution in inhaled and exhaled air and the mass was 
determined with a TEOM (tapered element oscillating microbalance). The system 
was also used in a study of deposition of UFPs in asthmatics (Chalupa et al. 2004). 
The impact of agglomeration of the particles is not discussed. 

Montoya et al. (2004) studied respiratory deposition of ambient particles for six 
subjects. They found reasonable agreement with the ICRP model for particles 
smaller than 400 nm for the mean values of the group. However the deposition 
minimum was shifted towards smaller particles. They attributed this to hygroscopic 
growth involving ammonium sulphate in ambient particles. Particle concentrations 
in dried samples of ambient and exhaled air were measured with an SMPS system 
and an API Aerosizer in the size range 40-1800 nm. They used a flow-through 
method, which involved dilution of the exhaled sample with filtered air. 

Apart from the above described polydisperse measurements with electrical or 
aerodynamic size spectrometers, experiments have been made with laser 
diffraction. Invernizzi et al. (2006) used this technique to determine deposition of 
tobacco smoke in a single breath for ten healthy volunteers. 
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Methods 

Aerosol measurement 
A huge variety of instrumental techniques have been used in aerosol studies since 
the research field has applications in a wide range of sciences (Baron and Willeke 
2005). Apart from the TEOM (tapered element oscillating microbalance), all the 
instruments mentioned in Papers I-III detect the particles with light scattering, 
sometimes combined with different methods for size classification. 

SMPS – Scanning Mobility Particle Sizer 
A scanning mobility particle sizer (SMPS) is the primary instrument for studying 
size distributions of particles below 0.5 µm in diameter. It is a combination of a 
differential mobility analyzer (DMA) and a condensation particle counter (CPC). 
Particles of a specific electrical mobility are selected with the DMA and thereafter 
counted with the CPC. The DMA (Figure 6) consists of a high voltage electrode 
contained in the middle of a cylinder. The aerosol enters the cylinder in a thin slot 
along the inner walls and between the aerosol and the electrode there is a sheath 
flow of particle free air. When a voltage is applied to the electrode, particles will be 
attracted or repelled depending on their charge and move in the electrical field as 
they follow the air flow. Only particles of a specific electrical mobility, Zp, will 
penetrate the outlet connected to the particle counter. 
 

 

Excess air 
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Inner electrode

Outer electrode 

 

Figure 6 Differential mobility analyser (DMA) 

The size of the particles selected by the DMA is obtained from the transfer 
function. The transfer function is determined by the voltage of the electrode, V, 
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the sheath flow rate, Qsh, and the dimensions of the DMA (inner radii, r1, outer 
radii, r2, length, L) and it is centred at: 
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It has a triangular shape with a full width at half maximum depending on sheath to 
aerosol flow ratio: 
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The penetrating particles have a similar electrical mobility diameter, dem. The 
mechanical mobility diameter, dmm, of the selected particles can be calculated if 
charge distribution is known:  

 
p

mm
mm ηZ

neCd
π3

=  

where n is the number of elementary charges, e, and Cmm is the Cunningham factor. 
The mechanical mobility diameter is most important for the deposition of particles 
smaller than 0.5 µm since it is related to the diffusion velocity. In some applications 
it is of interest to know the volume equivalent diameter, dve, as for example when 
the hygroscopic growth should be calculated. The growth depends on the number 
of soluble ions and hence the volume. The volume equivalent diameter can be 
derived from the mobility diameter if the shape factor, χ, is known (Cve is the 
Cunningham factor for particles with diameter dve): 

 
mm

vemm
ve C

C
χ

dd ⋅=  

Originally the DMA was stepped (Fissan et al. 1983), but to reduce 
measurement time a scanning instrument was later developed (Wang and Flagan 
1990;Zhou 2001). As is illustrated in Figure 7, the transfer function is not perfectly 
triangular at short scan times and there is a discrepancy between up and down scan 
(Collins et al. 2004). Furthermore, at short scan times, the CPC signal is smeared 
because of mixing of particles with different mobility in its inner volume (Collins et 
al. 2002). By correcting for these biases, we have been able to decrease the scan 
time to around 30 seconds (Paper I), which enhances the performance of the 
respiratory tract deposition measurements substantially. 
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Figure 7 DMA transfer function at long scan time (left) and short scan time (right) from Collins et 

al. (2004). 

As a quality control the SMPS used in Paper I and II has been tested in a Nordic 
intercomparison of SMPS/DMPS systems (Massling et al. 2006). 

APS – Aerodynamic Particle Sizer 
An APS (aerodynamic particle sizer, TSI Inc., USA), used in Paper III, is a the time 
of flight instrument measuring the time it takes for the particles to pass between 
two parallel laser beams in an accelerating flow field (Agarwal et al. 1982). The 
particles are detected from the scattered light. The time between the two signals is 
related to the aerodynamic diameter. Thereby the size distribution in the interval 
0.5-20 µm can be determined with high resolution. Because the passage time is not 
exclusively dependent on aerodynamic diameter a correction has to be made for 
density and shape for particles larger than 1 µm (Cheng et al. 1993;Chen et al. 
1990). 
  

TEOM – Tapered Element Oscillating Microbalance 
A TEOM (tempered element oscillating microbalance, Thermo, USA) is a filter 
based system for real-time determination of PM (Patashnick and Rupprecht 1991). 
The particles are collected on a vibrating filter and the mass is calculated from the 
frequency change when the load increases. An inlet could be used to separate the 
measurements into different size fractions. The main uncertainty with the method 
is to correct for the rate of evaporation from the filter, which otherwise lead to an 
underestimation of the mass. To deal with this, a separate FDMS (filter dynamics 
measurement system) unit can be added to quantify the volatile fraction. However, 
this unit is not incorporated in the TEOM used in Paper III.  
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RESPI – respiratory particle deposition instrument 

Set-up 
RESPI is a novel instrument developed at Lund University. It is described in detail 
in Paper I and more generally in Paper II. Since the original set-up the system has 
been improved with a number of flow and pressure sensors as a quality control of 
the data (Figure 8). 
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Figure 8 RESPI, schematic picture of the set-up. 

Methodological difficulties and solutions 
Several potential artefacts may seriously affect the results if not accounted for. 
These have been considered to a varying degree in the previous polydisperse 
respiratory tract deposition measurements. The following difficulties have been 
identified in a review of the literature and during our own experiments: 

 The polydisperse techniques is sensitive to small size shifts of the dried 
diameter between the inhaled and exhaled sample (Pagels et al. 2003). 
RESPI: This main difficulty is discussed extensively in the next section. In 
Paper I and II aerosols were used for which the size shifts could be expected to 
be minor. Although size shifts may cause substantial errors, it has been 
neglected in previous studies. 

 Losses (e.g. electrostatic) in the measurement equipment may be interpreted as 
an increased deposition. This is especially tricky for bag-systems since the losses 
depend on the volume in the bags. 
RESPI: All parts are conductive; valves are covered with gold and reservoirs are 
made of stainless steel. Furthermore the residence time of the aerosol in the 
system is only a few seconds, compared to bag systems where it usually is 
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several minutes. The small, but remaining, losses left are well-characterised and 
easily corrected for. 

 Pressure variations caused by the breathing distort the aerosol flow in the DMA 
and may give errors in the particle sizing. 
RESPI: The system is open to atmosphere, which minimizes pressure 
variations. 

 An error may arise if the scan time is long and the inhaled concentration 
varying because the size distribution could change too much between the scans. 
RESPI: Recent improvement of the SMPS inversion (previous section) has 
made it possible to reduce scan time a factor four, when compared to previous 
systems. 

 Temperature and RH is higher in exhaled than inhaled air. 
RESPI: The reservoir for exhaled air is heated to 37°C to prevent condensation 
and additional losses. The aerosol is dried below 20% RH before entering the 
DMA. 

 The air trapped in the dead space in the mouthpiece after exhalation is inhaled 
again. Thereby the inhaled concentration is lower than measured, which cause 
an underestimation of DF. 
RESPI: Gebhart et al. (1989) described a correction that has been neglected in 
most experiments. Thereby a majority of the DF measurements in literature 
present values that are 1-5% too low. The dead volume in RESPI is relatively 
small. The correction has been used in Paper II, but was not considered in 
Paper I was written. 

 Smearing of the output signal in the SMPS mainly caused by the finite CPC 
response time introduces cross sensitivity in the size-classification (Wang et al. 
2002). 
RESPI: A CPC de-smearing routine is added in the SMPS inversion. 

 None of the cited studies have presented a lowest acceptable concentration 
limit due to counting statistics or an upper concentration limit, e.g. due to 
particle coagulation. 
RESPI: The measurable concentration range is 600-500 000 cm-3. A number of 
studies use concentrations far above the upper limit determined for RESPI. 

The size shift problem 
The single most difficult problem with polydisperse respiratory tract deposition 
measurements is that the particles could change mobility size between the inhaled 
and exhaled sample. Depending on size distribution and deposition curve, a 
diameter change as minor as 1% could cause a substantial error if it is not 
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accounted for (Figure 9, see also paper I). An unwanted shift in size may occur if 
the particles coagulate, evaporate, restructure or absorb gaseous material. 
Coagulation could be avoided by keeping the concentration low and if the aerosol 
is well characterised, non-volatile and has a stable shape it is possible to deal also 
with the other three processes. However, for an ambient aerosol it is in most cases 
unachievable to fulfil these criteria. Therefore, to be able to use RESPI with more 
complex aerosols than those produced in the laboratory, it is necessary to find a 
solution to the size shift problem. 
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Figure 9 The error caused by a 1% respectively 5% diameter change between the inhaled and 

exhaled sample for a size distribution with σg 1.6 and GMD 30 nm (left, as used by Daigle et al. 
[2003]) and for the size distribution of DEHS in Paper II (right). 

 
There are basically two approaches to handle size shifts; to make sure that the 
particles preserve their size after inhalation or to measure the shift with very high 
accuracy and correct for it afterwards. Apart from these there is the alternative to 
do monodisperse measurements instead, i.e. select one size at a time with a DMA 
and count the inhaled and exhaled concentration with a CPC. Some of the 
advantages with RESPI are lost when using this approach, as for example its 
simplicity and its high size and time resolution. But it is valuable as a verification of 
the accuracy of the results if the multiply charged particles, with a larger size but 
same mobility as the singly charged, are corrected for appropriately. A number of 
suggested means to deal with the size shift problem in RESPI are discussed below. 

 
Pre-processing the particles before inhalation to avoid a size shift 

The particles could be pre-processed to prevent a mobility change after inhalation. 
The main disadvantage is that DF is not measured for the original aerosol. In 
addition, it does not work if the particles contain too much volatile material since 
the evaporation will continue with increasing speed the smaller the particles 
become. Three ways of pre-processing have been discussed: 

 To heat the aerosol enough to evaporate volatile material and preclude 
agglomerate restructuring by humidifying it to at least 99.5% RH, the same as in 
the lungs. However, it is technically difficult to humidify a big constantly 
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changing volume of aerosol to high RH without a large pressure drop in the 
system. 

 To inhale the aerosol before inhaling it a second time in RESPI and thereby both 
heat and humidify it to the right temperature and RH. This is both complicated 
and has the shortcomings that only the particles reaching the lungs will be 
humidified to 99.5% and that a large part of the particles will be lost, especially 
those with highest probability to deposit. 

 To humidify the aerosol to 80% RH, which could be done without pressure 
drop, then cool it to reach super saturation and finally heat to evaporate volatile 
components. This approach has shown to be the most promising, but since 
heat transport is slower than water transport it is not certain that the particles 
will become supersaturated – the condensation could take place on the walls of 
the cooler instead. 

The method of pre-processing is usable when only a fraction of the material on 
particles is volatile and when they the shape of the processed particle does not 
differ too much from the real exposure. 
 
Measurement of the size shift and correction afterwards 

Particles of a well defined size could be selected with a DMA, inhaled and 
thereafter size classified with an SMPS system. Alternatively a TDMA set-up could 
be used. The problem is the high accuracy needed. The size shift could vary with 
time and breathing parameters. In practice this method is only valid for a well 
defined aerosol with a relatively small size shift. It has its main usefulness to check 
that the diameter change is within acceptable limits. If the shift could be modelled 
and explained by a theoretical model it is an advantage, as in the case of the DEHS 
particles in Paper II. 
 
Processing the inhaled aerosol sample 
 

Heat and humidification

  

Heated area

 
Figure 10 Processing of the inhaled sample; to the left during exposure and to the right the switch-

over to measure losses and transformation in the processing unit. 

By processing only the particles sampled by the instrument from the inhaled air the 
two size distributions could be compared with a minor error because of size shift 
(Figure 10). The measured sample of inhaled particles is exposed to the same 
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humidity as in the respiratory tract and a heating that leads to a corresponding 
evaporation. Since the particle losses during this processing can be determined with 
high (± 1%) accuracy, the respiratory tract deposited fraction can be calculated as 
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where Cex is the number concentration of the exhaled particles, Cin the number 
concentration of the inhaled particles after the processing, DFlosses proc. the deposited 
fraction during the processing of the inhaled sample and DFlosses instr. the deposited 
fraction in the instrument between the inhaled and exhaled air. 

The processing of the particles is made by leading them through a 10 cm long 
Gore-Tex tube in a bottle of hot water. The humidity becomes close to, or just 
above, saturation when the aerosol is cooled in the tubing before it enters the valve 
that switches between inhaled and exhaled sample. A temperature sensor in the 
water, a temperature/RH-sensor before the valve and slight condensation in the 
tubing confirms the high RH. The losses in this processing are about 10% for 20 
nm particles and 1-2% for particles above 100 nm (measured for traffic aerosols in 
Copenhagen). 

The approach to process only the sample of the inhaled aerosol has several 
advantages. Firstly the subject inhales the unprocessed aerosol. Secondly it is 
technically easier to process a steady airflow of about 1 L/min than processing all 
inhaled air. Thirdly the problem of size shifts by evaporation is dealt with in a 
better way since the inhaled and exhaled sample could be adjusted to evaporate 
approximately the same amount. The size distribution of particles before the shift 
can be obtained either by measuring the shifts with a TDMA or by running RESPI 
between the processing line and an equally long line without processing. In this 
case it is not critical to know the shift with less than 1% uncertainty. 

Some potential errors may occur also for this method. It assumes that a particle 
that is deposited before its dry mobility diameter is shifted is deposited with 
approximately the same probability as if the size shift had taken place. This 
approximation is in most cases good. Furthermore it is difficult to achieve an RH 
of 99.5% in the processing line. If the sample becomes supersaturated the diameter 
change might be altered. However, these shortcomings are probably minor 
compared to those for the other methods. 
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Results and Discussion 

Reliability of the measurements with RESPI  
As shown in the Method section, all identified technical difficulties identified are 
encountered for in RESPI. A systematic experimental validation is given in Paper I. 
As illustrated in Figure 11 the results from RESPI agrees well with the only two 
previous publications with hygroscopic UFPs and with the ICRP model if the 
deposition curve is shifted for the growth of NaCl at 99.5% RH. However, the 
resolution is higher and the time to perform a measurement lower. 
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Figure 11 RESPI measurements compared to the only two previous measurements of hygroscopic 

UFPs (Blanchard and Willeke 1984;Tu and Knutson 1984). 

Because the values obtained in some measurements seemed to be higher than 
expected from the ICRP model (Paper II, Figure 6), additional tests have been 
made. It was hypothesised that the loss correction was inadequate since the sinus 
breath pump, used to simulate breathing without deposition, was not connected to 
the mouthpiece (Paper I, Figure 3). However, as illustrated in Figure 12, the control 
measurements of the losses were insignificantly different from the original. 

There is reason to believe that the slightly higher DF measured with RESPI 
compared to ICRP estimates is reliable. One probable explanation is that our 
subjects were breathing spontaneously (see Figure 5). But it is not unlikely that the 
model underestimates the DF. It seems the hydrophobic aerosols used in some 
experimental studies contain soluble ions, as for example when the oil particles are 
generated with a NaCl core (Kim and Jaques 2005). One group employ kerosene 
particles, which could be somewhat hygroscopic and furthermore restructure 
because of their agglomerated shape (Tu and Knutson 1984). This would lower the 
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deposition for the UFP:s. There are also studies where monodisperse particles are 
selected with a DMA and as Blanchard and Willeke (1984) points out a fraction of 
multiply charged particles with another mobility equivalent diameter will alter the 
measured DF. As mentioned previously most studies do not take the dead space in 
the mouthpiece into account which would increase the DF. 
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Figure 12 Previous measurements (triangles, squares) where the breath simulator was connected to 
the inhalation tank (from Paper I, Figure 3) and more recent (lines) where it was connected to the 
mouthpiece instead. It is more than one and a half year between the measurements, which show 

that the system is stable over time. 

0

100

200

300

400

500

0 100 200 300 400 500

Geometrical diameter, spheres (nm)

M
ea

su
re

d
 d

ia
m

et
er

 (
n

m
)

Theoretical
RESPI
Malmö
Abisko, AL
Abisko, SS
Roskilde
Copenhagen

 

Figure 13 Intercomparison of Nordic SMPS/DMPS systems. 

In the ongoing intercomparison of Nordic SMPS/DMPS systems it is 
demonstrated that RESPI measures the size of the particles with high accuracy 
(Figure 13). All systems, including RESPI, overestimated the diameter of the 
420 nm spheres with 14 ± 8 nm (3.2% ± 2%). No satisfactory explanation for this 
has been found, but in a next step the size could be measured with electron 
microscopy. 
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Respiratory tract deposition measurements 
RESPI was built for studies of respiratory tract deposition of ambient aerosols on 
field campaigns. DF of particles from biomass combustion and an urban street 
canyon has been measured, though not yet published in peer-reviewed papers 
(Löndahl et al. 2006a; Löndahl et al. 2006b). Although, in the first project DF of 
salt and oil particles were investigated (Paper II). 

Figure 14 shows DF of hydrophobic and hygroscopic aerosol particles during 
both rest and exercise, measured for a group of 29 healthy volunteers. For most 
sizes there is no significant difference between rest and exercise, despite the 
volume breathing flow is about four times higher in the latter case. The subjects 
were breathing spontaneously and an explanation of the similarities in DF can be 
that the increase in tidal volume was compensated by the breathing frequency to 
maintain the DF on a constant level. A higher tidal volume increases deposition 
while a higher breathing frequency decreases it. No gender differences in DF were 
observed, but the intersubject variability was substantial (more than a factor two). 
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Figure 14 Deposition of hydrophobic and hygroscopic particles during rest and exercise. 

Aerosol particles from different kinds of combustion of woody biomass showed 
a low respiratory tract deposition compared to the hydrophobic reference aerosol 
particles (Figure 15). According to the preliminary analysis, the total number of 
deposited particles was 0.21 and 0.24 for the efficient and low-temperature 
combustion particles respectively. This can be due to their size-dependent 
hygroscopic properties. However, the DF of traffic particles was high, more than 
twice as much as for the biomass particles. This was due to the small size of the 
traffic particles, which increase the deposition by diffusion and that they were 
almost hydrophobic. These two studies clearly demonstrate that the deposited dose 
of some aerosols can be considerably higher than for others during the same 
exposure conditions. It could be concluded that twice as high emissions should be 
allowed for particles from biomass combustion compared to traffic, at least for the 
number concentration. 
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Figure 15 Deposition Fraction (DF) of biomass particles compared to a hydrophobic reference. 

 

Methodology for source determination indoors 
Paper III describes a methodology for identification of sources to aerosol particles 
indoors, but furthermore a hygiene problem is implied. In this small study it was 
found that particles from laundry detergents can be a major source of airborne 
particles indoors (Löndahl et al. 2004). Since introduced 1976 in phosphate free 
detergents, the market for zeolites has grown rapidly. Year 2000 the consumption 
was 650 000 tons in Europe (HERA, Zeolite A 2004). 

There are several reasons for concern about health effects from zeolites. The 
mean size of zeolite particles is 3.5 µm (Zeolites for detergents 2000). This means 
that a large part of the particles belong to the respirable fraction and are able to 
penetrate to the alveolar region. Exposure studies have been done (HERA, Zeolite 
A 2004;Gloxhuber et al. 1983), but these are not conclusive, especially with respect 
to the character and suspected extent of the emissions. First of all, they estimate 
the exposure concentration only from the filling of the washing machine where an 
amount of 0.1 µg per cup is supposed to mix with the air. The water insoluble 
particles attached to the textiles and are not considered. We found peak 
concentrations corresponding to mass concentrations above 1000 µg/m3 during 
laundry in the houses with zeolite detergents, i.e. more than 10,000 times higher 
than could be expected from the previous studies. Secondly, it is difficult to 
extrapolate the effects found on about 100 rats and hamsters and six monkeys to 
the whole European population. Even a minor relative risk could mean thousands 
of respiratory diseased when millions of people are exposed, as is the case for 
ambient air pollution. Thirdly, negative effects were found in some of the studies 
reported (HERA, Zeolite A 2004), as bronchiolitis and alveolitis in one of the 
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monkeys. Two of the four described studies were terminated because of sudden 
incidences of deaths among the animals, in both the exposed and control groups. 

There are detergents free from both phosphates and zeolites on the market, but 
considering the results of Paper III it is noteworthy that several countries and, 
judging from the election promises, soon also Sweden, have legislated against 
detergents containing phosphate without a more substantial risk evaluation of 
those with zeolites, which is the most common alternative. Epidemiological studies 
are needed as well as new, well-documented, toxicological ones. 
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Conclusion and Outlook 

 
Paper I-III cover different aspects of inhalable particles; measurement (I), 
deposition (II) and identification (III). It has been shown experimentally and 
argued theoretically that the respiratory tract deposition of aerosols could vary 
substantially depending on source, exposure conditions and individual. 
Nevertheless, dose estimates in toxicological studies are often limited to calculating 
the exposure concentration multiplied by the exposure duration. This is relevant 
when relating the effects to levels measured at ambient monitoring stations, but 
insufficient when trying to understand the mechanisms behind the effects. 

A number of ongoing and future projects are planned related to respiratory tract 
deposition. Diesel particles will be studied in Umeå. Particle concentrations are 
measured since 2000 at a rural background station (Vavihill, Söderåsen) and at 
urban roof top level (Rådhuset, Malmö). These data could be used to estimate a 
dose for the population. Further, it would be of interest to measure deposition at 
different inhalation temperatures. If cold inhaled air becomes supersaturated, as 
calculations indicate (Ferron et al. 1984;Ferron and Hornik 1984), the deposition 
would be completely altered. This has not been verified experimentally. There is 
also a lack of data for several susceptible subgroups, especially for children and 
elderly. With a sufficient amount of data it would be possible to look for predictors 
of deposition, such as gender, smoking status, BMI, age etc. It has been discussed 
to add an APS to RESPI to be able to measure DF in a larger size range. 
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