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Abstract

Different simulation and modeling tools often use their
own definition of how a model is represented and how
model data is stored. Complications arise when try-
ing to model parts in one tool and importing the re-
sulting model in another tool or when trying to ver-
ify a result by using a different simulation tool. The
Functional Mock-up Interface (FMI) is a standard to
provide a unified model execution interface. In this
paper we present an implementation of the FMI spec-
ification in the JModelica.org platform, where support
for import and export of FMI compliant models has
been added. The JModelica.org FMI import interface
is written in Python and offers a complete mapping
of the FMI C API. JModelica.org also offers a set
of Pythonic convenience methods for interacting with
the model in an object-oriented manner. In addition,
a connection to the simulation environment Assimulo
which is part of JModelica.org is offered to allow for
simulation of models following the FMI specification
using state of the art numerical integrators. Genera-
tion of FMI compliant models from JModelica.org will
also be discussed.

Keywords: JModelica.org; Assimulo; Sundials;
FMI, FMUs

1 Introduction

In an effort to provide a unified model interface for
different simulation tools and modeling environments,
the MODELISAR consortium defined an open inter-
face called the Functional Mock-up Interface. The
idea is that both Modelica-based and non-Modelica-
based tools may generate and exchange models that
follow the FMI specification. FMI compliant models
are referred to as Functional Mock-up Units (FMUs).

This enables users to create specialized models in one
modeling environment, connect them in a second and
finally simulate the complete system using a third sim-
ulation tool. This in turn, facilitates tool interoperabil-
ity and model exchange.

In this paper, we present an implementation of the
Functional Mock-up Interface in the JModelica.org
platform, [2]. The implementation consists of support
both for exporting FMUs from JModelica.org and im-
porting FMUs generated by other tools.

Python was selected as the implementation lan-
guage for the interface. The choice of Python for
the integration was based on several reasons. The
main advantage is that Python is a powerful and dy-
namic programming language with an clear and read-
able syntax with a low threshold for users to cre-
ate their own simulation scripts, regardless of if you
come from an MATLAB environment or a low-level
programming language such as C. There are several
packages that make Python a good option for scien-
tific computing. One example is Scipy together with
Numpy [13], which contains mathematically relevant
functions , another is Matplotlib [10] for visualization
in a MATLAB like format. There are also Python
packages aimed specifically at interfacing code writ-
ten in other programming languages. One such pack-
age is CTYPES [9], which makes connection to C and
loading of dynamic linked libraries possible. This is a
necessity for implementation of the FMI standard.

Another reason for choosing Python is that for part
of the implementation, functionality could be reused
with little or no modification as similar functionality
already exists in JModelica.org. The XML framework
needed to load and generate FMUs is already in-place
in JModelica.org and the connection to the simulation
environment Assimulo is similar to that of the connec-
tion between a model generated from JModelica.org
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and Assimulo.
The paper is outlined as follows. In Section 2,

a brief background is given about the JModelica.org
platform and the simulation package Assimulo to-
gether with an overview of the Functional Mock-up
Interface. The implementation is described in Section
3. In Section 4, the Van der Pol oscillator and the Full
Robot from the Modelica Standard Library is simu-
lated. The result is compared with a simulation using
Dymola [6]. An example from the Air Conditioning li-
brary is also given. Finally, Section 6 summarizes this
paper.

2 Background

2.1 JModelica.org

JModelica.org [2] is an "extensible Modelica-based
open source platform for optimization, simulation and
analysis of complex dynamic systems"1 with the mis-
sion:

“To offer a community-based, free, open
source, accessible, user and application ori-
ented Modelica environment for optimiza-
tion and simulation of complex dynamic
systems, built on well-recognized technol-
ogy and supporting major platforms.”

The platform offers compilers for Modelica, [15]
and Optimica, [1], a simulation package called As-
simulo and a direct collocation algorithm for solving
large-scale DAE-based dynamic optimization prob-
lems. The user interface in JModelica.org is based
on Python, which provides means to conveniently de-
velop complex scripts and applications. The platform
is designed both for large-scale industrial needs and
for prototyping in a research environment. It pro-
vides synergies between state of the art methods re-
sulting from research and problems industrially rele-
vant problems. JModelica.org supports the major plat-
forms Windows, Mac and Linux.

2.2 Assimulo

Assimulo, [3], is the default simulation package in
JModelica.org. It is a Python package consisting of
several solvers for solving explicit ordinary differen-
tial equations (ODEs),

ẋ = f (t,x), x(t0) = x0 (1)

1http://www.jmodelica.org

as well as differential algebraic equations (DAEs),

F(ẋ,x,w, t) = 0,

x(t0) = x0, ẋ(t0) = ẋ0, w(t0) = w0.
(2)

Examples of solvers supported by Assimulo are a
fifth-order three-stage Radau method, explicit Euler
with fixed step-sizes, and a fourth-order Runge-Kutta
method. By interfacing to SUNDIALS [11], state-
of-the art implementations of multistep methods for
ODEs and DAEs are available through Assimulo. The
solvers CVode and IDA in SUNDIALS are the lat-
est development branch of codes implementing multi-
step methods dating back to the 80s, also including
DASSL. CVode is a variable-order, variable-step mul-
tistep algorithm for solving ordinary differential equa-
tions. CVode includes the Backward Differentiation
Formulas (BDFs), which are suitable for stiff problems
as well as Adams-Moulton formulae for highly accu-
rate simulation of non-stiff systems. The solver IDA is
a DAE integrator based on BDF.

Assimulo consists of mainly two parts. First, a
skeleton of a simulation problem, which allows for
defining all the necessary methods needed for simu-
lation of a hybrid ODE and DAE, such as the right-
hand-side, root functions and time-events. These
skeletons are defined in the Explicit_Problem and
Implicit_Problem classes for the ODE and DAE
case respectively. The second part contains the ac-
tual integrators and interprets the information from the
problem specification and performs the simulation.

In order to use Assimulo together with JModel-
ica.org, the problem classes from Assimulo needed to
be extended to allow for handling of how the models
are defined in JModelica.org. In Figure 1 an overview
of the implementation is shown.

Figure 1: Overview of the interaction between JMod-
elica.org, Assimulo and Sundials.
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2.3 FMI

The Functional Mock-up Interface defines a standard
for model exchange consisting of a set of C functions
and an XML schema for model interaction. The math-
ematical formalism upon which FMI is based is that of
hybrid ordinary differential equations (ODEs), i.e. or-
dinary differential equations with some discrete states.
FMUs are distributed as compressed files containing:

• A shared object file (DLL), containing implemen-
tations of the FMI functions. In addition, or alter-
natively, the FMU may contain the source code
corresponding to the compiled DLL.

• An XML file, containing the variable definitions
and meta information for the model, together
with information about how it was generated.
The file also contains value-references for the
variables, which uniquely identifies variables and
which are used when retrieving data from the
model.

• Optional files containing bitmaps, documenta-
tions, tables etc.

The C functions contained in the FMU are typically
called by a simulation environment, in order to per-
form a simulation experiment. The simulation en-
vironment needs then to be able to handle simula-
tion of hybrid ODEs, which are often stiff. Also, the
model meta data contained in the XML file needs to
be loaded by the simulation environment in order to
extract model information, e.g. variable names.

Instantiate Initialize

FreeTerminate

Simulation

Preparation

Termination

Perform
Step

Accept
Step

Check
Events

Handle
Event

Set Start
Values

Retrieve
Values

Set Inputs
Set Time/States

Evaluate Derivatives
Evaluate Event Ind.

Completed
Step

Retrieve
Values

Yes

No

Event Update

Retrieve
Values

Figure 2: Overview of the calling sequence for an
FMU.

In Figure 2, an overview of the calling sequence for
an FMU is described. Prior to a simulation experi-
ment, the model has to be instantiated. This includes

extracting the files in the FMU, loading the DLL and
XML files and calling the instantiation function avail-
able in the DLL. A model can be instantiated multiple
times for which the function fmiInstantiateModel

is provided. The model is then initialized by calling
fmiInitialize.

Once the model is instantiated and initialized it can
be simulated. The simulation is performed by up-
dating time and states in the model, via fmiSetTime

and fmiSetContinuousStates, and by calculating
the derivatives via fmiGetDerivatives.

During the simulation, events are monitored
via the functions fmiGetEventIndicators and
fmiCompletedIntegratorStep. State-events are
detected by looking for sign changes in the event in-
dicators while step-events are checked in the model
after calling the completed step function when an inte-
gration step was sucessfully completed.

At an event, the function fmiEventUpdate has to
be called. This function updates and re-initializes the
model in order for the simulation to be continued. In-
formation is also given about if the states have changed
values, if new state variables have been selected and
information about upcoming time events.

To retrieve or set variable data during a simulation,
value-references are used as keys. All variables are
connected to a unique number defined by the export
tool and provided in the XML-file. This number can
then be used to retrieve information about variables via
functions in the interface or can be used to set input
values during a simulation. There are functions for
setting and getting values for Real, Integer, String and
Boolean values, fmi(Get/Set)(Type).

After a simulation, memory has to be deallocated.
The function fmiTerminate deallocates all memory
that have been allocated since the initialization and
the function fmiFreeModelInstance dispose of the
model instance.

3 FMI Implementation

3.1 Export

The FMI specification standardizes an execution inter-
face for hybrid ODEs. Modelica models, on the other
hand, are usually translated into systems of index-1
DAEs. Therefore, a Modelica-based tool needs to
transform DAEs into ODE form. Starting with the
DAE

F(ẋ,x,w,u, p, t) = 0 (3)
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where x ∈Rnx are the states, w ∈Rnw are the algebraic
variables, u ∈ Rnu are the inputs, p ∈ Rnp are the pa-
rameters and t ∈ R is the time. The objective of this
transformation is to obtain an ODE on the form

ẋ = f (x,u, p, t). (4)

Notice that this transformation is conceptual in most
cases in the sense that the function f cannot be com-
puted explicitly. Rather, a commonly employed strat-
egy is to regard the function F as a system of non-
linear system equations, where ẋ and w are unknown
and x, u, p and t are known. This strategy relies on
the assumptions that i) start values for the states are
available, possibly computed by solving a system of
initialization equations, and ii) that the matrix[

∂F
∂ ẋ

∂F
∂w

]
(5)

is square and has full rank. The latter condition means
that a solution to the system of equations exists, at least
locally, and holds if the DAE is of index 1, see [5] for a
definition. Indeed, Modelica models commonly have
index higher than 1, but it is here assumed that the in-
dex has been reduced by an index reduction algorithm,
[12].

The DAE (3) is often highly structured and has in
addition a sparse Jacobian, properties that can be ex-
ploited in order to perform the transformation more
efficiently. A common approach for exploiting this
structure is to decompose the DAE system into a se-
quence of smaller systems. This can be done by means
of Tarjans algorithm, see [14, 8, 7] for details. Ad-
ditional performance is gained typically as in typical
cases several of the decomposed systems can be solved
directly without the need to employ iterative Newton-
type solvers. The usually few remaining non-linear
systems of equations are solved during simulation by
means of iterative techniques. In the FMUs gener-
ated by JModelica.org the KINSOL algorithm, which
is part of the SUNDIALS suite, is used. In order to
increase the robustness of the algorithm, KINSOL has
been extended to support regularization to handle even
the case of an initially singular Jacobian. See [16] for
a detailed treatment. As a result of the presence of
non-linear equation systems requiring iteration, ODE
form (4) is conceptual rather implicit than explicit.
Nevertheless, from the point of view of the simula-
tion environment, the model is regarded as an explicit
ODE, where the derivatives are computed given values
of the parameters, the states, the inputs and the cur-
rent time. The algorithm for computing the derivatives

as outlined above is made available in the FMI func-
tion fmiGetDerivatives. In addition to providing
a function for evaluating the derivatives of the ODE,
hybrid constructs resulting in events need to be sup-
ported in the simulation run-time system in the FMU.
Examples of hybrid constructs in Modelica are instan-
taneous equations (expressed as when-clauses) and re-
lational expressions. During continuous integration, a
set of event indicator functions, provided in the func-
tion fmiGetEventIndicators, are monitored. If a
sign change of one of the indicator functions is de-
tected, an event has occurred and the simulation en-
vironment then informs the FMU by calling the func-
tion fmiEventUpdate. From the point of view of the
simulation environment, this procedure is straight for-
ward, since many integration algorithms provide na-
tive support for localization of events. For the inter-
nal simulation run-time system in the FMU, the situa-
tion is more complicated. For example, one event may
trigger other events, which requires an event iteration
scheme to be employed. In JModelica.org, the simula-
tion run-time system performs a fixed point iteration to
resolve dependent events. For more information about
hybrid constructs in Modelica and how they are han-
dled in the context of simulation, see [4].

Before an FMU can be simulated, consistent initial
conditions need to be found. In the FMUs generated
by JModelica.org, this is done similarly to how the
derivatives are computed. The BLT transformation is
applied to the initialization system, consisting of the
index-1 DAE augmented by initial equations, in order
to obtain a sequence of equation systems, which can
be solved for the states, the derivatives and the alge-
braic variables. Also in this case, the modified version
of KINSOL, supporting regularization, is used.

3.2 Import

Integration of the FMI to JModelica.org requires a few
key features to be present.

• Ability to decompress a compressed archive.

• Ability to couple functions provided in a DLL to
Python.

• Ability to read and interpret an XML-file.

These features are provided by use of several Python
packages such as ctypes [9], lxml and zipfile.
ctypes enables loading of a dynamic linked library
(DLL) into Python. The functions of the DLL can
then be retrieved and defined in Python which enables
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them to be called directly. The functions have to be
explicitly defined together with their arguments and
return arguments so that the correct type is returned
back to the DLL. lxml provides methods for handling
of XML-files, such as querying and traverse complete
files. This feature was already available in JModel-
ica.org as an extended FMI XML format, which is
used to handle generated model data from JModel-
ica.org. Finally, zipfile offers methods for extract-
ing information from compressed directories, such as
an FMU.

The FMI import implementation in JModelica.org
centers around a Python class, FMUModel where the
constructor takes as input an FMU and performs the
necessary tasks to enable manipulation and simula-
tion of the FMU. The constructor also calls the XML
import interface which reads the complete XML-
file and populates data structures with information
about all model variables including start-values, value-
references, aliases and types. The interface consists
of a raw mapping of the functions defined in the
FMI specification easily available and accessible from
Python. The methods are named according to the
specification with a leading underscore. For example,
the FMI function fmiGetDerivatives(...) corre-
sponds to the following method in our Python class,
FMUModel,

FMUModel._fmiGetDerivatives (...)

Providing a complete mapping to the original FMI
functions enables users to create scripts tailored to
their specific purposes.

JModelica.org also provides a Pythonic and object-
oriented connection to an FMU with high-level meth-
ods for setting and retrieving values. We demonstrate
this by computing the derivatives at time t and state y
using the FMU:

FMUModel.time = t

FMUModel.continuous_states = y

rhs = FMUModel.get_derivatives ()

The high-level methods propagate the information
and call the underlying FMU functions.

To retrieve or set values of an arbitrary variable, in-
stead of looking for the value reference, the name is
used in the call to set/get methods:

FMUModel.get('der(x)')

FMUModel.set('g', 9.81)

The methods retrieve information about the vari-
able, type and value reference from the XML data and
then call the underlying FMU functions.

In addition to the high-level methods in JModel-
ica.org, a connection to the simulation package As-
simulo is also offered. The connection is based on ex-
tending Assimulo’s problem class in the same way as
models generated from JModelica.org are interfaced,
see Figure 1.

As a problem class in Assimulo is just a skeleton of
a model together with its methods, interfacing is just a
matter of providing the information.

In order to connect the calculation of the derivatives
of an FMU to Assimulo, the right-hand side function
(rhs) must correspond to:

class FMIODE(Explicit_Problem):

def f(t,y):

#Moving data to the model

FMUModel.time = t

FMUModel.continuous_states = y

#Evaluating the rhs

rhs = FMUModel.get_derivatives ()

return rhs

where Explicit_Problem is Assimulo’s skeleton
class of an ODE problem. If there are any inputs, they
are calculated and provided to the model as well.

Events are monitored and detected by provid-
ing methods for the state-, step- and time-events
which in Assimulo correspond to implementing
the methods state_events, time_events and
completed_step. They are implemented similarly to
the calculation of the derivatives.

If an event is detected, either be it state, time or step,
a call is made to a method called handle_event in
the problem which has been implemented so that it is
directed to the FMI function fmiEventUpdate.

These methods provide a full-fledged connection to
Assimulo and to state of the art numerical integrators.
The current implementation is fully functional and re-
lies on Sundials CVode solver.

4 Examples

4.1 The Van der Pol Oscillator

The Van der Pol oscillator stated in Equation (6) is
used here to demonstrate the functionality of export-
ing an FMU using the JModelica.org platform and also
to demonstrate the import process. In addition, it will
be shown how the same problem is solved using Sun-
dials CVode solver. The problem is also solved for a
set of initial values to demonstrate how to run multi-
ple simulations in a single sweep. Simulation of per-
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turbed values can be useful for analyzing and evalu-
ating model sensitivity with respect to uncertainty in
physical parameters or initial conditions. The dynam-
ics of the Van der Pol oscillator is given by

d2x
dt2 − (1− x2)

dx
dt

+ x = 0. (6)

The problem can be described in the Modelica lan-
guage by introducing the state variables x1 = x and
x2 = dx

dt , which gives

dx1

dt
= x2

dx2

dt
= (1− x2

1)x2 − x1.

(7)

The Modelica specification for the Van der Pol os-
cillator is given in Listing 1, where the initial values
are set to x1(t0) = x10 and x2(t0) = x20 .

model VDP
/ / The p a r a m e t e r s
p a r a m e t e r Rea l x1_0 = 1 . 0 ;
p a r a m e t e r Rea l x2_0 = 0 . 0 ;

/ / The s t a t e s
Rea l x1 ( s t a r t = x1_0 ) ;
Rea l x2 ( s t a r t = x2_0 ) ;

e q u a t i o n
d e r ( x1 ) = x2 ;
d e r ( x2 ) = (1 − x1 ^2 ) ∗ x2 − x1 ;

end VDP;

Code Listing 1: The Van der Pol oscillator described
in Modelica.

Creation of an FMU from a Modelica model con-
sists of several steps. Primarily, the equations have to
be translated and possibly manipulated by for instance
an index reduction algorithm to produce a source code
file, in our case a C file. Variable data needs to be
extracted and populated into an XML structure. In
JModelica.org, these steps are collected in a Python
method, compile_fmu, which is demonstrated below.

from jmodelica.fmi import compile_fmu

fmu_name = compile_fmu("VDP", "VDP.mo")

The commands produce an FMU of the Modelica
model VDP located in VDP.mo which can be distributed
to any software supporting the Functional Mock-up In-
terface.

Steps for simulating the Van der Pol oscillator are
similarly straight forward where the FMU first must
be loaded into JModelica.org.

from jmodelica.fmi import FMUModel

model = FMUModel(fmu_name)

FMUModel takes the name of an FMU, in our case
VDP.fmu as an argument in the constructor. A number
of internal steps are then taken when a model is loaded.
First, the FMU is unzipped and the XML data together
with the binary containing the model functions are ex-
tracted. Second, the functions in the model binary is
connected to Python and instantiated according to the
FMI specification.

Simulation of the Van der Pol oscillator is then per-
formed by the simulate method.

result = model.simulate(final_time=10)

The Van der Pol oscillator is simulated from t = 0.0
to t = 10.0 using default options. In Listing 2, the run-
time statistics is shown, which is printed in the prompt
after a simulation, when solving the Van der Pol oscil-
lator using JModelica.org and Assimulo together with
the solver CVode (BDF).

F i n a l Run S t a t i s t i c s : VDP

Nbr o f S t e p s : 148
Nbr o f F u n c t i o n E v a l u a t i o n s : 208
Nbr o f J a c o b i a n E v a l u a t i o n s : 3
Nbr o f F−Eval Dur ing Jac−Eval : 6
Nbr o f Root E v a l u a t i o n s : 0
Nbr o f E r r o r T e s t F a i l u r e s : 11
Nbr o f N o n l i n e a r I t e r a t i o n s : 204
Nbr o f N o n l i n e a r Conv F a i l u r e s : 0

Code Listing 2: Simulation statistics of the Van der
Pol oscillator.

The result object returned from a simulation makes
the simulation data and simulation trajectories easily
available for either visualization or manipulation.

x1 = result["x1"]

x2 = result["x2"]

time = result["time"]

For visualization, the package Matplotlib [10] is
used.

import matplotlib.pyplot as plt

plt.figure(1)

plt.plot(time ,x1 ,time ,x2)

plt.xlabel("Time [s]")

plt.legend (("x1", "x2"))

plt.title("Van der Pol")

plt.show()
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The resulting trajectories for x and dx
dt are shown in

Figure 3.

0 2 4 6 8 10
Time [s]

3

2

1

0

1

2

3
Van der Pol

x1
x2

Figure 3: Solution of the Van der Pol oscillator show-
ing x and dx

dt .

An extension of performing a simulation of the Van
der Pol oscillator is to perform a parameter sweep. A
parameter sweep is executed by varying a parameter
and performing a simulation for each value. In our
case, we consider holding x1(t0) fixed while varying
x2(t0) in the interval [−3,3]. The resulting script is
shown below.

import numpy

nbr_points = 11

x1_0 = 0.0

x2_0 = numpy.linspace(-3.0, 3.0, 11)

for i in range(nbr_points):

model.set('x1_0',x1_0)

model.set('x2_0',x2_0[i])

result = model.simulate(final_time=20)

x1=result['x1']

x2=result['x2']

plt.plot(x2 , x1 ,'b')

plt.title("Van der Pol")

plt.ylabel("x1")

plt.xlabel("x2")

plt.grid()

plt.show()

First, the initial values are defined as x10 = 0.0 and
x20 being a uniformly distributed array in the interval
[−3,3] with 11 values. Second, the simulation com-
mand is iterated over the initial values which are set
with the model.set() method. In each iteration, the
model is simulated from 0.0 to 20 seconds and the so-
lution trajectories for x1 and x2 are retrieved and plot-

ted. The resulting phase plot is shown in Figure 4.

4 3 2 1 0 1 2 3 4
x2

3

2

1

0

1

2

3

x1

Van der Pol

Figure 4: Solution of the Van der Pol oscillator show-
ing a phase plot of x and dx

dt .

4.2 A Robot Model

The Full Robot from the multibody examples in the
Modelica Standard Library will be used to demon-
strate that the implementation can handle industrially
relevant problems. The example is also intended to
demonstrate that JModelica.org is able to simulate
models generated by third party software supporting
the FMI specification. In Figure 5, the diagram layer
of the robot is depicted.

The robot consists of brakes, motors, gears and path
planning. The model consists of 36 continuous states
and around 700 algebraic variables together with 98
event indicators and a few thousand constants/param-
eters.

The FMU was generated using Dymola 7.4 [6].

Figure 5: Overview of the Full Robot.

Simulation of the robot is performed following the
same steps as in the Van der Pol example by first load-
ing the model2 and then invoking the simulate method.

2The name of the FMU has been shortened to save space in the
article.
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from jmodelica.fmi import FMUModel

robot=FMUModel('Modelica ... fullRobot.fmu')

result = robot.simulate(final_time=1.8)

The robot is simulated from t = 0.0 to t = 1.8 using
default options. In Listing 3, the run-time statistics is
shown.

F i n a l Run S t a t i s t i c s : Model ica_ . . . _ f u l l R o b o t

Nbr o f S t e p s : 1834
Nbr o f F u n c t i o n E v a l u a t i o n s : 2386
Nbr o f J a c o b i a n E v a l u a t i o n s : 65
Nbr o f F−Eval Dur ing Jac−Eval : 2340
Nbr o f Root E v a l u a t i o n s : 2223
Nbr o f E r r o r T e s t F a i l u r e s : 42
Nbr o f N o n l i n e a r I t e r a t i o n s : 2202
Nbr o f N o n l i n e a r Conv F a i l u r e s : 0

Code Listing 3: Simulation statistics of the Full Robot
using JModelica.org.

Trajectories for the joint velocities are extracted
from the result object and visualized using Matplotlib
in the same way as in the Van der Pol example.

dq1 = result['der(mechanics.q[1])']

dq6 = result['der(mechanics.q[6])']

time = result['time']

import matplotlib.pyplot as plt

plt.plot(time ,dq1 ,time ,dq6)

plt.legend(['der(mechanics.q[1])',

'der(mechanics.q[6])'])

plt.xlabel('Time (s)')

plt.ylabel('Joint Velocity (rad/s)')

plt.title('Full Robot')

plt.show()

The result of the simulation is shown in Figure 6.
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Figure 6: Solution of the joint velocities q[1] and
q[6].

4.3 Verification of the Full Robot

For verification of the result, the Robot is simulated us-
ing Dymola 7.4 and the trajectories are compared. In
Listing 4, the run-time statistics is shown when simu-
lating the robot using Dymola and the solver DASSL.

Number o f r e s u l t p o i n t s : 1001
Number o f GRID p o i n t s : 1001
Number o f ( s u c c e s s f u l ) s t e p s : 1482
Number o f F−e v a l u a t i o n s : 10562
Number o f H−e v a l u a t i o n s : 2794
Number o f J a c o b i a n−e v a l u a t i o n s : 353

Code Listing 4: Simulation statistics of the Full Robot
using Dymola.

In Figure 7 the resulting comparison between the
simulation result from JModelica.org and Dymola is
shown. The simulations are both performed with a rel-
ative tolerance of 10−4 and the absolute tolerance (in
JModelica.org) was set to 0.01 times the relative toler-
ance times the nominal values of the continuous states,
0.01 · rtol ·nominal. The number of output points is set
to 1000 in both cases.

Figure 7: Difference of the state mechanics.der(q[1])
(joint velocity) between JModelica.org and Dymola.
The model is simulated using default tolerances to-
gether with 1000 output points.

Timing results are shown in Table 1. Dymola native
corresponds to simulating the robot directly from the
Modelica standard library without using the FMI. Dy-
mola FMU corresponds to loading a generated FMU
into Dymola and performing a simulation. JModel-
ica.org corresponds to the actual integration time and
the time for I/O operations for storing the result.

Platform Simulation Time
Dymola Native 1.26 s
Dymola FMU 4.97 s
JModelica.org 3.49 s

Table 1: Benchmark results of the Full Robot.
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4.4 Twin Evaporator

The TwinEvaporatorCycle model from the commer-
cial Air Conditioning library is demonstrated to show
that the implementation can handle large models. It is
a model of an A/C-cycle from a typical European pre-
mium car with individual front and rear climate zones.
The model describes the cooling performance of the
refrigerant cycle, and includes the compressor, front
condenser, expansion control valve and two evapora-
tors. The front evaporator is located under the dash-
board and cools air for the driver and front seat pas-
senger, while the rear evaporator is located between
the seats and cools the air that flows to the back seat.
The model diagram, shown in Figure 8, also includes
dynamical display components for simulation analy-
sis, e.g. the pressure-enthalpy diagram of the refriger-
ant R134a.

Figure 8: Overview of the Twin Evaporator.

The model consists of 130 states together with 1090
event indicator functions. The number of parameters
and constants is close to 20.000, resulting in a model
description file of 170.000 lines.

The model was simulated using JModelica.org from
t = 0.0s to t = 180.0s with a relative tolerance of
rtol = 10−5 and an absolute tolerance corresponding
to atol = 0.01 · rtol ·nominal, as in the Full Robot ex-
ample. The simulation statistics from JModelica.org
can be found in Listing 5.
F i n a l Run S t a t i s t i c s : . . . _TwinEvapo ra to rCyc l e

Nbr o f S t e p s : 827
Nbr o f F u n c t i o n E v a l u a t i o n s : 1434
Nbr o f J a c o b i a n E v a l u a t i o n s : 39
Nbr o f F−Eval Dur ing Jac−Eval : 5070
Nbr o f Root E v a l u a t i o n s : 830
Nbr o f E r r o r T e s t F a i l u r e s : 44

Nbr o f N o n l i n e a r I t e r a t i o n s : 1422
Nbr o f N o n l i n e a r Conv F a i l u r e s : 8

Code Listing 5: Simulation statistics of the TwinEvap-
oratorCycle using JModelica.org.

The model was also simulated with Dymola using
the same options of the tolerances. The result can be
found in Listing 6. Note that the Dymola simulation
was performed on the Modelica model, not the FMU.

Number o f r e s u l t p o i n t s : 1004
Number o f GRID p o i n t s : 1001
Number o f ( s u c c e s s f u l ) s t e p s : 302
Number o f F−e v a l u a t i o n s : 3859
Number o f H−e v a l u a t i o n s : 1303
Number o f J a c o b i a n−e v a l u a t i o n s : 136

Code Listing 6: Simulation statistics of the TwinEvap-
oratorCycle using Dymola.

In Table 2, timing results of simulations with both
JModelica.org and Dymola are listed. The simulation
time corresponds to the actual integration time, includ-
ing writing the result. The total time also includes time
for the initialization.

Platform Simulation Time Total Time
Dymola Native 57.6 s 79 s
Dymola FMU 125 s 175 s
JModelica.org 90 s 130 s

Table 2: Benchmark results of the Twin Evaporator.

The execution time measurements indicate that the
performance of the JModelica.org FMU import is on
par with state of the art commercial tools.

5 Limitations

While fully FMI compliant FMUs are generated by
JModelica.org, both in terms of the DLL functions and
in terms of the XML files, the Modelica language com-
pliance of the compiler front-end is not complete. The
support is continuously improving and recent addi-
tions include support for hybrid and sampled systems.

The FMI standard specifies how several FMUs can
be simulated jointly by connecting their inputs and
outputs. One application of this feature is to include
FMUs in Modelica models, and another application
is co-simulation. These features remains to be imple-
mented.
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6 Summary

In this paper, an implementation of the Functional
Mock-up Interface for Model Exchange in the JMod-
elica.org platform has been presented. The export
functionality enables users to generate FMI compliant
models, FMUs from Modelica models and to use them
in different FMI compliant tools.

The FMU import is based on Python. Models can be
imported into the Python environment, where FMUs
are represented by objects of a Python class. The FMU
model class provides the user with a one to one map-
ping of the FMI functions, as well as convenient high-
level methods for setting parameter values and simu-
lating models.

This paper also shows that simulation of Functional
Mock-up Units using JModelica.org produce results
comparable to those produced by a state of the art com-
mercial tool.

Future extensions include support for sparse Jaco-
bians in the FMI specification.

This work was partially funded by the ITEA2
project OPENPROD.
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