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SELF-TUNING  REGULATORS 

K. J. htriim 

Lund  Institute  of  Technology,  Sweden 

1. INTRODUCTION 

This  paper  gives a brief  review of the  results  of a research  project on 
self-tuning  regulators  which  has  been  carried  out  at  the  Lund  1nstitute.of 
Technology.  The  project  is  part of a larger  research  program  on  adaptive 
control  which  has  followed  three  main  lines: A - stochastic  control, 
B - self-tuning  regulators,  and C - analysis  of  adaptive  regulators  proposed 
in  literature. 

The  approach  via  stochastic  control,  which  legds  to  dual-control 
strategies,  has  been  very  useful  to  provide  understanding  and  insight. So 
far  the  results  have,  however,  not  been  carried  out  to  the  stage  of  implemen- 
tation.  Self-tuning'  regulators  are a particular  version  of  adaptive 
regulators  based  on  real-time  identification.  They  are a special  case of 
nondual  stochastic  control  algorithms.  The  work  on  self-tuning  regulators 
has  progressed  quite  far  in  the  sense  that  these  regulators  are  reasonably 
well  understood  theoretically.  They  have  also  been  tried  extensively  in 
several  industrial  applications. On the  other  hand,  much  work  remains  to  be 
done  in  exploring  other  aspects  of  these  regulators.  Project C is  needed  to 
stay  abreast  of  the  development  of  other  adaptive  schemes. It has  also 
resulted  in a long  list  of  problems  relating  to  understanding  the  strange 
behavior of some  algorithms  in  certain  circumstances. 

The  basic  idea  underlying  the  self-tuning  regulators  is  the  following. 
If a description  of a system  and  its  environment  is  known,  there  are  many 
procedures  available  to  design a control  system  subject  to  given  specifica- 
tions.  When  trying to remove  the  assumption  that  the  models  for  the  system 
and  its  environment  are  known,  we  are  immediately  led  to  the  problem  of 
controlling a system  with  constant  but  unknown  parameters.  This  problem  can, 
in  principle,  be  solved  by  using  stochastic  control  theory  at  the  price  of 
exorbitant  calculations. It is  then  meaningful  to  ask  if  there  are  simple 
control  algorithms  that  do  not  require  information  about  the  model  parameters, 
such  that  the  controller  will  converge  to  the  controllers  that  could  be 
designed  if  the  model  parameters  were  known. It is  an  empirical  fact  that 
such  controllers  exist  in  several  cases.  The  investigation  of  their  proper- 
ties  has  also  led  to  powerful  tools  that  can  be  used  to  analyze  many  other 
cases. 

The  generation  of  self-tuning  algorithms  is  partly  heuristic. It turns 
out  that  many  algorithms  can  be  obtained  by  combining  a'real-time  identifier 
with a control  scheme.  In  our  work we have so far  mostly  considered  regula- 
tors  for  the LQG regulator  problem.  This  has  been  motivated  by  the  particular 
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app l i ca t ions  w e  have  considered. Many of  the  concepts  and  ideas  can,  however, 
be  extended  to many other  design  methods. 

2. AN EXAMPLE 

The main ideas  are f i r s t  demonstrated by a simple  example.  Consider  the 
s imple   d i scre te  time system: 

y ( t  + 1 )  + a y ( t )  = bu( t )  + e ( t  + 1) + ce(t) (1) 

where u is the   i npu t ,  y the   ou tput ,   and   {e( t ) )  a sequence of independent, 
equa l ly   d i s t r ibu ted ,  random va r i ab le s .  The number c is  assumed to   be  less 
than 1. L e t  the   c r i te r ion   be   to   min imize   the   var iance  of t he   ou tpu t ,   t ha t  
is, 

1 t 

k=1 
min V = min Ey2 = min E - y2(k) 

It is easy   t o  show t h a t   t h e   c o n t r o l  law 

u ( t )  = - Y(t) 
a - c  

b 

is a minimum var iance   s t ra tegy ,   and   tha t   the   ou tput  of system (1) wi th  
feedback (3)  becomes 

(see, e.g. ,  Astrsm ( r e f .  1)). Note t h a t   t h e   c o n t r o l  l a w  (3 ) ,  which r ep resen t s  
a proport ional   regulator ,   can  be  character ized by one  parameter  only. 

A se l f - tun ing   regula tor   for   the   sys tem (1) can  be  described as follows: 

ALGORITHM (Self-Tuning  REgulator) 

Step 1 (Parameter  Estimation) 

A t  each  time t ,  f i t   t h e  parameter a i n   t h e  model 

by least squa res ,   t ha t  is, s u c h   t h a t   t h e   c r i t e r i o n  
t 
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where 

is  minimal.  The  estimate  obtained  is  denoted  at  to  indicate  that  it $8 a 
function  of time. 

Step 2 (Control) 

At each  time t, choose  the  control 

u(t) f a t Y W  

where a is  the  estimate  obtained  in  step 1. t 

Motivation 

There  are  several  ways  to  arrive at the  control  strategy  given  above. 
The  algorithm  STURE  can,  for  example, be  interpreted  as the certainty 
equivaZence control  for  the  corresponding  stochastic  control  problem. 

Analysis 

The  properties  of  a  closed-loop  system  controlled  by  a  self-tuning 
regulator  are now discussed.  Since  the  closed-loop  system  is  nonlinear,  time- 
varying,  and  stochastic,  the  analysis  is  not  trivial. 

It  is  fairly obvious that  the  regulator  will  perform well if  it is 
applied to a  system (1) with b = 1 and c = 0, because  in  this  case  the 
least-squares  estimate  at  will  be  an  unbiased  estimate of a. The regulator 
(8) will  thus  converge to a  minimum  variance  regulator if the  parameter 
estimate at converges. It is  surprising,  however,  that the regulator will 
also  converge to the minimum variance  regulator  if  c f O  (as  demonstrated 
below). There  may  also  be  some  difficulties  because  the  control law is of 
the  certainty  equivalence  type.  Because of the  special  model  structure ( 5 ) ,  
the  feedback  gain  will,  however,  be  bounded  if  the  estimate at is bounded. 

The  least-squares  estimate  is  given  by  the  normal  equation 

Assuming  that  the  estimate at converges  toward  a  value  that  gives  a  stable 
closed-loop  system, than it  is straightforward  to  show  that 
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Thus the  closed-loop  system  has '   the  property 

. .  t 
1 l i m  - z y ( k  + l ) y ( k )  = 0 ( 9 )  

t-too k=1 

Furthermore,   assuming  that   the   system  to   be  control led is  governed  by 
equat ion (l), the  output   of   the   c losed-loop  system  obtained  in   the limit is 
given by 

y ( t )  + [ a  - ab]y ( t  - 1) = e ( t )  + c e ( t  - 1 )  (10) 

The covariance of { y ( t ) )  a t  l a g  1 i s  then  given by 

Condition (9) g ives  

f ( a )  = 0 

A second-order  equation  for a which has   t he   so lu t ions :  

a = a l = -  
.a - c 

b 

The corresponding  poles  of  the  closed-loop  system are A 1  = c and 
A, = l / c ,   r e s p e c t i v e l y .   S i n c e  c was assumed less than 1, only   the   va lue  a1 
corresponds  to a stable  closed-loop  system. Note t h a t  a1 cor responds   to   the  
gain  of   the  minimum va r i ance   r egu la to r  (3 ) .  Hence, i f   t he   pa rame te r  estimate 
at converges t o  a va lue   t ha t   g ives  a s table   c losed-loop  system,  then  the 
closed-loop  system  obtained  must  be  such  that  equation (9) holds.  This means 
that   the   a lgori thm  can  be  thought  of as a r e g u l a t o r   t h a t  a t t empt s  t o   b r i n g  
the  covariance  of   the  output  a t  l a g  1, t h a t  is ,  r y ( l ) ,   t o   z e r o   i n   t h e  same way 
as an i n t e g r a t i n g   r e g u l a t o r   b r i n g s   t h e   i n t e g r a l   o f   t h e   c o n t r o l   e r r o r   t o   z e r o .  

I f   the   sys tem  to   be   cont ro l led  is actual ly   governed by equation (l), then 
the   s e l f - tun ing   r egu la to r  w i l l  converge t o  a minimum v a r i a n c e   r e g u l a t o r   i f  it 
converges a t  a l l .  
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Figure 1 shows  the  results  of  a  simulation  of  the  algorithm. It is clear 
from  this  simulation  that  the  algorithm  converges  in  the  particular case. The 
least-squares  estimate  will  be  a  biased  estimate  of  the  model  parameter 
a = -0.5 because  of  the  correlation  between  the  model  errors. As can  be 
expected  from  the  previous  analysis,  the  bias is,  however,  such  that the  limit- 
ing  regulator  corresponds  to  the  minimum  variance  regulator.  The  lower  part 
of  figure 1' shows  the  asymptotic  value 'of the 'loss function  obtained if the 
regulator  gain  is  fixed to the  current  value.  It  is  clear  from  this  figure 
that  the  loss  function  is  very  close  to  the  minimum  loss  for  the  case of known 
parameter  after 50 steps. 

. .  

3. GENERALIZATIONS 

A regulator 
tion is shown  in 
of  three  parts: 

that  generalizes  the  simple  self-tuner  of  the  previous  sec- 
figure 2. The  regulator  can be thought  of  as  being  composed 
a  parameter  estimator  (block 1). a  controller  (block 3 ) ,  and 

a  third  part  (block-2) , which  relates  the  controller  parameters  to  the  esti- 
mated  parameters.  The  parameter  estimator  acts on the  process  inputs  and 
outputs and  produces  estimates of certain  process  parameters.  The  controller 
is simply  a  linear  filter  characterized by the  coefficients  of  its  transfer 
function.  These  coefficients  are  generally  a  nonlinear  function  of  the 
estimated  parameters.  This  function is frequently  not  one  to one. This  way 
of  describing  the  regulator is convenient  from  the  point  of  view of explaining 
how it  works. The subdivision is, however,  largely  arbitrary,  and  the  regula- 
tor  can  equally  well  be  regarded  simply' as one  nonlinear  regulator.  The 
functions of blocks 1, 2, and 3 are  also  simple, but the  interconnection  of 
these  blocks  represents a system  with  a  rather  complex  input-output  relation. 
The  partitioning  of  the  regulator (fig.' 2) is  also  convenient  from  the  point 
of view of implementation  because  the  parameter  estimator  and  the  controller 
parameter  calculation  are  often  conveniently  time  shared  between  several loops. 

There  are  many  different  ways  to  estimate  the  parameters 0 and  to 
calculate  the  regulator  parameters, 8 .  Some  possibilities are shown  in 
figure 3. The  complexity  of  the  algebraic  equation  that  relates  the  control- 
ler parameters  to  the  estimated  parameters  can  vary  significantly,  from  a 
simple  variable  substitution  for  minimum  variance  regulators to  solution  of an 
algebraic  Riccati  equation  for  the  general LQG case. 

Analysis 

A  brief  statement  of  some  properties  of  the  self-tuning  regulators  are 
now given. The  results  are  fairly  technical and  only  a  few  main  points  are 
given here. A  review  of  available  results are,-given in  reference 2. The 
major  results  were  proven  in  references 3 to 5. 

For  the  analysis,  it is assumed  that  the  process  to  be  controlled-is 
governed  by 
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where ' ,A(q-l)  and  B(4-l) are polynomials i n   t h e  backward s h i f t   o p e r a t o r  q-' 
and {v(t) 1 is a sequence  of random va r i ab le s   w i th  bounded f o u r t h  moment. 
The a n a l y s i s  w i l l  b a s i c a l l y   c o v e r   t h e  case p ( t )  + 0 as t + -, which  corre- 
sponds t o   t h e  case when the  parameters are cons tan t .  

The following  problems can be   r e so lved   pa r t i a l ly  by ana lys i s :  

Overall s t a b i l i t y  of  the  closed-loop  system 
Convergence  of  the  regulator 
P rope r t i e s   o f   t he   poss ib l e   l imi t ing   r egu la to r s  

The a n a l y s i s  is f a r  from t r ivial  because  the  closed-loop  system is a nonlin- 
ear, t ime-variable   s tochast ic   system. Even i f   t h e   r e c u r s i v e   i d e n t i f i c a t i o n  
schemes  used are w e l l  known, their   convergence  propert ies  are l a r g e l y  unknown 
except   for   the   l eas t - squares  case. The input  is a l so   gene ra t ed  by a time- 
varying  feedback,   which  introduces  addi t ional   di f f icul t4es .   I f   the   process  
n o i s e ,   { v ( t ) )  is co r re l a t ed ,   t he   l ea s t - squa res  estimates w i l l  be  biased  and 
t h e   b i a s  will depend  on the  feedback  used. 

A g l o b a l   s t a b i l i t y   r e s u l t  was proven  by  Ljung  and  Wittenmark  (refs. 5 
and 6 )  ( see   f i g .   4 ) .   Th i s   r e su l t   app l i e s   t o  a r e g u l a t o r  composed of a least- 
s q u a r e s   i d e n t i f i e r  and a minimum va r i ance   con t ro l l e r .  The r e s u l t   r e q u i r e s  
that   the   system  (12)  is minimum phase  and  that   the  time delay k and t h e  
parameter Bo are known. 

A key r e s u l t   i n   t h e   a n a l y s i s  is the   observa t ion  made by  Ljung ( r e f .  4) 
t ha t   t he   pa ths   o f   t he  estimates are c l o s e l y   r e l a t e d   t o   t h e   t r a j e c t o r i e s   o f  
t h e   d i f f e r e n t i a l   e q u a t i o n :  

where 

f (0)  = E['? ( t , O ) ~ ( t , O ) l  

G ( 0 )  = E['? (t,O)Y(t,O).] 

T 

T 

In   t he   pa r t i cu la r   ca t e   o f   t he   r egu la to r   LS"V,   t he   con t ro l  l a w  is chosen 
i n  such a way tha t   y ( t ,O)  = 0 and t h e   s t a t i o n a r y   p o i n t s  are then  given by 

0 = f (0) = E[y( t  + l ) + ( t ) ]  = 0 
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The  regulator L S M  thus  attempts  to  zero  the  autocovariance  of  the  output 
and  the  crosscovariance  of  the  input  and  the  output  for  certain  lags.  This 
result,  which  generalizes  the  simple  example  discussed  in  section 2, was  shown 
in reference 7. It  was  also  shown  here  that 

has  only  one  stationary  solution  for  the  regulator  of L S M  if  the  orders 
of  the  system  and  the  model  are  compatible. 

The  differential  equations (13) and (14) can  be  used  in  several  different 
ways.  Ljung  has  exploited  them  to  construct  both  convergence  proofs  and 
examples  which  show  that  the  parameter  estimates  do  not  converge.  The  dif- 
ferential  equations  have  also  been  very  useful  in  simulations  (see,  e.g., 
refs. 8 and 9) .  

The.simulations  shown  in  figures 5 ,  6 ,  and 7 illustrate  the  behavior  of 
different  versions  of  the  self-tuner. 

4. SERVOPROBLEM 

So far,  the  self-tuning  regulator  has  been  discussed  only  in  the  frame- 
work  of  the  regulator  problem. It is  straightforward  to  apply  self-tuning 

, to  the  servoproblem,  too.  Clarke  and  Gawthrop  (ref. 10) propose  to  do so by 
posing a linear  quadratic  problem  for a servoproblem. 

Another  approach  is  simply to introduce  the  reference  values  by  the 
standard  procedure  using  feedforward  and  an  inverse  model.  For  known  param- 
eters,  the  problem  is  handled  as  follows.  Assume  that  the  process  is 
described  by  equation (12) and  introduce  the  reference  values  ur(t)  and  yr(t) 
which  satisfy  the  same  dynamics  as  the  process 

A(q-l)yr(t) = B(q-l)ur(t - k) 

Hence 

A(q-’)[y(t) - yr(t)] = B(q-l)[u(t - k) - ur(t - k)] + v(t) 

A design  procedure  for  the  regulator  then  gives  the  feedback 

If  the  command  signal  yr (t) is  specified, 
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This  system  cannot  be  realized  unless  the  change  in  reference  value is known 
or  can  be  predicted k steps  ahead.  If  this  is  not  the  case, a time  delay 
in the  response of k units  must  be  accepted. 

Observe  that  the  control  law (17) can  be  written: 

The  servoproblem  can  be  incorporated  into  the  self-tuning  regulator  simply 
by  changing  the  model  in  the  parameter  estimation  step  to 

M: $(t) = - d(q-l)y(t - 1) -t B(q-l)u(t - k) + C(q-l)tz(t - 1) 

and  making  the  modification (18) in  the  control  step. 

5. APPLICATIONS 

The  self-tuning  regulators  are  conveniently  implemented  using a digital 
computer.  The  simple  regulator LS+MV requires  no  more  than 30 lines  of 
FORTRAN code,  while  the  regulator RMLS.LQ requires  an  order-of-magnitude  more 
code  because  of  the  necessity  of  solving  the  algebraic  Riccati  equation in 
each  iteration.  The  regulators  have  been  applied  to a number  of  industrial 
processes.  Among  the  applications  currently  known  to  me  are 

paper  machine  (refs. 11 and  12) 
digester  (ref.  13) 
ore  crusher  (ref. 14) 
enthalpy  exchanger  (ref.  15) 
supertanker  (ref. 16) 

Several  of  these  applications  have  been  in  operation  for a long  time. A self- 
tuning  regulator  has,  for  example,  been  running  as  an  adaptive  autopilot  for 
a supertanker  for  more  than a year. 

Even  if  the  regulators  discussed  automatically  tune  their  parameters, 
it  is  necessary  to  determine  some  parameters  in  advance;  for  instance, 

Number  of  parameters  in  the  prediction  model (p, r, and s) 
Initial  values  of  the  parameter  estimates 
Value  of  any  fixed  parameters  in  the  model 
Rate  of  exponential  forgetting  of  past  data  in  the  estimation  algo- 

Sampling  rate 
rithm 

Experience  has  shown  that  it  is  fairly  easy  to  make  the  proper  choice 
in practice.  These  parameters  are  also  much  easier  to  choose  than  to  directly 
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determine  the  coefficients of a  complex  control  law.  It  is  our  experience 
that  system  engineers  without  previous  exposure  to  this  type  of  algorithm  have 
been  able  to  learn  how  to  use  it  after  only  a  short  training  period.  There 
have  also  been  several  misapplications.  The  most  common  mistake  is  to  attempt 
a  self-tuner  for  a  control  design  that  will  not  work  even  if  the  parameters 
are  known. 
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Figure 1.- Example,of self-tuning  regulator. 
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Figure 2.-  Block diagram of a general  self-tuning  regulator. 
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PARAMETER ESTIMATION 

Model: ?(t)  =,-A,(q-l)y(t - 1) + B(q-’)u(t -’ 1) + C(q-l)E(t - 1) - qt)o 
E(t,O) = y(t) - qt)o 

O(t + 1) = @(t) + p(t)S(t + l)$T(t)E(t,Q), 
S”(t + 1) = S’l(t) + U(t + 1)  [JIT(t + l)$(t + 1) - s-1 (t)] 

For: Least  squares,  C f 0 

Extended  least  ,squares, $(t) = ‘$(t) 

Recursive maximum likelihood, -gradOe(t,O) 

CONTROL  STRATEGIES 

Regulator  parameters: 9 = col[qlqp ... q,,, ; f,, f, ... f2] 
Criteria: Minimum variance 

Linear  quadratic 

Figure 3.- Some approaches to parameter  estimation  and  control. 
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Let  the  system  be 

where  the  parameters  are  estimated  by  least  squares 
and  control  gives a minimum  variance  response 
if  the  time  delay, k, and  the  lead  coefficient of 

-1 
the  polynomial B(q 1, B o ,  are  known 

if the  system  order  is  not  underestimated  and 
if 

then 

and  if  the  system  be  minimum  phase  then  also 

lim SUP ECu2(t) 1 < - 
Figure 4.- An  example  global  stability  result. 
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Figure 5.- Example  regulator  design 
using  least squares and minimum 5 
variance  estimation and  control. 2 
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Figure 6.- Example  regulator  design  Figure 7.- Regulator  design  using 
using  least  squares  and  linear- extended  least  squares and linear- 
quadratic  estimation and  control. quadratic  estimation and  control. 
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