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Abstract— When a manipulator interacts with objects with
poorly damped oscillatory modes, undesired oscillations and
bouncing may result. In this paper, we present a method
for observer-based control of a rigid manipulator interacting
with an environment with linear dynamics. The controller
injects a desired damping into the environment dynamics,
using both visual- and force sensing for stable control of the
contact transition. Stability of the system is shown using an
observer-based backstepping design method, and simulations
are performed in order to validate the chosen approach.

I. I NTRODUCTION AND PROBLEM FORMULATION

Contact force control has long been an important re-
search topic in robotics, and a large number of experimen-
tal and industrial implementations and applications have
been presented in the literature [1]. Most of these methods
focus on the robot dynamics, assuming that the environ-
ment can be modeled by ideal constraints, or as simple
massless (linear or non-linear) spring-damper systems [2].
Dynamical systems can also be used to model many types
of environments and the energy transfer between the robot
and its environment [3], [4]. For efficient control of such
dynamic environments it is necessary to consider not only
the robot dynamics but also the dynamic properties of the
environment itself, or otherwise undesirable phenomena
such as bouncing may occur. The combination of vision
and force sensing is very powerful, in that it allows us
to control interaction with objects whose locations are
not initially known, so that impact can be predicted and
controlled in such a way that large impact forces are
avoided.

There exist applications where force control in dynamic
environments is required. As an industrial example we
have compliant “tool adapters” , which are mounted be-
tween a rigid workpiece and the fixture and serve as both
an extra mechanical compliance and as a force sensor.
Cooperating robots is another example, where one robot
may be programmed with a desired compliance, holding
a workpiece on which some operation is to be performed.
Other examples are interaction with non-rigid structures,
and loads suspended from cranes. In non-industrial en-
vironments, there are examples such as manipulation of
flying, falling and rolling objects.

In uncertain but static environments, the force/vision
control problem is often solved by assigning each available
degree of freedom to a specific task, for instance by
specifying it as either position- or force controlled as in [5].
The interaction control problem in dynamic environments
is in general more challenging. In [4], dynamic effects
such as friction in rigid body- and elastic contact with
passive environments were analyzed, however only the
contact phase of the interaction was considered, thereby
avoiding the need for non-contact sensing such as vision.
For interaction with non-stationary objects, for instance,
it may be necessary to introduce feed-forward from the
measured target motion during the approach phase, as in
[6] where force/vision control was used for an assembly
operation involving a moving target. In the most general
case of interacting systems, however, the manipulator and
environment dynamics are coupled through the forces of
interaction, and feedback from multiple sensor signals may
affect the overall stability and performance of the system
in a complex way. As a way to overcome this difficulty, in
[7] the use of vision/impedance control was used for peg-
in-hole insertion experiments in a stationary environment.
However, as the range of achievable impedances is always
limited by force sensor noise and dynamic effects such as
gear box- and force sensor elasticity, as well as the pres-
ence of inner position feedback loops, a purely impedance-
based approach may not be sufficient for efficient control
in non-stationary environments.

A. Problem Formulation

In this paper, we present a method for observer-based
control of a system consisting of a rigid manipulator
interacting with an environment with linear dynamics, and
demonstrate how vision and force can be used together
in order to influence and control the dynamics of the
environment, by active control during both the approach-
and contact phases. An observer-based backstepping pro-
cedure is used to obtain a control law which makes
the manipulator/environment system asymptotically stable.
The method is validated in simulations on a model of
a simple three-link serial robot interacting with a mass-
spring-damper system.
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Fig. 1. Setup with multiple point contacts between robot and environ-
ment. Local coordinates(x(i)

c ,y(i)
c ,z(i)

c ) are attached to the workpiece at
each contact point, while the dynamics of the environment is modeled
by a linear mass-spring-damper system .

II. M ODELING OF THE ROBOT AND ENVIRONMENT

We assume the setup shown in Fig. 1. A rigid robot
is in contact with a dynamic environment, where the
interaction is modeled by contact forces in the surface
normal direction at the contact points. The dynamics of
a rigid robot can be modeled by the system

M(q)q̈+C(q, q̇)q̇+G(q) = τ −JT
c (q)fc (1)

where fc is the interaction (environment) force given in
the chosen force space. By using a feedback linearizing
control law it is possible to obtain a decoupled system of
double integrators from a new command signalu to xc [8].
Assuming robot double integrator dynamics with position
z3 and velocityz4, and that the environment dynamics in
one direction can be modeled as a stable linear second
order system with positionz1 and velocityz2, we can write
the coupled dynamics of the robot and environment as

ż1 = z2 (2)

ż2 = −kz1−dz2 +Ψ(z3− z1) (3)

ż3 = z4 (4)

ż4 = u (5)

where the scalar contact force is

fc = Ψ(δ )
def
= K(δ )δ , (6)

where for convenience we have defined

δ def
= z3− z1, (7)

and where the contact stiffnessK(δ ) is assumed to be a
differentiable function ofδ , satisfying the properties

K(x) ≥ 0, ∀x (8)

K(x) = 0, x < 0 (9)

|K(x)| ≤ K̄, ∀x (10)

K′(x)x+K(x) > 0, x > 0 (11)

The final inequality expresses the condition that the con-
tact force fc = K(δ )δ is increasing with respect to the
deformation distanceδ . This also implies that the inverse
Ψ−1( fc) is well-defined whenδ > 0. Eq. (6) together with
properties (8)–(11) can be used as an approximate global
model for a linear spring mechanism, or a local model for
completely elastic non-linear contact of the typefc = kcδ n

c
with n > 1 as described in [2].

Although the following section will use the simple
model in Eq. (2)–(5), the method presented is straight-
forward to generalize to a larger class of systems, such
as any passive lumped-multiple-mass environment model.
The robot dynamics may in general be any linear second-
order system with relative degree two, which can always
be transformed into a double integrator by a suitable state
feedback. Such a model could for instance be used to
model a position controlled manipulator with PD-control.

III. C ONTROLLER DESIGN

A. Full state feedback

The aim of the controller is to obtain a sufficiently
damped impact transition, which can be achieved by con-
trolling the interaction forces suitably. The form of the
system in Eq. (2)–(5) is similar to the so called strict
feedback- or triangular form [9]. For such systems, the
backstepping design method can be used to find a control
law and a Lyapunov function in a recursive fashion. Due to
the special structure of the passive environment, it makes
sense to try to find a controller that aims to control the
energy flow between the robot and environment such that
the environment dynamics is sufficiently damped. If direct
control of the interaction forcefc was possible, we could
introduce extra damping into the environment by choosing
a “virtual” control signal of the form

fc = K(α1(z1,z2)− z1) · (α1(z1,z2)− z1) (12)

with
α1(z1,z2) = z1 +h(z2) (13)

where thedamping function h(z2) is twice continuously
differentiable and chosen to satisfy the properties

h(x) ≥ 0, ∀x (14)

h(x) = 0, x > 0 (15)

|dh(x)/dx| < h̄, ∀x (16)

In this way, extra damping is introduced by a suitable
dissipation of energy by application of a contact force in
the opposite direction of motion during the part of the
motion when the contact point velocityz2 < 0. This can be
seen by introducing the energy-based Lyapunov function

V1(z1,z2) =
1
2

kz2
1 +

1
2

z2
2 (17)



which gives

V̇1 = kz1z2 + z2(−kz1−dz2 +K(δ )(ε3 +h(z2))

= −dz2
2 + z2K(δ )h(z2)

︸ ︷︷ ︸

def
=−W (z2,ε3)≤0

+z2K(δ )ε3 (18)

where the termz2K(δ )h(z2)≤ 0 introduces extra damping
due to properties (8), (14)–(15), and where

ε3 = z3−α1(z1,z2) = z3− z1−h(z2), (19)

is interpreted as the error between the tool tip position
corresponding to the “virtual” control signal and the true
position. We can now write Eq. (3) as

ż2 = −kz1−dz2 +K(δ )h(z2)+K(δ )ε3
def
= f2(z1,z2,ε3)

(20)
Furthermore, we have

ε̇3 = z4− α̇1 = z4− z2−h′(z2) f2(z1,z2,ε3) (21)

By augmentingV1 with a quadratic term inε3, we obtain

V2(z1,z2,ε3) = V1(z1,z2)+
1
2

p3ε2
3 , p3 > 0 (22)

which gives

V̇2 = −W (z2,ε3)+ ε3K(δ )z2 + p3ε3 (z4− α̇1)

= −W (z2,ε3)+ p3ε3
(

p−1
3 K(δ )z2 + z4− α̇1

)

= −W (z2,ε3)− p3k3ε2
3 + p3ε3ε4 (23)

with k3 > 0 and the new error signalε4 given by

ε4 = z4− α̇1 + k3ε3 + p−1
3 K(δ )z2. (24)

Eqs. (21) and (24) give

ε̇3 = z4− α̇1 = −k3ε3 + ε4− p−1
3 K(δ )z2

def
= f3(z,ε). (25)

Differentiating Eq. (24) gives

ε̇4 = u− α̈1 + k3 f3(z,ε)+ p−1
3 (K(δ ) f2(z1,z2,ε3)+

+K′(δ )
(

f3(z,ε)+h′(z2) f2(z1,z2,ε3)
)

z2
)

(26)

with

α̈1 = f2(z,ε3)+h′′(z2) f2(z,ε3)
2 +h′(z2)(−kz2−

d f2(z,ε3)+
(
K′(δ )(ε3 +h(z2))+K(δ )

)
f3(z,ε)

)
.
(27)

By augmentingV2 with a quadratic term in the errorε4

V3(z1,z2,ε3,ε4) = V2(z1,z2,ε3)+
1
2

p4ε2
4 , p4 > 0 (28)

we get

V̇3 = V̇2 + p4ε4ε̇4 = −W (z2,ε3)− k3p3ε2
3 + p4ε4×

(
p3p−1

4 ε3 +u− α̈1− k2
3ε3 + k3ε4− k3p−1

3 K(δ )z2+

p−1
3

(
K(δ ) f2 +K′(δ )

(
f3(z,ε)+h′(z2) f2

)
z2

))
(29)

We can now choose the control signal

u = −(k3 + k4)ε4 + α̈1 + k2
3ε3 + k3p−1

3 K(δ )z2− p−1
3 ×

×
(
K(δ ) f2(z,ε3)+K′(δ )

(
−k3ε3 + ε4− p−1

3 K(δ )z2

+ h′(z2) f2(z1,z2,ε3)
)

z2
)

(30)

with k4 > 0 and obtain

V̇3 = −W (z2,ε3)− k3p3ε2
3 − k4p4ε2

4 + p3ε3ε4 (31)

which is negative semidefinite if the free parameterp4

satisfiesp4 ≥ p3/(4k3k4). Asymptotic stability of the ori-
gin z1 = z2 = ε3 = ε4 = 0 follows from LaSalle’s theorem
[9], since the largest invariant set in{(z,ε)|V̇3 = 0} is the
origin.

B. Observer-based design

Extension can be made to the case when the environ-
ment state is not directly measurable, assuming that the
contact force fc is measurable, and when a (potentially
noisy) position measurementz1 is available from the cam-
era. In this case, a linear globally exponentially convergent
full state observer for the environment can be constructed
as

˙̂z1 = ẑ2 + l1(z1− ẑ1)
def
= f̄1(z1, ẑ) (32)

˙̂z2 = −kẑ1−dẑ2 + fc + l2(z1− ẑ1)
def
= f̄2(z1, ẑ, fc) (33)

which gives the error dynamics

˙̃z1 = z̃2− l1z̃1 (34)
˙̃z2 = −kz̃1−dz̃2− l2z̃1 (35)

which can be made to converge exponentially to zero by
choosing the (possibly time-varying) observer gainsl1 and
l2 suitably. By defining

α1(ẑ1, ẑ2) = ẑ1 +h(ẑ2) (36)

and
ε3 = z3−α1(ẑ1, ẑ2) = z3− ẑ1−h(ẑ2) (37)

we can write Eq. (3) as

ż2 =− kz1−dz2 +K(δ )(ε3 +h(ẑ2)− z̃1)

=− kz1−dz2 +K(δ )h(z2)+K(δ )ε3

+K(δ ) [h(ẑ2)−h(z2)]−K(δ )z̃1 (38)

Using the Lyapunov functionV1 of Eq. (17) gives

V̇1 = −W (z2,ε3)+ z2K(δ ) [h(ẑ2)−h(z2)]− z2K(δ )z̃1
︸ ︷︷ ︸

Wzz̃(z,z̃)

+

+ z2K(δ )ε3, (39)

and usingV2 in Eq. (22) we find

V̇2 = −W +Wzz̃ + p3ε3
(

p−1
3 K(δ )z2 + z4− α̇1

)

def
= −W − p3k3ε2

3 + p3ε3ε4 +Wzz̃ + ε3K(δ )z̃2 (40)



where we have defined

ε4 = z4− α̇1 + k3ε3 + p−1
3 K(δ )ẑ2. (41)

with k3 > 0 and where

ε̇3 = z4− α̇1 = ε4− k3ε3− p−1
3 K(δ )ẑ2

def
= f̄3(z,ε, ẑ). (42)

With V3 as in Eq. (28) we obtain

V̇3 =−W (z2,ε3)− p3k3ε2
3 +Wzz̃(z, z̃)+ ε3K(δ )z̃2

+ p3ε3ε4 + p4ε4 (u+α2) (43)

where

α2 = k3 (z4− α̇1)− α̈1 + p−1
3

d
dt

[K(δ )ẑ2] . (44)

Using the control signal

u = −k4ε4− α̂2, k4 > 0 (45)

we can rewrite Eq. (46) on the form

V̇3 = −W (z2,ε3)− p3k3ε2
3 − p4k4ε2

4 + p3ε3ε4 +

+ Wzz̃(z, z̃)+ ε3K(δ )z̃2 + p4ε4(α2− α̂2) (46)

where the termα̂2 should approximateα2. We choose

α̂2 = k3 (z4− α̇1)− ˆ̈α1 + p−1
3

(
K(δ ) f̄2 +K′(δ )(z4− ẑ2)ẑ2

)

(47)
where

ˆ̈α1 = f̄2 +h′′(ẑ2) f̄ 2
2 +h′(ẑ2)

(
−k f̄1−d f̄2+

(
K(δ )+K′(δ )(ε3 +h(ẑ2))

)(
f̄3 +h′(ẑ2)ẑ2

))
. (48)

With this choice and using (44), (47), (48) and (32)–(35),
the error term(α2− α̂2) in Eq. (46) can be written

α2− α̂2 =−(l1+h′(ẑ2)l2)(z̃2− l1z̃1)− p−1
3 K(δ )z̃2(z2− z̃2).

(49)
Furthermore, since the observer error in Eq. (34)–(35) is
exponentially stable, we can use the Lyapunov function

V4(z1,z2,ε3,ε4, z̃) = V3 + z̃T Pz̃z̃, z̃ =
[
z̃1 z̃2

]T
(50)

which gives

V̇4 =−W (z2,ε3)− p3k3ε2
3 − p4k4ε2

4 − z̃T Qz̃z̃+ p3ε3ε4

+Wzz̃(z, z̃)+ ε3K(δ )z̃2 + p4ε4(α2− α̂2) (51)

where Qz̃ > 0 is chosen freely andPz̃ > 0 satisfies the
Lyapunov equation

AT
z̃ Pz̃ +Pz̃A z̃ = −Qz̃ (52)

whereA z̃ is defined by expressing (34)–(35) as˙̃z = A z̃z̃.
The negative semi-definiteness ofV̇4 in Eq. (51) could

be established as in the state feedback case in Section III-
A, except for the presence of the last three extra cross-
terms in Eq. (51). Using the properties ofK and h(x),

and that the exponential convergence of the observer error
gives that

‖z̃2(t)‖ ≤ v̄, ∀t ≥ 0

for some ¯v > 0, the cross-terms can be bounded by

‖Wzz̃(z, z̃)‖ ≤ ‖z2K̄h̄z̃2‖+‖z2K̄z̃1‖

‖ε3K(δ )z̃2‖ ≤ ‖ε3K̄z̃2‖

‖p4ε4(α2− α̂2)‖ ≤ ‖ε4p4(h̄l + p−1
3 K̄v̄)z̃2‖+

+ ‖ε4p4h̄l l1z̃1‖+‖ε4p4p−1
3 K̄v̄z2‖

with h̄l = l1 + h̄l2. By choosingQz̃ sufficiently large, the
cross-terms containing ˜z1 and z̃2 can be dominated by
the diagonal terms iṅV4. Straightforward calculations then
show that ifp3k3k2

4 ≥ (K̄v̄)2/(4d) we can makėV4 negative
semi-definite by choosingp4 = 2k4p2

3d/(K̄v̄)2. Asymptotic
stability of the origin follows from LaSalle’s theorem [9],
as in Section III-A.

IV. I MPLEMENTATION

A. Vision based observer

In practice, the observer in Eqs. (32)–(33) should be
able to compensate for positioning errors in all degrees of
freedom. For this purpose, a dynamic model is obtained
by extending the system in Eqs. (2)–(3) with a number of
static statesxs with ẋs = 0, and interpretz1 in Eq. (32) as
the deviation from the nominal positionxs. The extended
model withx = (xs,z1,z2)

T is then used in an observer

˙̂x = Fx̂+Gfc +Ko(t)J†
p (y−hp(xs,z1)) (53)

wherefc is the vector of measured contact forces, andJ†
p

is the pseudo inverse of the Jacobian of the projection
equationhp for a standard pinhole camera. In the case
of edge measurements, only the distances between the
predicted and real edges in the normal direction of the
contour are measurable, and the corresponding equations
are obtained by projecting the image space errors onto the
normal as in [10], [11]. Edge positions are found using
a robust sub-pixel algorithm which localizes features at
three different scales in the image, where visible features
are predicted from frame to frame using a Binary Search
Partitioning tree description of the object. The observer
gain Ko(t) is obtained by using a time-varying Kalman
filter. A multi-rate discrete-time approximation of the
Kalman filter is used, where the dynamics and input forces
are sampled at a significantly faster rate than the camera.
It is assumed that the errors in the image measurementsεy

can be modeled as Gaussian, spatially uncorrelated white
noise with varianceσ2, so that an effective measurement
error covarianceεx = J†

pεy can be obtained from

E[εxεT
x ] = E[J†

pεy(J†
pεy)

T ] = (JT
p Jp)

−1σ2 (54)
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Fig. 2. Edge detection in the normal direction of the predicted edges.

B. Control law

The controller in Eq. (45) will damp the system by
controlling the relative position of the robot tip and the
contact point, which makes sense during the approach
phase. Once contact has been established, it is necessary
to switch to direct control of the contact force. The control
law in Eq. (45) is given by

u =− k4ε4− k3 (z4− α̇1)+ ˆ̈α1− p−1
3

d
dt

[K(δ )ẑ2]

=− (k3 + k4)(z4− α̇1)− k3k4 (z3−α1)

+ ˆ̈α1− k4p−1
3 K(δ )ẑ2− p−1

3
d
dt

[K(δ )ẑ2] (55)

where the first and second terms on the right hand side of
(55) consist of feedback from the velocity- and position
errors, respectively, while the third term can be seen as a
compensation of the estimated environment acceleration.
We now replace the position error(z3−α1) in (55) with
the control errorep defined as

ep = θ(Ψ−1( fc))Ψ−1( fc)+θ(ẑ1− z3) · (z3− ẑ1)−h(ẑ2)
(56)

where θ(x) is the step functionθ(x) = 1,x ≥ 0, θ(x) =
0,x < 0. This leads to a switched control law approximat-
ing Eq. (45) which incorporates a proportional feedback
from the measured force during the contact phase.

V. RESULTS

Simulations were carried out on a model of a three-link
robot with a single point contact with the environment, and
with contact forces controlled in the vertical direction only.
The environment dynamics was given by a poorly damped
mass-spring-damper system with mass 10 kg, stiffness
2000 N/m, and linear damping of 3 N/(m/s). The real
contact stiffnessK(δ ) was set to 10000 N/m forδ > 0. The
damping functionh(ẑ2) was composed of piecewise second
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Fig. 3. Environment positionz1 (dashed) and robot tool tip positionz3
(solid) during simulated contact transition with active damping.
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Fig. 4. Contact forcefc during simulated contact transition and active
damping.

order polynomials and chosen to correspond roughly to an
additional damping ofdactive = 200 N/(m/s) in order to
obtain a critically damped response for small velocities,
while h(ẑ2) saturates at high velocities for a maximum
desired contact force of 35 N. An additional constant
term was also added to the control signal in order to
obtain a contact forcefc = 15 N in stationarity. The
controller parameters were set tok3 = k4 = 20, p3 = 40000.
The Kalman filter was set to track the translation of the
workpiece, a textured cubic box with side 40 cm, from
synthetic 640×480 pixels camera images rendered in real
time using the standard 3D graphics API OpenGL, see
Fig. 5 for an example image.

In order to analyze the robustness of the system against
modeling errors, a number of extra error sources were
added in the simulation:



Fig. 5. Example of a rendered image, with superimposed wireframe
model showing the estimated position of the cubic box.

• The model ofK(δ ) is a smoothed version of the true
stiffness function, and the modeled elastic stiffness
was 100% higher than the true value.

• Additional spatial noise was added to the synthetic
images before the feature extraction step.

• The estimated value of parameterd in the controller
was 100% higher than the true value, while the
stiffnessk was assumed to be known.

• The camera data and the observer were sampled at 40
ms, while the force signal sampling and the damping
control law were executed at a shorter period of
4 ms. A time delay of 40 ms for image capture
and processing was added for the camera data, and
modeled in the Kalman filter.

For the motion control in the unconstrained directions a
standard computed torque controller was used, with feed-
forward from the estimated environment position. The
environment oscillation mode was excited, and at time
t = 2 s the damping controller was started. Fig. 3 shows the
resulting robot- and environment positions, while Fig. 4
shows the resulting contact force. The limiting of the
contact force just below the desired value of 35 N can
be seen att = 2.4 s, which is the reason why the desired
critically damped dynamics is not achieved initially.

VI. D ISCUSSION

The method works well in simulation, including some
robustness to uncertainties in the model parametersk, d
andK(δ ). The resulting controller has a relatively simple
structure, as seen from Eqs. (55) and (56). Different
choices of the damping functionh(x) will give different
properties of the system. In practice, it is often possible
and beneficial to choose a damping function that violates
property (15), especially in order to obtain a sufficient
damping for oscillations with small amplitude.

The role of the force sensor is twofold. Firstly, it
is used to stiffen the controlled robot by force feed-

forward, secondly to measure the current contact force
for feedback. In order to perform force feed-forward, the
assumption of a rigid manipulator restricts the method to
environments which are significantly more compliant than
the manipulator itself, or where the effective inertia of the
robot is so large that the effect of interaction force can
be ignored. Additionally, for very high contact stiffness
between the robot and environment large contact forces
can build up quickly, especially during the transition phase,
meaning that additional physical compliance or padding
may be necessary in order to decrease the contact stiffness.

VII. C ONCLUSIONS

In this paper, we have presented a method for
vision/force-feedback control of a system consisting of
a rigid manipulator interacting with an environment with
linear dynamics. An observer-based backstepping control
approach was used to find a controller that injects a desired
damping into the dynamics of the environment, using both
visual feedback and force sensing. Simulations were used
to validate the approach. The choice of the controller
parameters and damping function gives a considerable
design flexibility, which can for instance be used to de-
sign damping controllers that attempt to limit the applied
interaction force.

REFERENCES

[1] B. Siciliano and L. Villani,Robot Force Control, Kluwer Academic
Publishers, 1999.

[2] N. Dioiaiti, C. Melchiorri, and S. Stramigioli, “Contactimpedance
estimation for robotic systems,” inProc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, Sendai, Japan, 2004, vol. 3, pp.
2538–2543.

[3] A. de Luca and C. Manes, “Modeling of robots in contact with a
dynamic environment,”IEEE Trans. Robotics and Automation, vol.
10, no. 4, pp. 542–548, August 1994.

[4] M. Vukobratovic, V. Potkonjak, and A. Rodic, “Contribution to
the dynamic study of humanoid robots interacting with dynamic
environment,”Robotica, vol. 22, no. 4, pp. 439–447, 2004.

[5] J. Baeten, H. Bruyninckx, and J. De Schutter, “Combining eye-in-
hand visual servoing and force control in robotic tasks using the
task frame,” inProc. IEEE Int. Conf. Multisensor Fusion, Taipei,
Taiwan, August 1999, pp. 141–146.

[6] S. J̈org, J. Langwald, J. Stelter, G. Hirzinger, and C. Natale,
“Flexible robot-assembly using a multi-sensory approach,” in IEEE
Int. Conf. Robotics and Automation, San Francisco, CA, USA, 2000,
pp. 3687–3694.

[7] G. Morel, E. Malis, and S. Boudet, “Impedance based combination
of visual and force control,” inProc. IEEE Int. Conf. Robotics and
Automation, Leuven, Belgium, May 1998, pp. 1743–1748.

[8] J. Park and K Khatib, “Multi-link multi-contact force control for
manipulators,” inProc. IEEE Int. Conf. Robotics and Automation,
Barcelona, Spain, April 2005, pp. 3624–3629.
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