Effects of intense ageing on volatility and chemical composition of urban aerosol particles

Frosch, Mia; Ahlberg, Erik; Eriksson, Axel; Sjögren, S.; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Brune, W.H; Svenningsson, Birgitta

Published in:
Proceedings of the Annual Symposium of the Nordic Society for Aerosol Research (NOSA)

2012

Citation for published version (APA):
Effects of intense ageing on volatility and chemical composition of urban aerosol particles

M. Frosch¹, E. Ahlberg¹, A. Eriksson¹, S. Sjögren¹, J. Pagels², J. Rissler², E. Swietlicki¹, W. H. Brune³ and B. Svenningsson¹

¹Division of Nuclear Physics, Lund University, Box 118, 22100, Lund, Sweden
²Division of Ergonomics and Aerosol Technology, Lund University, Box 118, 22100, Lund, Sweden
³Department of Meteorology, Pennsylvania State University, University Park, PA 16802, USA

Keywords: Ambient aerosol, oxidative ageing, Potential Aerosol Mass, AMS

Introduction
Aerosol particles form a ubiquitous component of the Earth’s atmosphere, which has profound effects on, for example, visibility, human health and climate change.

A significant source of organic aerosol (OA) is oxidation of volatile organic compounds (VOC) in the gas phase, leading to formation of less volatile compounds. These can nucleate to form secondary organic aerosol (SOA) particles or condense on existing particles. The lifetimes and fates of atmospheric species depend strongly on physical properties, e.g. phase, and chemical properties.

We here characterize particles at street level in central Copenhagen in terms of mass and number, chemical composition and volatility. Particles were in some cases exposed to additional ageing.

Methods
Particles were sampled in central Copenhagen during Jan-Feb 2012 and characterized using a scanning mobility particle sizer (SMPS), an aerosol mass spectrometer (AMS) and a thermodenuder (TD). Effects of ageing were investigated with a potential aerosol mass (PAM) chamber.

PAM is defined as the maximum aerosol mass produced through oxidation of precursor gases. In the PAM chamber, SOA production occurs in a highly oxidizing environment ensuring rapid reaction of precursor gases. Thus, all processes instigated by photo-oxidation of gas phase components occur in minutes in PAM as they would over hours or days in the atmosphere (Kang et al., 2007).

In the present study, particles were exposed to high levels of ozone (up to 16 ppm) and OH radical (exposure up to 1-2·10¹² molecules·s·cm⁻³, corresponding to 1-2 weeks of OH exposure under ambient conditions).

Results
Large numbers of fresh particles were generated by nucleation in the PAM chamber, but these were too small to significantly alter the particle mass detected with AMS. However, alterations of the organic fraction were detectable with AMS, possibly a consequence of condensation or heterogeneous reactions. The main change was an increase of O:C ratio and decrease in H:C ratio (Figure 1).

Also, volatilities of the OA components were influenced by the reaction in the PAM chamber (see Figure 2): The fractions of m/z 43 and 44 to total OA mass (f_{43} and f_{44}) were used as markers for hydrocarbon like and oxidized OA, respectively. Absolute values of f_{43} and f_{44} of particles exposed to elevated temperatures in the TD varied, depending on whether particles were sampled through the PAM chamber.

We acknowledge support from VR and FORMAS.