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Advanced Control Methods
Survey and Assessment of Possibilities

K J Astrém
Department of Automatic Control
Lund Institute of Technology

Abstract

This paper gives an overview of different control methods. PID
regulators are first discussed including windup and mode switch-
ing. It is then shown how complicated control systems can be
designed by combining simple regulators with simple nonlinear-
ities to cope with saturations and different operating modes. It
is then shown how PID regulators can be tuned automatically.
A new technique for automatic tuning of simple control loops
is presented. The method has the advantage of automatically
generating test signals whose properties are automatically tuned
to the particular process. Adaptation and tuning of more gen-
eral regulator structures are then discussed. Some key problems
that arise in applications of adaptive control to industrial pro-
cesses, prior knowledge, design based on simplified models, ini-
tialization and start up ar adressed. A novel approach to the
adaptive problem is proposed where a knowledge-based system
orchestrates auto-tuning, conventional adaptive control, on-line
diagnosis, and table based gain scheduling.

1. Introduction

Most industrial processes are controlled by simple regulators of
the PID type. Such regulators contain several important func-
tions in a primitive form like prediction via derivative action.
The regulators typically have three parameters which must be se-
lected, the gain k, the integration time T} and the derivation time
Ty. The paper starts with a discussion of PID control. This in-
cludes modifications of the basic PID algorithm to obtain systems
with good properties this includes modifications of proportional
and derivative parts and feedforward to obtain good response to
command signals. It is also shown how complicated control sys-
tem can be designed by combining PID algorithms with simple
nonlinear elements like saturations and selectors. More general
linear control algorithms like state feedback and Kalman filters
are also treated. These regulators can be viewed as natural exten-
sions where the prediction by derivatives are replaced by model
based predictions.

There are many things which have to be taken into account
when implementing good industrial control systems. Typical ex-
amples are how to include manual control, how to avoid integra-
tor windup, how to avoid transients that occur when switching
between different modes are questions related to digital imple-
mentation. A lot of knowledge about these issues are known to

manufacturers of regulators at least with respect to implementa-
tion of PID controllers. It is absolutely essential to consider these
issues also for more sophisticated control laws. For this reason
this paper devotes considerable space to these issues.

Many regulators in industrial use are poorly tuned. The
derivative action is seldom used although it may give better per-
formance. One reason for this is that it is not easy to tune a
regulator with three parameters. It is even more difficult to tune
regulators with more parameters. Methods of automatic tuning
of regulators are therefore very important for the effective use of
PID control. Such methods are a necessity for more advanced
control. There are in principle two different ways to find suit-
able values of the parameters of a regulator. One possibility is to
use heuristic adjustment rules. Another method is to go through
the steps of mathematical modeling and application of system-
atic design methods. The first method is not very reliable. The
second approach requires a substantial engineering effort. For
this reasons it has been a long standing goal for control engi-
neers to devise schemes to adjust the regulators automatically
(auto-tuners) and techniques where the regulator parameters are
continuously adjusted (adaptive control). After much research
and experimentation adaptive control is now finding its way to
practical use in industry. The first commercial products were
introduced in 1981. In 1987 there are several commercial sys-
tems among them regulators from Leeds and Northrup, Foxboro,
Turnbull Controls and four Swedish products made by Kockuma-
tion, ASEA, SattControl Instruments (formerly NAF Control)
and First Control Systems. Several thousand control loops are
controlled successfully by adaptive regulators.

Different methods for automatic tuning and adaptive control
are discussed. Most adaptive control schemes currently used can
be characterized as local gradient algorithms. This means that
given good initial values they will drive the system towards a
very good performance. The effort required to obtain the initial
values or the prior knowledge may, however, be quite substantial,
Several algorithms therefore have a pretune mode. There is also
a growing awareness of the need for safeguards to ensure that the
adaptive regulators work well under all possible operating con-
ditions to obtain the required prior knowledge. The auto-tuner
differs from the adaptive regulator because it requires very little
prior knowledge. It also generates the test signals automatically.

A very interesting system can be obtained by combining the
ideas. An auto-tuner can be used to arrive at a simple control
law in a robust way. The information gathered by the auto-tuner




can also be used to derive the prior information required by more
sophisticated adaptive control systems. A system which contains
several different algorithms is then obtained. To monitor their
operation it is then useful to introduce algorithms which super-
vise the operation of the system and which can initiate switching
between algorithms. It is clear that a system of this type will
involve a substantial amount of heuristic logic. Expert system
methodologies provide a systematic approach for dealing with
this logic. The term knowledge-based control or expert control
is coined to describe systems of this type.

The paper is organized as follows. PID control is discussed
in Section 2. Various extensions and practical issues of control
design are treated in Section 3. The bottom up approach to
building large control systems by combining PID regulators with
nonlinear elements is the topic of Section 4. The general linear
regulator is discusssed in Section 5. Auto-tuner is described in
Section 6. This system, which was originally designed as a tuner
for simple PID regulators, can also be used to initialize more
sophisticated algorithms. Adaptive control based on recursive
parameter estimation is given in Section 7. In Section 8 the
ideas of auto-tuning and adaptive control combined with some
ideas from the AI field to obtain knowledge-based control system
is described. The paper ends with conclusions and suggestions
for further reading,

2. The PID Algorithm

The basic PID algorithm can be expressed as follows

de

w(t) = k | e(t) + % / e(s)ds + Ty

(2.1)

where u is the control variable and e is the control error e = 7 — Y
which is the difference between the set point + and the measured
value y. The control variable is thus the sum of three terms called
proportional, integral and derivative action.

In practical regulators the algorithm (2.1) is often modified.

Proportional Action

It is advantageous to modify the proportional term to
P =k(br — y) (2.2)

where b is a constant. This modification can be used to reduce
the overshoot to step changes in the command signal.

Derivative Action

The derivative action is often modified to

Ty
= —k mj—v—y (2.3)
where p = d/dt is the differential operator. This means that the
derivation action operates on the output y and not on the com-
mand signal. The other modification is that the derivative action
only operates on low frequency components. At high frequencies
the derivative gain is limited to kN.

Figure 1. Block diagram of a PID regulator on series form.

Series Form

The algorithm (2.1) is called the parallel form because it can
be viewed as a parallel connection of proportional, integral and
derivative action. An alternative form is

G@):k%1+§%X1+sﬁ) (2.4)

This is called the series form because it can be interpreted as a
series connection of a PD part with a PIpart. The regulator (2.4)
can always be represented in the form (2.1) with the coefficients

T+ 1

k=

Ti=T+T, (2.5)
_ _TT;

T

The parallel form (2.1) can be transformed to the series form
only if
Ti > 4Ty

The parameters are then given by

T _ i
z_2<u-1 T (2.6)

The parallel form is thus more general than the series form. There
is, however, a very simple implementation of the series form which
is used in many systems. This implementation is shown in Figure
1. The advantages are that it is easy to avoid windup and bumps
at mode changes.

Discretization

To implement a continuous time control law like a PID regulator
on a digital computer it is necessary to approximate the deriva-
tive and the integral which appear in the control law. A few
different ways to do this will now be discussed.




Proportional Action

The proportional term is
P o=Fk(br —y)
This term is implemented simply by replacing the continuous
variables by their sampled versions. Hence
P(t) = k(te) (br(te) - y(te)) (2.7)
where {#;} denote the sampling instants, i.e. the times when the
computer reads the analog input.

Integral Action
The integral term is given by

I(t) = —%/e(s)ds

It thus follows that
al k
T, °

Approximating the derivative by a difference we get
I(tey) —- I(tk) &
— W = et
3 7 <)

where the sampling period h = tk41 — U is assumed constant.
This leads to the following recursive equation for the integral
term

kh
I(tk+1) = I(tk) + Te(tk) (2.8)

t
For the implementation it is crucial that the wordlength used is
sufficiently large so that the term khe(t)/T; is not rounded off

when added to I(t;). This condition is most critical when & is
small and T; is large.

Derivative Action
The derivative term is given by (2.3) i.e.
T3dD | dy
Nt = - (2.9)

There are several ways of approximating the derivative.
Forward Differences

Approximating the derivative by a forward difference gives the
equation
Ta D(te41) — D(tx)
N h
This can be rewritten as
hN
Ditgya)=(1- T D(te) ~ kN (y{tipa) — y(t))  (2.10)

The approximation is stable only if Ty > 2Nh.

_ Y1) — ()
+D(ty) = b Ulken) = v(8)

Backward Differences

If the derivatives in (2.9) are approximated by backward differ-
ences we get

Ty D(t) = D(t1)
N h

This can be rewritten as

+ D(ty) = —r, L = ulica)

D(t) = e Dltams) = o8 (o0 = (1)) (211

The approximation is stable for all positive 7T}.

Tustin’s Approximation

There is yet another approximation proposed by Tustin which is
commonly used. This approximation is

2Ty — hN 2kNTy '
) = ———— D) — et )~ 3
D(t) 5Ty Ry D1 5T AN W) ~ y(tio1))
(2.12)
Notice that all approximations have the same form i.e.
D(t) = aiD(te1) = bi (y(ts) — y{trey)) (2.13)

but with different values of the parameters a; and b;. The ap-
proximation (2.12) is stable if Ty > 0. The value of a; is, how-
ever, negative if T; < Nh/2. This is undesirable because the
approximation will then exhibit ringing. This effect can be very
significant if 7y « Nh. Hence only the approximation (2.11)
gives good results for all values of 7},

Incremental Form

The algorithms described so far are called positional algorithms
because they give the output of the regulator directly. In digital
implementations an incremental form of the algorithms is also
used. This form is obtained by computing the time differences of
the regulator output and adding the increments. In a continuous
time version the time derivative of the output is computed and
the derivative is then integrated. This form is particularly useful
when the actuator is a stepping motor because the motor can
then be used as the summing device.

One advantage with the incremental algorithm is that most of the
computations are done using increments only. Short wordlength
calculations can often be used. It is only in the final stage where
the increments are added that precision is needed. Another ad-
vantage with the incremental algorithm is that the regulator out-
put is driven directly from an integrator. This makes it very
easy to deal with windup and manual control. A problem with
the incremental algorithm is that it can not be used directly for
regulators with P or PD action only. Such a regulator cannot
keep a proper steady state because the output of the regulator
depends on the initial state of the regulator. The problem can be
avoided with a regulator which contains a feedback that resets
the integrator to a proper value.

3. Windup

Although many aspects of a control system can be understood
based on linear theory there are some nonlinear effects that must
be accounted for. All actuators have limitations, a motor has
limited speed, a valve cannot be more than fully open or fully
closed etc. When a control system operates over a wide range
of operating conditions it may happen that the control variable
reaches the actuator limits. When this happens the feedback loop
is effectively broken because the actuator may remain at its limit
independently of the process output. If a regulator with integrat-
ing action is used, the error may continue to be integrated. This
means that the integral term may become very large or colloqui-
ally that it ”winds up”. The consequence is that any regulator
with integral action may give large transients when the actuator
saturates.
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Figure 2. Illustration of integral windup.
An Example

The windup phenomena is illustrated in Figure 2 which shows
control of a process with a PI regulator. The initial set-point
change is so large that the actuator saturates at the high limit.
The integrator increases initially because the error is positive
and it reaches its largest value at time ¢ = 10 when the error
goes through zero. The output remains saturated at this point
because of the large value of the integral. It does not leave the
saturation limit until the error has been negative for sufficiently
long time to let the integral part come down to a small level. The
net effect is a large overshoot which is clearly noticeable in the
figure.

How to Avoid Windup

There are several ways to avoid integral windup. A convenient
way is shown in Figure 3. An extra feedback path is provided
in the regulator by measuring the actual actuator output and
forming an error signal e, as the difference between the output
of the regulator v and the actuator output u. The signal e, is fed
to the input of the integrator through a gain 1/7,. The signal
e; is zero when there is no saturation. It will thus not have
any effect on the normal operation when the actuator does not
saturate. When the actuator saturates the feedback signal will,
however, drive the error e, to zero. This means that it drives the
integrator to a value such that the regulator output is exactly at
the saturation limit. This will clearly prevent the integrator from
winding up. The rate at which the regulator output is reset is
governed by the feedback gain 1/7;, where T can be interpreted
as the time constant which determines how quickly the integral
is reset.

It frequently happens that the actuator output cannot be
measured. The anti-windup scheme just described can be ap-
plied by incorporating a mathematical model of the saturating
actuator as is illustrated in Figure 3.

Figure 4 shows what happens when a regulator with anti-
windup is applied to the system simulated in Figure 2.

Notice that the output of the integrator is quickly reset to
a value such that the regulator output is at the saturation limit
and that the integral has a negative value during the initial phase
when the actuator is saturated. This behavior is drastically dif-
ferent from that in Figure 2 where the integral has a positive value
during the initial transient. Also notice the drastic improvement
in performance compared to the ordinary PI regulator used in

Figure 2.

The effect of different values of the time constant T} is il-
lustrated in Figure 5. It may thus seem advantageous to always
choose a very small value of the time constant T, because the
integrator is then reset quickly. Some care must, however, be ex-
ercised when introducing anti-windup in systems with derivative
action. If the time constant T is chosen too small it may happen
that spurious errors cause saturation of the output due to a large
derivative term. This may accidentally reset the integrator. A

practical rule is to make T, proportional to the integration time
T;.

Actuator

Actator model Actuator

Figure 3. Regulator with anti-windup. A system where the ac-
tuator output is measured is shown in A and a system where the

actuator output is estimated from a mathematical model is shown
in B.
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Figure 4. Regulator with anti-windup applied to the system in
Figure 2.




, A
0.5
0 T T T 1
[v] 10 20 30 40
0.4
0.
R r T T —
4] 10 20 30 40

Figure 5. The step response of the system in Figure 4 for differ-
ent values of the reset time constant 1.
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Figure 8. How to provide anti-windup in a regulator where inte-
gral action is generated as automatic reset. Compare with Figure

2.
Series Implementation

A similar device for avoiding windup can be applied to the regu-
lator in Figure 1 by incorporating a model of the saturation as is
shown in Figure 6. Notice that in this implementation the reset
time constant 7T is the same as the integration time 73.

A Regulator Module

The systems shown in Figure 3 can be conveniently represented
if we introduce the module shown in Figure 7. This module has
three inputs, the set point, the measured output and a tracking
signal. The new input TR is called a tracking signal because it
follows from Figure 7 that the regulator output » tries to track
this signal. Using such a model the systems shown in Figure 3
can be represented as shown in Figure 8. The parameters are the
PID parameter (k, T}, Ty,b and N) and the reset time constant
T,

Systems with Selectors

A selector is a device with several inputs and one output. The
output is at each time the smallest of the inputs for a minimum
selector or the largest input for a maximum selector. Selectors
are used to make sure that constraints are satisfied.

When selectors are used to choose among the outputs of sev-
eral regulators with integral action it is crucial that anti-windup
is considered. This is easily handled using the regulator module
with a tracking input. Figure 9 shows how the regulators can be
connected. When v < vy the output is ¥ = v;. The output u
is thus controlled by regulator By. The regulator Ry will track »
since v3 # u. A simulation of such a scheme is shown in Figure

10.

r—» SP

y—m Mv PID
w— TR

Figure 7. Block diagram and simplified representation of PID
regulator with tracking signal.

—® SP

— MYV PID Actuator
TR

— o Actuator Model

—® MV PID ! _/— e Actuator
TR

Figure 8. Representation of a regulator with anti-windup using
the basic control module with tracking shown in Figure 7.
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Figure 9. Ilow to avoid windup in circuits with selectors.

Cascade Control

Avoiding windup in cascade control poses special problems. For
the secondary regulator windup can be handled in the usual man-
ner. To avoid windup in the primary regulator it is, however,
necessary to know that the secondary regulator saturates. One
strategy is to put the primary regulator into manual control when




Figure 10. Simulation of a system with selectors.
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Figure 11. How to introduce manual control in a regulator with
incremental output.

the secondary regulator saturates.

4. A Toolbox for Control

Many complex control systems are constructed in a bottom up
approach by building a large control system from simple elements.
This is actually the way many instrumentation systems have de-
veloped. In this section we will describe different modules and
show how they can be combined with the PID algorithm.

Manual Control

Most control systems need a facility for manual control, To
achieve this it is necessary to have a convenient way to switch
off the automatic control action and to change the control vari-
able of the process directly. Manual control is often done using
two buttons. The control variable increases when pushing one, it
decreases when the other one is pushed. The control variable re-
mains constant if neither button is pushed. A facility of this type
is provided even in the most simple regulators. There is typically
a mode switch for manual and automatic and increase/decrease
buttons. It is of course also necessary to have a smooth trans-
fer between the manual mode and the automatic mode. Since
the command buttons only give the changes in the control vari-
ables it is necessary to have an internal state which represents
the sum of the changes. To ensure a smooth transfer between the
manual and automatic modes it is necessary to ensure that the
state associated with manual control is updated properly when
the regulator is in automatic mode and vice versa.
Incremental Algorithms

A bumpless switch between automatic and manual is particularly
easy to do in incremental algorithms when the control variable is
driven directly by an integrator. The integrator is provided with
a switch so that either the increments from the manual control

r PD

Figure 12. PID regulator with parallel implementation which
switches smoothly between manual and automatic control.

input or the increments from the PID algorithms are sent to the
integrator. See Figure 11.

Absolute Algorithm with Series Implementation

A similar mechanism can be used in the series implementation
of a PID controller shown in Figure 1. In this case there will
be a switching transient if the output of the PD part is not zero
at the switching instant. Notice that it is necessary to have two
switches.

Parallel Implementation

For regulators with parallel implementation the integrator of the
PID regulator can be used to add up the changes in manual mode.
Such a system gives a smooth transition between manual and
automatic mode provided that the switch is made when output
of the PD block is zero. If this is not the case there will be a
switching transient. This will almost always be the case when
the PD action is given by

P+D:k(br—y—Tdﬂ>
dt
with b # 1.

It is also possible to use a separate integrator to add the
incremental changes from the manual control device. To avoid
switching transients in such a system it is necessary to make sure
that the integrator in the PID regulator is reset to a proper value
when the regulator is in manual mode. Similarly the integrator
associated with manual control must be reset to a proper value
when the regulator is in automatic mode. This can be realized
with the circuit shown in Figure 12. With this system the switch
between manual and automatic is smooth even if the control error
or its derivative is different from zero at the switching instant.
When the regulator operates in manual mode as is shown in
Figure 12 the feedback from the output v of the PID regulator
tracks the output u. With efficient tracking the signal v will thus
be close to u at all times. There is a similar tracking mechanism
which ensures that the integrator in the manual control circuit
tracks the regulator output in manual modules.

To build large automation systems it is useful to have suit-
able modules. Figure 13 shows the block diagram for the manual
control module. It has two inputs, a tracking input and an input
for the manual control commands. The system has two parame-
ters, the time constant T, for the manual control input and the
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reset time constant T,. In digital implementations it is conve-
nient to add a feature so that the command signal accelerates as
long as one of the buttons increase-decrease buttons are pushed.

Using the module for PID control, introduced in Figure 8,
and the manual control module in Figure 13 it is straightforward
to construct a complete regulator. Figure 14 shows a PID reg-
ulator with internal or external setpoints via increase/decrease

buttons and manual automatic mode. Notice that the system
only has two switches.

Limiters

We have thus arrived at two modules which are useful for build-
ing control systems, a manual control module and a PID module.
Both modules have internal states and a tracking input. To de-
sign complete systems it is also useful to add modules for selection
of maximum and minimum. To model actuators we also need a
module for saturating a signal. It is sometimes nceded to make
sure that command signals do not change too rapidly. This can
be ensured by the jump- and rate module shown in Figure 15.
The module has one input and one output and four parameters.
The properties of the jump and rate circuit are illustrated in
Figure 16.
Summarizing we have the following modules.

PID

Manual
Saturation
Min selector
Max selector
Jump and rate

e 1

Figure 15, Block diagram of a jump- and rate circuit.

o T T T ]

0 5 10 15 20
Figure 16. Input and outputs for the jump and rate.

Using these modules we can now construct large control sys-
tems that can cope with good set point control, saturations, good
responses to large commands.

5. General Digital Control Laws

The derivative action in a PID regulator is a simple way to pre-
dict future values of the controlled variable simply by tangential
extrapolation of the output Ty time units ahead. This prediction
works well in some cases but poorly in others, e.g. when the
system has time delays. A much more effective way of making
predictions is to use a mathematical model of the system dynam-
ics. Such an approach leads to a control law of the form

u(k) = Llzm(k) — £(k)] + Der(k)
E(k + 1|k) = AZ(k) + Bu(k)
(k) = 2(klk — 1)+ K [y(k) — Ca(k|k — 1))

The regulator can be thought of as complosed of a state estimator
and a feedback from the estimated state. There are many theories
that lead to a regulator of this type, e.g. Smith predictors, state
feedback via pole placement or optimal control, Kalman filtering
or observers, linear quadratic optimal control and LQG/LTR.
The control law above can also be written in the following
form
u(k) = Ca(k) + Dy(k) + Der(k)
xz(k+ 1) = Fa(k) + Gy(k) + Ger(k)




where 7 is the command signal, y the measured signal and u the
control variable.

In an analog realization all operations are executed in par-
allel. When the control algorithms are implemented on a digital
computer the parallel operations have to be realized sequentially.
To do this there are two problems that must be taken into ac-
count, namely simultaneity and time delays.

Computational Delay

The control program can then be written as
1 Adin y r
2 u:=Ckx+Dky+Dc*r
3 X:=F*x+Gky+Gexr
4 Daout u
Listing 1. Regulator code.

It is desirable to make the computational delay as small as
possible. Notice that the DA conversion can be made after the
second statement since the control signal « is then available. Also
notice that the product C'«z can be precomputed. The code then
becomes

i Adinyr

2 u:=ul+D¥y+Dcxr

3 ShapeQOutput

4 Daout u

5 x:=F*x+G¥y+Ge*xr

6 ul:=Cxx

Listing 2. Improved regulator code.

Notice that an extra state variable u, has been introduced to
save computing C * z in the first statement. Also notice that a
procedure ShapeOutput which saturates the output, make a min
selector etc. is added.

The code shown above can be generalized as follows

1 Adiny r

2 ComputeQutput
3 Shapelutput
4 Daout

& UpdateState

Listing 3. Generalized regulator code.

It would be appealing to make a procedure for each one of the
boxes PID, Manual etc. in the Figures 7, 13 and 14. This cannot
be done because of the sequential character of the calculations.

In the analog implementation the signals v and u will change
simultaneously. This is essential for the antiwindup signal to
function properly. In a digital implementation there will always
be a delay between u and ». If the PID regulator and the ac-
tuator are implemented as separate blocks there is no way to
avoid this delay. The tracking signal u will then differ from »
and the antiwindup coupling will give an undesired contribution.
Although this contribution will be small if the delay is small it
is always present. This undesirable effect can be avoided if the
code is restructured.

There is also another problem if the blocks in Figure 7 are
represented as separate subroutines. If the antiwindup scheme
should work properly it is essential that simultaneous values of
the tracking signal ¢, and the regulator output v are used. This
will not be the case if the regulator code is executed first and the
actuator model afterwords.

It is thus essential that the computational scheme shown in
Listing 3 is used in digital implementations. To obtain the ap-
propriate structure the algorithms for the discrete time PID reg-
ulator will be rewritten appropriately.

The regulator output is given by

u(ty) = P(ty) + I(te) + D(tx) (5.1)

where P, T and D are given by the equations (2.7), (2.8) and
(2.9) respectively. Tt follows from (2.7) that the proportional part
cannot be precomputed. Equation (2.8) shows that the integral
term can be precomputed. For this purpose we introduce I as
a state variable. It follows from equation (2.13) that part of
the derivative term can be precomputed. A state variable z is
introduced to account for those terms. This state variable is
defined as .

z(tk) = a,'D(tk_l) — biy(tr-1) (5.2)

The derivative term then becomes
D(tr) = =(te) — biy(te) - (5.3)

It follows from (5.2) and (5.3) that the state variable z is updated
as follows

2(tea) = a; [z(t) — biy(te)] — biy(tx)

= asa(te) — bi(1+ ai)y(te) (5.4
Equation (5.1) can now be written as
u(ty) = bhr(te) = [k + bi] y(ts) + I(tx) + 2(t) (5.5)

= Lor(tk) — Ly(t) + ur(tx)

and the equations for updating the states becomes

Htess) = I(4) + Z;Th [r(t) — y(te)]
o(tesr) = aiz(te) — bi(1+ a:)y(t) (5.6)
ut(tee1) = I(tesr) + 2(tega)

The procedure ComputeQutput in Listing 3 is then an imple-
mentation of (5.4) and the procedure UpdateState is a procedure
which performs the calculations given by (5.6).

6. Automatic Tuning

A novel approach to automatic tuning of PID regulators has been
proposed by Astrém and Higglund (1984). It was motivated
by the need for a simple robust tuning scheme which requires
very little prior information. The method is based on a special
technique for system identification which automatically generates
an appropriate test signal and a variation of a classical method
for adjusting the parameters of a PID regulator.
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The Basic Idea

The Ziegler-Nichols method for tuning PID regulators is based on
the observation that the regulator parameters can be determined
from knowledge of the point where the Nyquist curve of the open
loop system intersects the negative real axis. It is traditionally
described in terms of the ultimate gain kc and the ultimate pe-
riod T;. In the original scheme, described in Ziegler and Nichols
(1943), the ultimate gain and the ultimate period are determined
in the following way: A proportional regulator is connected to the
system. The gain is gradually increased until an oscillation is ob-
tained. The gain k. when this occurs is the ultimate gain and
the oscillation has the ultimate period. It is difficult to perform
this experiment automatically in such a way that the amplitude
of the oscillation is kept under control.

The auto-tuner is based on the idea that the ultimate gain
and the ultimate period can be determined by introducing relay
feedback. A periodic oscillation is then obtained. The critical
period T; is simply the period of the oscillation and the critical
gain can be determined from the relay amplitude and the ampli-
tude of the oscillation, see Figure 17. If the process attenuates
high frequencies so that the first harmonic component dominates
the response it follows that the input and the output are out of
phase. Furthermore if the relay amplitude is d it follows from
a Fourier series expansion that the first harmonic of the input
is 4d/w. If the amplitude of the output is @ the process gain is
7a/dd at the critical frequency and the critical gain becomes

_4d

ke = (6.1)

Ta
Exact analyses of relay oscillations are also available, see Astrom
and Hagglund (1984). The period of an oscillation can be de-
termined by measuring the times between zero-crossings. The
amplitude may be determined from the peak-to-peak values of
the output. These estimation methods are easy to implement
because they are based on counting and comparison only. The
sensitivity to disturbances can be reduced significantly by filter-
ing the signals adaptively and introducing hysteresis in the relay.

/

0
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Figure 17. Input and output signals for a system under relay

feedback. The linear system.has the transfer function G(S) =

0.51(1 —s)/s(s+ 1)2.

Control Design

When the ultimate gain k. and the ultimate period are known
the parameters of a PID regulator can be determined by the
Ziegler-Nichols rule which can be expressed as

k= = T = Tg =

ke T I;
= = 2
2 2 8 (6:2)

This rule gives a closed loop system which is sometimes too
poorly damped. There are therefore many modifications of the
Ziegler-Nichols rule which give improved performance. A block
diagram of the auto-tuner is shown in Figure 18. The tuner is
very easy to use. The process is simply brought to an equilibrium
by setting a constant control signal in manual mode. The tuning
is then activated by pushing the tuning switch. The regulator
is automatically switched to automatic mode when the tuning is
complete.

Prior Information

A major advantage of the auto-tuner is that it requires little prior
information. Only two parameters - the relay amplitude and the
hysteresis width of the relay - are required. These parameters are
set automatically in the NAF auto-tuner. The relay amplitude is
initially set to fixed proportion of the output range. The ampli-
tude is adjusted after one half period to give an output oscillation
of specified amplitude. The modified relay amplitude is stored
for the next tuning. The hysteresis width is set automatically
based on measurements of the measurement noise.

Figure 18. Block diagram of an auto-tuner. The system operates
as a relay controller in the tuning mode (T) and as an ordinary PID
regulator in the automatic control mode (A).

Practical Experiences

The auto-tuner looks like a conventional standard regulator. The
mode switch, which has two positions - manual and automatic
control - on a conventional regulator, has a third position called
tune. When the regulator is set in this mode a tuning is per-
formed automatically in closed loop.

The experiences of using the auto-tuner have been very good.
Operators have found it very easy to use. They are in command
since the tuning is made on their request. As a result they also
pay more attention to tuning. It has'been demonstrated that the
commissioning time considerably of new systems can be reduced
significantly by using the tuning tool. It has also been found that
many loops are poorly tuned.

An Example

The properties of the auto-tuner are illustrated in Figure 19,
which shows an application to temperature control in a distil-
lation column. A PI regulator was used originally. The plant
personnel had great difficulties to get the control loop to func-
tion well using conventional tuning rules. The loop was oscillat-
ing when the experiment started as is shown in Figure 19. The




Figure 19.
ature control of a destillation column. The figure is a copy of a
strip chart recorder, which explains why time increases from right
to left.

Results obtained applying an auto-tuner to temper-

Process parameters

Estimator

Regutator
araniclers

Excitation

Figure 20. Block diagram of an adaptive regulator.
regulator parameters are also shown in the figure. Notice in par-
ticular the absence of derivative action. To perform automatic
tuning the regulator was first switched to manual control at time
11.00. The auto-tuning mode was activated at time 14.00. At
time 20.00 the tuning is complete and the regulator switches to
automatic control mode. Notice the drastic improvement in the
behaviour of the closed loop. Also notice that the regulator pa-
rameters have been changed significantly.

There are several interesting observations that can be drawn
from the experiment. First, notice that tuning of a slow process
takes a considerable time. It is not likely that an operator has the
time and patience to tune the regulator manually. Secondly, if
the tuning is done manually by heuristic methods it is necessary
to make several tuning experiments which will increase the time
substantially. These are probably the reasons why the loop was
poorly tuned to start with. It is also worth observing that there
are significant disturbance during the tuning phase, from time
14.00 to 20.00. The adaptive filtering in the tuner can, however,
handle the disturbances very well. After one half period of the
oscillation a crude estimate of the period is obtained. This value
can be used to set the bandwidth of the filters.

7. Adaptive Control

A block-diagram of an adaptive regulator is shown in Figure 20.
The regulator can be thought of as composed of two loops. The
inner loop consists of the process and an ordinary linear feedback
regulator. The parameters of the regulator are adjusted by the
outer loop, which performs recursive parameter estimation and
control design calculations. Notice that the system automati-
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cally performs the tasks of modeling and control design that are
normally carried out by an engineer.

The block labeled "regulator design” in Figure 20 represents
an on-line solution to a design problem for a system with known
parameters. This is called the underlying design problem. When
investigating adaptive systems it is useful to exhibit this problem
explicitly, because it gives the characteristics of the system under
the ideal conditions when the parameters are known exactly.

The parameter estimator attempts to find the process param-
eters by analysing how the process responds to control signals.
Very little useful information can be derived when the process
input is constant. In such cases it is useful to introduce small
perturbation signals to make sure that useful estimates can be
produced. This is done via the block labeled ”excitation” in the
figure.

The diagram shown in Figure 20 is quite general. It covers

common adaptive regulators like model reference adaptive system
(MRAS) and self-tuning regulators (STR). Many different de-
sign methods and many different parameter estimation schemes
can be used. There are adaptive regulators based on phase-
and amplitude-margin design methods, pole-placement, mini-
mum variance control, linear quadratic gaussian control and opti-
mization methods. Many different parameter estimation schemes
have also been used, for example stochastic approximation, least
squares, extended and generalized least squares, instrumental
variables, extended Kalman filtering and the maximum likelihood
method.

The self-tuner shown in Figure 20 is called an indirect self-
tuner, because the regulator parameters are obtained indirectly
via estimation of a process model and a control design. It is
sometimes possible to reparameterize the process so that it can
be expressed in terms of the regulator parameters. This gives
a significant simplification of the algorithm because the design
calculations are eliminated. Such a regulator is called a direct
self-tuner. In terms of Figure 20 the block labelled design cal-
culations disappears and the regulator parameters are updated
directly.

Algorithms

ExAMPLE 1
Two examples will be used to illustrate typical adaptive algo-
rithm. Estimate the parameters of the second order model

y(1) + ary(t — B) + azy(t — 2k) = byu(t — k) + byu(t — 2R) (7.1)

recursively. Let @; and b; denote the parameter estimates. The
control law

u(t) = tor(t) — soy(t) — s1y(t — h) — rru(t — h)

where
to= (14 1+ p2)/ (b1 + b2)
n = [(Pl —@1)b) — (p2 - &2)5252] /N
S0 = [(Ih — d1)(a2by — arba) + (p2 — &2)52] /N

81 = —dar1 /by

N = b2 — aybyby + agb?
gives a closed loop system whose pulse transfer function from the
command signal to the output is given by

1+pm+
by + bo

b]Z +b2
24 pz+ P

Hn(z) =




where

1= —~2e"“Peoswh/1 — ¢?

- e-—2(wh

“and
P2

The closed loop system will thus retain the open loop zero and the
closed loop poles correspond to a sampled second order system
with bandwidth w and relative damping . w]

Some minor modifications of the control law in the example
are needed to handle bias and integral action. A detailed discus-
sion of these factors is given in Astrém (1979). The commercial
regulators, Electromax V and TCS 6355 are based on estimation
of parameters in the model (7.1). They do, however, use con-
trol design methods which are different from the one used in the
example.

EXAMPLE 2 i
The self-tuner discussed in Astrdm and Wittenmark (1973) is
based on the mathematical model

yk+d)=soy(k) + s1(k—1)+... + Sn,y(k — n,)
+rou(k) + ...+ To u(k —n,) + e(k + d)

)
where u is the control variable, y the measured output and ¢
is a disturbance. If ¢ is independent of the terms on the right
hand side the minimum variance control law for the plant (7.2)
is simply

u(k) = —[soy(k) + s1y(k— 1) +... + sn,y(k — 1)
triulk — 1)+ ...+ rp ulk = n,)]/rg
Lo (7.3)
The basic self-tuning algorithm can be described as follows:

ALGORITHM 1
Repeat the following steps at each sampling period:

Step 1: Update the estimates of the parameters of the model

(7.2), so that a weighted sum of squares of the errors £ are min-
imal.

Step 2: Compute the control signal u(k) from past data y(k),
y(k~1),...,u(k~1),... using (7.3) with the estimates obtained
from Step 1. a

Notice that when least square estimation is used the error
&(k + d) will be uncorrelated with the other terms in the right
hand sidgetf (7.2). Also notice that no design calculations are
required since the parameters of the regulator (7.3) are obtained
directly from the model parameters because of the special model
structure used in (7.2). In control system design it is frequently
Necessary to make a trade-off between the response time and the
size of the control signal. In minimum variance control this trade-
off is made indirectly via selection of the sampling period. The
regulator gain decreases and the response time increases with
increasing sampling period. The minimum variance control law
cannot handle nonminimum phase system because the process
zeros are canceled by the controller. By increasing the sampling
period and the delay d used in the adaptive control law the prob-
lemsowith nonminimum phase systems will, however, disappear.
Sce Astrém and Wittenmark (1985). Sampling of a stable sys-
tem, with nonzero steady state gain, always gives a minimum
phase sampled system provided the sampling period is sufficiently
long. See Astrém et al. (1984). This is also true for unstable sys-
tems provided that the unstability is caused by a single pole. The
quality of the approximation by a low order system will also be
improved when the sampling period is increased. The drawbacks
with along sampling period are slow responses to disturbances

and changes in the set point. Notice that a sampled data system
runs open loop between the sampling instants.

Predictive Control

There have recently been a considerable interest in adaptive reg-
ulators based on predictive control, Such regulators are based on
estimation of models of the type

y(k+d) = soy(k) + s1y(k — 1)+ ... + sn,y(k —n,) +r_y
u(k+d)+...+r_1u(k+1)+rou(k)+...+7‘nu(k—n,)+s(k+dg
7.4

The specifications are often expressed in terms of the desjred step
response of the closed loop system which is easy to describe to the
operator. There are many different algorithms of this type e.g.
the extended horizon minimum variance control, Ydstie (1984)
and extended prediction self-adaptive controls (de Keyser and
Van Cauvenberghe, 1982, 1985, de Keyser et al. 1985). There
are also variations based on linear quadratic optimization cri-
teria. See Peterka (1984), the Musmar algorithm Mosca et al.
(1982) and Lemos and Mosca (1985). These algorithms are also
related to dynamic matrix control (Cutler and Ramaker, (1980)
and model predictive control (Richalet et al. 1978), which is
dealt with at length in Session IIT of this meeting. There are also
multivariable extensions of the algorithms (Rouhani and Mehra,
1982). :

Prior knowledge

The adaptive regulators require significant a priori information.
The model structure used must be specified. This includes a de-
scription of how the model depend on the parameters. Initial
values of the parameters must also be provided. Some schemes
require that the initial values are such that the closed loop system
is guaranteed to be stable. An estimate of the range of parameter
variations must also be given to initialize the parameter estima-
tor. This is however less critical. To track parameter variations
properly some information on drift rate of parameters must also
be provided. Since practically all implementations of adaptive
regulators are based on computer control it is also necessary to
specify the sampling period used.. This is critical.

The self-tuning regulator given in Example 2 requires the
following prior knowledge:

h  sampling period

d  delay in number of sampling periods

n, degree of the polynomial R

ns degree of the polynomial §

A forgetting factor

0o initial estimate

po initial covariance

wh high control limits

ul low control limits

The sampling period is critical as was discussed above. The inte-
ger d is also crucial. The closed loop system will become unstable
if h and d are underestimated. The parameters are particularly
important. Since the self-tuner is based on minimum variance
control they will directly determine the closed loop bandwidth.
The parameters n, and n, are not particularly critical. A cal-
culation of covariances of inputs and outputs will show if they
are too small, see Astrém (1970). The parameter A determines

the trade-off between the tracking ability and the steady state
variance of the recursive parameter estimator. The parameters
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6o and P, determine the initial transient of the estimator but are
otherwise unessential.

The amount of prior information needed clearly indicates
that some expertise is required to commission and run adaptive
systems. Several commercial systems have therefore introduced
a "pre-tune” mode to help finding the prior information needed,
The auto-tuner is a good way to obtain prior information.

Theory

Theory has different and important roles in analysis and design
of adaptive control systems. Analysis aimed at understanding
specific algorithms is one goal. Creation of new adaptive control
laws is another role. Adaptive systems are inherently nonlinear.
Their behaviour is also quite complex which makes them difficult
to analyse. Progress in theory has been slow and painstaking,.
Much work remains to be done before a reasonably complete
coherent theory is available.

Because of the complex behavior of adaptive systems it is
necessary to comsider them from several points of view. Theo-
ries of nonlinear systems, stability, system identification, recur-
sive estimation, convergence of stochastic algorithms and opti-
mal stochastic control have all contributed to the understanding
of adaptive systems.

Many adaptive algorithms are motivated by the assumption
that the parameters change slower than the other variables of the
system. We can make sure that the parameters change slowly by
choosing a small adaptation gain. The variables describing the
adaptive system can then be separated into two groups which
change at different rates. The ad justable parameters are the slow
parameters and the state of the controlled dynamical system are
the fast variables. It is possible to derive approximations so that
the fast and the slow variables can be treated separately. This
idea which originated in analysis of nonlinear oscillations is called
averaging.

An Example

An example illustrates use and performance of adaptive control.
A ship operates in an environment that changes with wind, waves
and currents. The dynamics of a ship depend on trim, loading,
ship speed and water depth. A conventional autopilot for a ship is
based on the PID algorithm given by Equation 2.1. An adaptive
autopilot based on recursive least squares estimation and linear
quadratic control theory is manufactured by Kockumation AB in
Sweden. This autopilot has a control law, which is more compli-
cated than a PID regulator. Figure 21 shows results of steering
experiments with conventional and adaptive control. The exper-
iments are performed under similar conditions. The figure shows
clearly the superior performance of the adaptive system. The
heading variations are considerably smaller while the rudder mo-
tions have a similar magnitude. A closer inspection shows that
there are more high frequencies in the control signal for the adap-
tive autopilot. The reason why the adaptive regulator performs
much better is that it is more complex. It has an internal model
which describes the dynamics of the ship and of wind, waves and
currents. If the parameters were frozen, the performance would
not change much in the short run. It would, however, deteriorate
when conditions change. There are altogether 8§ parameters that
are estimated on line. It is quite difficult and tedious to change
50 many parameters manually. Adaptation is thus a necessity for
using a regulator of this complexity. The reduction of deviations
in heading can be translated to fuel savings. In the particular
case shown in Figure 6 the adaptive autopilot results in fuel sav-
ings of 2.7%. There are today about a hundred ships that operate
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Figure 21, Heading and rudder angles for a conventional and an
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Figure 22. Block diagram of a knowledge-based control system.

with the autopilot.

8. Knowledge-based Control

The properties of auto-tuners and adaptive regulators are com-
plimentary. The auto-tuner requires little prior information. It
is very robust and it can generate good parameters for a simple
control law. Adaptive regulators like model reference adaptive
controllers or self-tuning regulators can use more complex con-
trol laws with potentially better performance, These control laws
are local gradient procedures. Starting from reasonably good a
priori information on system structure, sampling period, and pa-
rameters, the algorithms can adjust the regulator parameters to
give a closed loop system with good performance. The algorithms
will, however, not work if the prior guesses are too poor. With
bad prior data they may even give unstable closed loop systems.
The adaptive algorithms are also capable of tracking a system
provided that the process parameters change slowly.

It thus seems natural to try to combine auto-tuners and
adaptive control algorithm. Pursuing this idea further it seems
natural to also include algorithms for monitoring and supervision
of the closed loop performance. In ;\strém, Anton and Arzén
(1985) it was proposed to use an expert system to coordinate
the different algorithms. The notion of knowledge-based con-
trol or expert control has been coined to describe a system of
this type. A block diagram of such a system is shown in Fig-
ure 22, Knowledge-based control systems are currently being
investigated in my laboratory. Such systems have the interest-
ing property that the knowledge about the control problem is
represented explicitly and that it can be explored and manipu-
lated. This offers interesting possibilities. We can thus envision
a control system that can answer questions like: What is the




current knowledge of the process and its environment? Are the
fluctuations in the process output normal? What control law is
being used? Why was this control law chosen? Why is derivative
action not used? List the loops where dead time compensation
is needed? List all loops where the regulator parameters have
changed significantly during the past two months, What tuning
procedure is appropriate for this loop? Monitor the stability mar-
gin for this loop. Since the knowledge representation is explicit,
it can also be transferred when the hardware is replaced.

9. Conclusions

It is often a tedious task to find suitable parameters of a con-
trol law. Control engineers have for a long time been faced with
the challenge of doing this automatically. A lot of research work
and experimentation are now bearing fruit. Combined with the
advances in microelectronics commercial systems for automatic
tuning and adaptation are now appearing. The experiences of
using such devices have been quite promising. The advanced
regulators result in improved product quality and energy sav-
ings. The regulators also simplify commissioning and operation
of industrial plants. Research work in universities are preparing
the ground for the next generation of systems, which also will
include AI techniques in the form of knowledge-based systems.
Research work which attempts to mimic simple neural networks
in silicon is also under way, see Hopfield and Tank (1986). Com-
bined these efforts are pointing towards the appearance of control
systems with rudimentary forms of intelligence,
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