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ABSTRACT
Video-on-Demand (VoD) and video sharing services account
for a large percentage of the total downstream Internet traf-
fic. In order to provide a better understanding of the load
on these services, we analyze and model a workload trace
from a VoD service provided by a major Swedish TV broad-
caster. The trace contains over half a million requests gener-
ated by more than 20000 unique users. Among other things,
we study the request arrival rate, the inter-arrival time, the
spikes in the workload and their cause, the video popular-
ity distribution, the streaming bit-rate distribution and the
video duration distribution. Contrary to some previously an-
alyzed workloads in the literature, our results show that the
user and the session arrival rates for the TV4 workload does
not follow a Poisson process. The arrival rate distribution
is modeled using a lognormal distribution while the inter-
arrival time distribution is modeled using a stretched expo-
nential distribution. We observe the “impatient user” behav-
ior where users abandon streaming sessions after minutes or
even seconds of starting them. Both very popular videos and
non-popular videos are specially affected by impatient users.
We also show that this behavior is an invariant in VoD work-
loads and is neither affected by the average bit-rate nor by
the number of videos a user watch.

1. INTRODUCTION
Over the past decade, Video on Demand (VoD) and Video

sharing online services have been on the rise. A recent re-
port estimated that more than 50% of the total downstream
traffic during peak periods in North America originate from
Netflix and YouTube [15]. It is thus required to analyze and
characterize VoD workloads in order to understand how to
improve and optimize the network usage and the perceived
Quality-of-Service (QoS) by the service users.

Many VoD service providers utilize the power of cloud
computing to host their services [3, 19, 32]. Since a typical
cloud hosts multitudes of applications with differing work-

load profiles [1], Cloud service providers need to understand
the workload characteristics of the running applications in-
cluding the VoD workload dynamics. This understanding is
crucial as application co-hosting can result in performance
interference between collocated workloads [9, 34]. Further-
more, resource management problems such as service ad-
mission control [42], Virtual Machine (VM) placement [10],
VM migration [41] and elasticity [35] can be further com-
plicated depending on the workload characteristics [29]. To
better understand VoD workloads, we obtained recent work-
load traces from TV4, a major Swedish VoD service provider,
detailing the requests issued by the premium service sub-
scribers to TV4’s VoD service. The VoD service is hosted
on a number of cloud platforms. We provide an extensive
analysis and characterization study of the traces.

Table 1: Example of one entry in the trace.
Video title Farmen del 1 2255111

viewer ID (hashed) a257d2e7788db3238f
Streaming start time 2013-01-13 17:00:00
Streaming end time 2013-01-13 17:08:00

Number of minutes viewed 8
average Bitrate (Mbps) 0.8

categories None
category Tree Nöje/Farmen

video Category Farmen

Table 1 shows an example entry in the trace. Each entry
contains nine fields, out of which the following seven are
used in the analysis, the title of the video requests, the hashed
ID of the premium user who requested the video, the time
the streaming of the video started and ended, the number
of minutes the video was streamed, and the average bitrate
of the stream. The remaining two fields are not used in the
analysis since they are missing for some videos.

The traces contain logged data between the 31st of De-
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cember 2012 until the 18th of March, 2013 from two cities. 1

City A is one of the largest cities in the Nordic countries with
a population over half a million inhabitants while City B is a
much smaller city with less than fifty thousand inhabitants.
The number of premium users who used the service during
that period is 23102 users. The users viewed 17131 unique
videos and started 532421 streaming sessions.

There are two main contributions of this work. First, in
Section 2, we provide an extensive study of the workload
properties related to the session arrivals. We show that the
session arrivals and the user arrivals can not be modeled us-
ing a Poisson process, contrary to what has been assumed [25]
or reported [45] in some prior work in the literature. We
identify the main events that resulted in spikes in the num-
ber of arrivals. Since the spikes cause non-stationarity in the
workload, the Hilbert-Huang transform is used to perform
spectral analysis on the workload.

Second, Section 3 contains analysis for the properties of
the workload related to the streamed sessions. Our analysis
shows that a large percentage of the sessions started are ter-
minated within the first few minutes before the video ends.
Based on this behavior and the popularity distribution of the
videos, we suggest a new caching strategy to help reduce the
wasted resources by the VoD service provider. We conclude
in Section 5.

2. WORKLOAD ANALYSIS: ARRIVALS

2.1 Arrival rate
The Probability Distribution Function (PDF) and the Cu-

mulative distribution Function (CDF) of the hourly session
arrival rate is shown in Figure 1 (in blue) on a Log-Log plot.
An almost identical plot was also obtained for the user ar-
rival rate since one user almost always does not start more
than one session per hour. The PDF suggests that the arrival
rate process can be modeled using a heavy tailed distribu-
tion. we have fitted the arrival rate data to different distri-
butions and compared the goodness of fits in order to find a
good fit. The data was fitted to lognormal, exponential, trun-
cated power law, stretched exponential, gamma and power
law distributions, three of which are shown in Figure 1.

The plots show that either a lognormal distribution, an ex-
ponential distribution or a stretched exponential distribution
is a good fit. To choose the best fit, we used the Kolmogorov-
Smirnov (KS) test [13]. The p-value for both the lognormal
distribution and the stretched-exponential distribution [31]
was greater than 0.05, the least significance level required to
validate the null hypothesis that the empirical data does not
follow the distribution. To be precise, the KS distance for the
lognormal distribution is 0.077 with a p-value of 0.09, and
the KS distance for the stretched exponential distribution is
0.059 with a p-value of 0.31.

1The non-disclosure agreement prohibits us from revealing the city
names

Both the lognormal and the stretched exponential distri-
butions are possible fits given the p-values of the KS test.
To identify the better fit, we use the log-likelihood ratio be-
tween the distributions [13]. The log-likelihood ratio of the
lognormal distribution was higher with a p-value of 0.01.
We thus conclude that the lognormal distribution is the best
distribution to fit our data from the distributions tested. The
fitted lognormal distribution is different from the arrival rate
distribution of the VoD service provided by China Telecom
discussed by Yu et al. [45] where the arrival rates follows a
modified Poisson distribution.

2.2 Inter-Arrival time
Figure 2 shows the PDF of the video sessions’ inter-arrival

times (seconds) on a log-log scale. More than 50% of the
sessions start after one or less than one second from the ar-
rival of the previous session and around 90% of the sessions
start within a minute from a previous session. The maximum
inter-arrival time is around 24 minutes. We have again tried
fitting a distribution to the Inter-Arrival time following the
same steps described above. Again, the KS test showed that
both the lognormal distribution (p-value=0.08 > 0.05) and
the stretched exponential distribution (p-value=0.08 > 0.05)
to be two viable fits. Testing using the log-likelihood method
described by Clauset et al. [13], the stretched-exponential
distribution has a higher likelihood than the lognormal dis-
tribution with a p-value=0.

While it is popular to model session and user arrival rates
as Poisson processes in workload generators [25], our re-
sults suggest that for different VoD services, different mod-
els of arrival might occur. Poisson processes require the
inter-arrival time distribution to be exponential. Figure 2
shows also the best exponential distribution fit we could achieve
for the inter-arrival data. the deviation clearly shows that the
inter-arrival time distribution is not exponential, and thus the
arrivals do not follow a Poisson process. Poisson processes
were considered the defacto processes to model network ar-
rivals until the seminal work by Paxson and Floyd [36]. It
is thus worth investigating if Poisson processes fail also to
model arrival processes for VoD systems. We unfortunately
do not have sufficient data from enough VoD providers to
come to such a conclusion.

Since at least for the TV4 workload, the user and request
arrival processes can not be modeled using Poisson processes,
many of the previously developed theories and models based
on the assumption of requests/users generated from a Pois-
son process will either be inaccurate or will be wrong for
systems like TV4 [17, 20, 25]. Since VoD workloads are
scarce, we can not compare our results with systems other
than the very few available in the literature.

2.3 Workload Spikes
Figure 3 shows the number of video sessions started per

hour in the trace. The workload has a very clear daily pattern
and a weaker weekly pattern. The pattern is violated due to
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(a) PDF of the distribution of the arrival rate and different fits.
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(b) CCDF of the distribution of the arrival rate and different fits.

Figure 1: The hourly request arrival rate distribution can be modeled as a lognormal distribution seen in the Log-Log
plots of the PDFs and CDFs.
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Figure 2: CDF of inter-arrival time (Log-Log plot).

four main significant spikes. The most significant spike oc-
curred on Sunday, the 24th of February, 2013 when the load
increased from 687 video sessions at 18:00, to 4670 video
sessions at 20:00. We investigated the main cause of this
spike. To our surprise, the most viewed video was a live
stream of a football game between two French teams in the
French soccer league, Paris Saint-Germain and Olympique
Marseille. Paris Saint-Germain is the team where, Zlatan
Ibrahimovic, one of Sweden’s favorite soccer players play [40].
The spike caused a workload increase by roughly four to six
folds from normal behavior seen in the previous weeks.

The second most significant spike occurred two days later
on the 26th of February, when the load increased from 582
sessions at 19:00 to 3025 session at 21:00. Again, the main
cause of the spike was a semi-final match in the Spanish cup
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Figure 3: Number of video sessions per hour starting
from 09:00 on the 31st of December, 2012, to 09:00 on the
18th of March, 2013. Some sessions run for a few seconds
while others run for hours.
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Figure 4: A Box and Whiskers graph showing the effect
of the time of the day on the number of sessions.

between Barcelona and Real-Madrid. The third largest peak
occurred on the 6th of February, 2013 at 20:00 when an in-
ternational football match was played between the Swedish
and the Argentinian national teams. The load increased to
2405 sessions in that hour. The fourth largest peak occurred
on the 30th of February, 2013 at 21:00 when the load reached
2365 sessions. Again, the main cause of the spike was a foot-
ball match in the Spanish cup between Barcelona and Real
Madrid, the first leg prior to the match that caused the second
largest spike.

Three of the four major spikes in the workload are gener-
ated by events that are not directly related to Sweden. This is
a clear example showing the complexity of workload spike
and burstiness management. A service provider should be
able to cope with such events with no reduction in the QoS
perceived by the service customers. The easy but expen-
sive way to provide high QoS guarantees in the presence of
spikes, is to over-provision, buy or rent enough server re-
sources to handle the largest future spike well in advance
before such a spike occurs. Another solution would be to
utilize the power of cloud computing where new resources
can be provisioned whenever needed and released when not
used anymore [4]. The problem with the second approach is
the difficulty of detecting spikes as they occur to be able to
provision resources with no QoS degradation.

2.4 Daily patterns
Figure 4 shows a box and whiskers plot showing the effect

of the time of the day on the number of video sessions. A
box-plot is a way to visualize the quartiles and the dispersion
of the distributions of data [33]. A box is plotted for all 24
hours of the day where the lower edge of the box represents
the first quartile of the number of sessions arriving on any
particular hour. The third quartile is represented by the top
edge of the box. From figure 4, the diurnal pattern of the
trace is evident. the hour with the least arrivals is at 05:00
every morning with almost no variability. The hours with the

highest arrival are at 20:00, 21:00 and 22:00 at night. Since
there is very little variability in the load between mid-night
and 15:00, and, the arrivals at these hours are low, a VoD
service provider can use the available unused resources for
business analytics [30] or can release them to save costs. Be-
fore hours with higher variability, the provider can provision
more resources.

Similar patterns can be seen in other workloads, e.g., the
load on Wikipedia [5], where the load decreases significantly
between mid-night and noon. A cloud service provider can
thus benefit from having services from different time-zones
running in the datacenter. The multiplexing between the
different services from different time-zones should provide
higher revenues with a much lower risk of service perfor-
mance interference.

2.5 Frequency representation
The request arrival rate represents a time-series. Any time

series, X , can be decomposed into three components, the
trend, the seasonality and the random components [27]. The
trend, T is a slowly changing component which captures the
change in the mean of the time series with time. The sea-
sonality, S, represents the periodic components in the load.
The random component, r is the remaining signal. The de-
composition can be performed such that X = T + S+ r or
such that X = T × S × r [27]. Time-series can be classi-
fied into either stationary or non-stationary time-series. A
stationary time-series has a non-changing mean and vari-
ance. A non-stationary time-series has one or both of mean
and variance changing. To use traditional time-series analy-
sis models such as ARIMA models, the studied time-series
needs to be stationary [14]. The request arrivals time series
for the TV4 data is non-stationary due to the presence of
large spikes.

In their seminal work to model non-stationary time-series,
Huang et al. introduced a novel empirical method to charac-
terize the frequency variations in non linear and non-stationary
time-series [22], recently, known as the Hilbert-Huang Trans-
form (HHT) [21]. At the the core of the HHT is the Em-
pirical Mode decomposition (EMD) method and its differ-
ent variations [22, 43, 16]. The EMD (and all its other
variations) are methods with which any complicated data
set can be decomposed into a finite and often small number
of Intrinsic Mode Functions (IMF) that admit well-behaved
Hilbert transforms. The Hilbert spectrum can then be used
to visualize the produced IMFs and frequency variations in
the original signal. Since the number of IMFs produced is
low, it is a more efficient way of spectral analysis compared
to, for example, the Fourier transform which typically re-
quires an infinite number of sinusoidal frequencies to repre-
sent any time-series. Huang et al. and others have discussed
the strengths and weaknesses of their proposed method and
showed the superiority of the HHT compared to other avail-
able spectral analysis methods such as the wavelet trans-
forms and Fourier transforms [16, 22, 23, 39, 43]
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Figure 5: The result from using multiplicative decomposition of the workload.

Figure 6: The Hilbert spectrum for the session arrivals
time-series.

Figure 5 illustrates the decomposition of the arrivals time-
series, in Figure 3, into multiplicative factors. Since the
trend component has is a DC component with no frequency
variations, we have used the HHT method to perform spec-
tral analysis on X = S× r. The Hilbert spectrum is shown
in Figure 6. The X-axis is the time in days and the Y-axis
is the frequency in weeks. The colors represent the intensity
of the frequency component at any point in time. On top of
the graph, the analyzed time-series is plotted. The low fre-
quency components dominate the time-series. The strongest
of these components is the weekly component.

At the times of the four major spikes discussed previously,
between 25 and 35 days, and 50 and 55 days in Figure 6, the
spectral pattern is distorted. The spikes cause an increase in
the power and dispersion of the spectrum of the time-series.
This suggests that a possible way to detect spikes as they
occur would be to use spectral analysis methods to detect
the beginning of the spike [6]. We leave this for future work.

3. WORKLOAD ANALYSIS: VIDEO
SESSIONS

3.1 Video popularity
Videos offered by a VoD service provider differ in pop-

ularity between the users. Figure 7 shows the PDF of the
popularity distribution of all videos viewed in our trace. We
have fitted the popularity data to different distributions in a
way similar to the way the arrival rate was fitted. Using the
KS test, all the tried fits had a very low p-value and therefore
were bad. Popularity in often modeled with a power law or a
Zipfian distribution [25, 45, 2]. Figure 7 suggests a heavy-
tailed distribution would be good. We suspect that our fits
are bad because of the large gap in the tail of the empirical
distribution.

3.2 Video duration
Videos provided by the VoD service are of variable length.
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follow a truncated power law distribution with α = 1.6
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Figure 9: Video popularity versus median session length
(Log-Log plot).

Not all users who start viewing a video stream continue to
watch until the end. Some users keep replaying the video,
going back and forth in the video and pausing the video.
This leads to sessions having very different length. Figure 8
shows the complementary CDF (CCDF) for the length of
the VoD sessions. More than 90% of the sessions last for
less than one hour, with more than 50% of the total sessions
lasting less than 12 minutes. More than 20% of the sessions
gets terminated within the first 30 seconds from their start
time.

These numbers confirm the “impatient user behavior” dis-
cussed in previous studies described by Yu et al. [45]. Al-
though the difference between our study and Yu et al.’s study
is around 6 years, the numbers we find here do not differ con-
siderably from their study. For example, Yu et al. found that
50% of the users terminate a session within the first ten min-
utes from when they start it and that more than 90% of all
sessions terminate within 60 minutes from when they start.
The main difference between our study and Yu et al.’s study
in this respect is that the users of the TV4 VoD are more
likely to stay than the users in Yu et al.’s study if they make
it past the first 10 minutes.

It is interesting to note that a session lasted for 528771
seconds, which is equivalent to over 6 days. During the ses-
sion, only one video has been streamed. The length of the
video on the VoD service servers is around one hour. The av-
erage bit-rate for this stream was zero Mbps. We suspect that
this is a session started by a user, paused and then forgotten
about for six days with the receiving device on during that
whole period. Another possibility is a fault in the receiver
device resulting in no proper termination for the session.

3.3 Caching
To handle the “impatient crowd”, Yu et al. suggest to

cache the first 10 minutes of videos to handle the load from
up to 50% of the viewers. Since the popularity of the avail-
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Figure 10: Video popularity versus the median time be-
tween two streams of the video.

able videos are not the same, it would be a waste of resources
to cache the first 10 minutes of unpopular videos or videos
which get abandoned by most users before 10 minutes. Fig-
ure 9 shows how the median session length changes with
the popularity of the videos (number of views). For ex-
tremely unpopular and extremely popular videos, the “im-
patient user behavior” is quite high with the median ses-
sion length of around 100 seconds. Videos with a medium
popularity seem to have longer session times. An advanced
caching and prefetching policy [28] should utilize this differ-
ence to be able to improve the QoS while reducing wasted re-
sources, e.g., by caching the first 16 to 20 minutes for videos
with medium popularity, streaming the first 3 minutes for
videos with low popularity and caching and prefetching the
first 10 minutes for videos with high popularity.

In order to further understand better how to improve the
caching strategy, we plot Figure 10. The X-axis of the fig-
ure represents the rank of the videos based on the number of
times it has been streamed starting from least popular (with
rank 1) to the most popular (with rank 17506). We then
plot the median time between the arrivals of two consecu-
tive streaming sessions for the same video (the blue dots).
We also plot the total number of times the video has been
streamed (the red line). The least popular 5791 videos were
streamed only one time during the whole period. It is there-
fore useless to cache these videos since they are seldom streamed.
Looking at Figure 9, the median time for a session for these
videos is less than 200 seconds. As the video popularity
increases, the median time between two streaming sessions
decreases considerably. Video popularity is volatile. Many
of the higher ranked videos are streamed many times for a
short period and never streamed again.

3.4 Bit-rates
Figure 11 shows the CCDF of the distribution of the av-

erage bit-rate transfer speed in Mbps. More than 90% of the
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Figure 11: CCDF of the streaming bit-rate in Mbps (Log-
Log plot).
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Figure 12: CCDF of the distribution of the number of
videos viewed per user (Log-Log plot).

VoD service users were streaming at a bit rate equal to or
greater than one Mbps. More than 99% of the service users
were streaming at a bit rate less than 3 Mbps. The bit-rate is
highly affected by the length of the session. Extremely short
sessions have typically lower average bit-rates since the ses-
sion ends before the network session connection is stabi-
lized. Extremely low average bit-rate measurements should
be correlated to the session length in order not to draw the
wrong conclusions about the network performance.

3.5 Video views per user
Figure 12 shows the CCDF of distribution of the number

of videos viewed per user. More than 90% of the service
users view less than 70 videos during the period of the study,
i.e., less than one video per day. Many of these sessions last
for less than 10 minutes. To see how long a user uses the
VoD service, Figure 13 shows the CCDF of the total time a
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user used the VoD service. Some users have used the service
for just a few minutes, with more than 25% of the users using
the service for 45 minutes or less. Other users have used
the service heavily. The longest usage was by a customer
who used the service for a total of 45 days and a few hours.
This can be either a user who has the service running for
over 15 hours per day, like a restaurant using the service,
or a customer who has multiple devices all connected to the
service using the same ID.

3.6 Impatient users
To better understand why users abandon streams early, we

investigated two hypotheses. The first hypothesis was that
users abandon sessions due to low quality of the streaming,
i.e., low bit-rate. Figure 14 shows how the average median
session length of all users changes with the average stream-
ing bit-rate. The figure shows that across most of the seen
average bit-rates, the behavior of impatient users does not
change. From Figure 11, average bit-rates more than 3 Mbps
are rare, and thus the variation seen when the bit-rates are
more than 3 Mbps in Figure 14 should not be interpreted as
a change in the user-behavior but rather as outliers.

The second hypothesis was that users who use the service
more will have a different average median session length.
Figure 15 shows that the session length does not differ be-
tween users who use the service very often from those who
do not. Thus, both hypotheses are not true. The session
length distribution is an invariant in the system.

4. RELATED WORK
Several server workloads for different services have been

analyzed in depth previously [7, 8, 24, 38, 44]. Many of
these studies focused on online video services and video
streaming. One of the first and largest studies was conducted
by Yu et al. [45] on a VoD system deployed by China Tele-
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Figure 14: The bit-rate does not have any effect on the
decision of a user to abandon a session early (Log-Log
plot).
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Figure 15: Users have an almost homogeneous median
session lengths no matter how often do they use the ser-
vice (Log-Log plot).
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com, covering a total of 1.5 million unique users for a pe-
riod of seven months in 2004. They focus their analysis on
logs from a single representative city with a total user base
of 150,000 users. They study the user arrival rates, session
lengths and video popularity dynamics, and how they can
affect the caching strategy used.

Choi et al. analyzed service logs generated for every VoD
request or VoIP call made on a day in April,2009 in a nation-
wide commercial IP network in Korea [12]. The number of
subscribers for both services is over 1.2 million generating
over 10.5 million requests in total during that day. The au-
thors focus on workload characteristics having a direct effect
on the performance of IP networks such as session arrivals
and session holding times.

Multiple studies have crawled and analyzed traces from
YouTube, Yahoo! videos and DailyMotion. Video stream-
ing from an ISP perspective has been studied by Pilsson-
neau and Biersack by analyzing 10 packet traces from a res-
idential ISP network [37]. They focus on video streams
from YouTube and DailyMotion with a focus on analyzing
the flow performance of the videos and the user behavior of
the two services. The authors study the influence of the re-
ception quality on the users ans show that videos with bad
reception quality are seldom fully downloaded.

Khemmarat et al. [28] collect user browsing pattern data
for YouTube. They show that video buffering affects the
QoS for YouTube users due to disruptions for buffering. The
authors propose a video prefetching approach for user-generated
video sharing sites like YouTube based on the site’s recom-
mended videos list for any video. They show that prefetch-
ing considerably improves the QoS of YouTube.

Kang et. al. crawled Yahoo! videos website for 46 days [26].
Around 76% of the videos crawled are shorter than 5 min-
utes and almost 92% are shorter than 10 minutes. They
discuss the predictability of the arrival rate with different
time granularities. A load spike typically lasted for no more
than one hour and the load spikes are dispersed widely in
time making them hard to predict. Gill et al. [18] collected
data on all YouTube usage at the University of Calgary net-
work for 85 consecutive days, starting January 14, 2007. In
addition, they monitored the 100 most popular videos on
YouTube for the same period. They examined the usefulness
of caching and content distribution networks for improving
performance and scalability of similar applications. Simi-
larly, Chang et al. crawled YouTube for four months in early
2007 collecting data for more than 3 million videos [11].
Their study did not consider the rate of request arrivals for
the different videos but rather focused on some statistics
such as the video category, length, size and bitrate. They also
discuss some of the social networking aspects of YouTube.

Barker and Shenoy studied the effect of background work-
loads on the QoS of a multimedia service hosted on a cloud
system [9]. They show that co-located applications can af-
fect the QoS perceived by the multimedia service customer
considerably. The degree of interference variations is most

pronounced for disk-bound latency-sensitive tasks, which can
degrade by nearly 75% under sustained background load.
Their experiments revealed two main insights, the lack of
proper disk isolation mechanisms in the hypervisor between
co-located VMs can hurt performance, and that network iso-
lation mechanisms in the hypervisor present a trade-off be-
tween mean latency and metrics such as jitter and timeouts.
Having dedicated caps on the network usage yield lower av-
erage latency, while fair sharing the network between the
VMs yields lower timeouts and somewhat lower jitter.

5. CONCLUSION
Video-on-Demand workloads are not well studied in the

literature. Our analysis of VoD traces from a Swedish ser-
vice provider aims to add some insights to better understand
and design VoD systems. The results of our analysis show
that the user and request arrival rates can not be modeled as
a Poisson process in the analyzed traces. The arrival rates
can be modeled using a lognormal distribution while the
inter-arrival time can be modeled using an extended expo-
nential distribution. There are four spikes in the workload
caused by football matches that interested the Swedish audi-
ence. Three of these matches were played in foreign football
leagues, unrelated or weakly related to Sweden, making the
spikes in the load hard to plan for without extensive social
analysis of what attracts the local population. Comparing the
user behavior in our study to the user behavior in Yu et al.’s
study [45], we can conclude that the rate of users abandon-
ing streaming sessions a few minutes from when they start it
seems to be an invariant in VoD workloads. In both studies,
50% of the sessions started were abandoned after less than
12 minutes from their beginning by the highly“impatient
users” of the VoD services. That is despite of our study
being conducted on a Swedish VoD service and their study
being conducted on a Chinese VoD Service with almost six
years between the two studies. This impatient behavior can
be used to improve prefetching and caching of the videos
provided by the VoD service provider.
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S. Sjöstedt-de Luna, O. Seleznjev, J. Tordsson, and
E. Elmroth. How will your workload look like in 6
years? analyzing wikimedia’s workload. In IEEE
IC2E, pages 349–354, 2014.

[6] A. Ali-Eldin, O. Seleznjev, S. Sjöstedt-de Luna,
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