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Abstract: A non-Gaussian time series with a generalized Laplace marginal distribution is used to
model road topography. The model encompasses variability exhibited by a Gaussian AR(1) process
with randomly varying variance that follows a particular autoregressive model that features the gamma
distribution as its marginal. A simple estimation method to fit the correlation coefficient of each of
two autoregressive components is proposed. The one for the Gaussian AR(1) component is obtained by
fitting the frequency of zero crossing, while the autocorrelation coefficient for the gamma autoregressive
process is fitted from the autocorrelation of the squared values of the model. The shape parameter of the
gamma distribution is fitted using the explicitly given moments of a generalized Laplace distribution.
Another general method of model fitting based on the correlation function of the signal is also presented
and compared with the zero-crossing method. It is demonstrated that the model has the ability to
accurately represent hilliness features of road topography providing a significant improvement over a
purely Gaussian model.

Keywords: Non-Gaussian time series, gamma distributed variances, generalized Laplace distribution,
road surface profile, road roughness, road hilliness.

1 Introduction

Modeling of road profiles is an active area of transportation engineering research. The road elevation
consists of topography, roughness and texture. Texture is the high frequency components of a road
profile responsible for noise, skid-resistance and tyre wear. Roughness is the road unevenness, con-
taining wavelengths from about 0.1 m to 50 m, and cause vibration responses in the vehicle structure
and components which may lead to fatigue problems. Variability of the roughness is often described by
means of continuous random processes. This is then used to estimate risks of fatigue failures. Topogra-
phy is the low frequency part of the elevation, corresponding to landscape variability, and is one of the
most important factors in fuel consumption of utility vehicles. The topography can be described using
slopes which are conveniently modeled by means of time series. The models are then used in dedicated
programs to simulate fuel consumption of vehicles. The presented study was initiated by investigations
of efficiency of different technical solutions to harvest energy from breaking and driving downhills of
utility vehicles in mines. The empirical example that is used in this paper to illustrate the proposed
model is based on topography records from a road surface segment in a mine. These data are presented
in Figure 1.

Homogeneous Gaussian loads have been extensively studied in the literature and applied in models
for road elevations. Early applications of Gaussian processes to model road surface roughness can be
found in [7]. Direct Gaussian models are convenient since linear filter responses to them are Gaussian
processes as well. However, the authors of that pioneering paper were aware that Gaussian processes
cannot “exactly reproduce the profile of a real road”. Although models based on Gaussian distributions
are standard in the field (see, e.g., [17] and also [14] for some recent studies), most experts of vehicle
engineering agree that road surfaces are not, in fact, accurately represented by a Gaussian distribution.
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Figure 1: Empirically measured slopes expressed in percentage collected over a 33 km long segment of rough
road surface. Vertical lines divide the records into apparently homogeneous variance sections.

One reason for this is that the actual roads contain short sections with above-average irregularity. As
shown in [3], such irregularities cause most of the vehicle fatigue damage.

In [6], a non-homogeneous model is constructed as a sequence of independent Gaussian processes
of varying variances but with the same standardized spectrum. This approach was further developed
in [5, 15]. The variability of variances was modeled by a discrete distribution taking a few values.
Another approach has been proposed in [2] where a bivariate road model was constructed based on a
Gaussian process with added random irregularities. These types of models were further developed in
[4], [13], [9] and [8] resulting in the so-called generalized Laplace models which, roughly, means that
the variable variances are assumed to follow a gamma distribution.

This work focuses on autoregressive gamma variance AR(1) models which are classical Gaussian
AR(1) processes modulated by autoregressive gamma distributed variances. Those are defined by only
five parameters: mean, variance, kurtosis and two parameters defining autoregressive recursions. As
an illustration, we use the model to describe variability of slopes encountered by a heavy duty vehicle
transporting ore in a mine. Let us note here that our model easily generalizes by taking autoregressive
gamma variances together with an arbitrary Gaussian time series. Hence it can be an alternative to
Gaussian modes with a more complex correlation structure.

This paper is organized as follows. Firstly, the Laplace distribution is reviewed in Section 2. Then,
the fundamentals of the proposed models are presented in Section 3. The dependence structure of the
models through autocorrelation functions is presented in Section 4, while descriptions of model fitting
procedures are given in Section 5. In Section 6, analysis of the road slopes is performed based on
the model. An algorithm for simulation of autoregressive gamma variance AR(1) time series is finally
described in Section 7.

2 Random variance model and generalized Laplace distribution

Frequently, in the distribution of real data, one observes heavier than normal tails. One way of ac-
counting for this effect is by introducing a random variance varying over segments of the records. For
example, for more heavily tailed data presented in Figure 1, we observe different variability over dif-
ferent sections of the record marked by vertical lines in this graph. This ‘varying variability’ can be
observed on different horizontal scales and it was well documented in the road roughness data, see [13]
and [4]. This variable local variance can be assumed to follow a certain distribution and, for exam-
ple, the gamma distribution appeared to fit road elevation data quite well. In the simplest case, these
gamma variables on disjoint segments of the roads could be viewed as independent variables. Since the
sampling step is shorter than the length of a section with almost constant variance, each section can be
modeled by stationary Gaussian autoregressive model. By combining a Gaussian model with a gamma
distributed variance, we can account for the observed non-Gaussianity of the data. In fact, the resulting
distribution will follow the generalized (symmetric) Laplace distribution. It follows from the following
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Figure 2: Models of slopes pdf; the Gaussian pdf N(0, 14.18) (dashed line), the generalized Laplace pdf defined
in (1) with parameters m = 0, ν = 1.108, σ2 = 14.18 (solid line) and the normalized histogram.

representation of a generalized Laplace variable

Y = σ
√
RX +m, (1)

where X the standard normal (Gaussian) distribution and is independent of gamma distributed factor
R that has mean one and variance ν defined by the density function

f(r) =
1

Γ (1/ν) ν1/ν
r

1
ν−1e−r/ν , (2)

where Γ(·) is the gamma function. The non-Gaussianity (shape) parameter ν can be estimated using

ν =
κ− 3

3
, (3)

where κ is the kurtosis, which for the Gaussian case is κ = 3. This parameter has a simple interpretation
as the excess of kurtosis (κ− 3) measured in terms of the Gaussian kurtosis. Note also that if the non-
Gaussianity parameter ν tends to zero, the random variance R converges (in distribution) to a constant
factor equal one and consequently, Y becomes N(m,σ2) in the limit. The mean and variance of a
Laplace variable are also given respectively by

E [Y ] = m and V [Y ] = σ2. (4)

We refer to [11] for a comprehensive treatment of the generalized Laplace distributions.
Although the Laplace distribution often fits the empirical records quite well, the constant variance

over data segments has an additional difficulty in the need to impose a model for the lengths of the
constant variance segments. The simplest model assuming equally spaced segments and independent
variances usually cannot be adopted since it is observed, not surprisingly, that variances of adjacent
parts of the record are typically correlated. To circumvent this problem effectively, we use the above
ideas by building a simple model that does not require ad hoc splitting of the data into segments.
Namely, it is reasonable to believe that the quality of road as measured by variance varies slowly
and hence the variances are likely dependent between themselves. It would then be appropriate to
model them by means of an autocorrelated model. Hence, a combination of an autoregressive gamma
model for variances with a classical Gaussian autoregressive models results in a flexible non-Gaussian
time series defined by only five parameters, mean m, variance σ2, shape ν and two autoregressive
parameters, ρx and ρr.

Empirical example - slopes of a road in a mine

The presented Laplace time series model will be illustrated using measured slopes of a 33 km long
segment of rough road surface in a mine. The slopes are measured in % and sampled each 20 meters.
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The data are presented in Figure 1. In the figure, sections with almost constant variance are marked
by the vertical lines. The signal has mean zero, variance 14.18 and kurtosis 6.32. In Figure 2 the
normalized histogram of the measured slopes is compared with the probability density functions (pdf)
of the normal model N(0, 14.18) and the generalized Laplace pdf defined in (5) with parameters m =
0, σ2 = 14.18 and ν = 1.108. We observe that the Laplace distribution adequately represents the
empirical distribution of the data. As it is shown in the next sections, variances of slopes can be fitted
fairly well by the autoregressive gamma process.

3 Autoregressive gamma variance AR(1) model

The key property of the autoregressive gamma variance model is that it introduces the dependence to
the random gamma variance scaling in (1) with a single parameter that control the degree of the de-
pendence. The two features of the model need to be emphasized: firstly, it preserves the generalized
Laplace distribution of the data; secondly, it replaces the concept of segments with constant variances
by introducing the dependence between varying variances. In this way, the problematic issue of identi-
fying intervals of constant variance is replaced by straightforward estimation of a single parameter that
controls the lag of dependence. It is worth to mention that the model has also extension to account for
asymmetry in data distribution.

Here is how the symmetric model for the slopes Yk is formally introduced, in which we follow,

Yk = σ
√
RkXk +m (5)

where Xk’s follow the Gaussian AR(1), while Rk’s are gamma autoregressive random variables in-
dependent of Xk’s. The model was first considered in [8], where it was used in a model of parallel
tracks. These two components of the model are described below in further details. Figure 3 illustrates
the capacity of the model to account for varying variance. In the top graph, we can see a simulated
record with segments of clearly different variabilities, resembling records in Figure 1. In the bottom
graph, we see the corresponding random variance itself.
In our application, the gamma factors Rk’s reflect the variability of the road hilliness while the Gaus-

sian process Xk models the local variability of the slopes. It should be emphasized that our restriction
to the AR(1) model forXk is because of simplicity and one can also consider, for example, higher order
of autoregressive Gaussian processes. The model will be used to describe the variability of the slopes of
a road in a mine shown in Figure 1. Due to the intended simplicity, the proposed stationary time series
model does not attempt to capture all aspects of the measured signals. Our focus is on modeling the
long-term distribution of some properties relevant for fuel consumption, e.g. length, height and average
steepness of hills.

Autoregressive gamma model for Rk

In our application, the gamma factors Rk’s model the variability of the variance of slopes in Yk. The
quality of a surface varies slowly and hence the factors Rk’s are likely dependent between consecutive
parts of the road. As reported in [8], the stationary gamma process Rk, with correlation coefficient ρr
and shape ν can be written as

Rk = ρrK(Rk−1) ·Rk−1 + (1− ρr) εk, (6)

where ρr ∈ (0, 1) is an autoregressive coefficient, εk’s are mutually independent gamma distributed
variables – random innovations – with mean one and variance equal to the parameter ν, independent
also from Kk = K(Rk−1) and Rk−1. Here the random factor K(r) is given by

K(r) =
1

m(r)

N(r)∑
i=0

Ei, (7)
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Figure 3: Top: Simulated values of Y . Bottom: Corresponding simulated values of autoregressive gamma vari-
ance.

where Ei’s are independent random variables, E0 = 0 while, for i > 0, Ei’s are exponentially dis-
tributed and independent of the Poisson random variable N(r) having mean m(r) equal to

m(r) =
ρr

1− ρr
r

ν
. (8)

It has been shown that this model has exponentially decaying autocorrelation ρkr , k = 0, 1, . . . , see
[16], where the gamma autoregressive model has been introduced, or [12], where a historical overview
and further properties of this model are presented.

Gaussian AR(1) time series for Xk

While an arbitrary stationary Gaussian time seriesXk leads to a generalized Laplace distribution for Yk,
we restrict ourself to the autoregressive Xk of order one with the autocorrelation function ρX(k) = ρkx,
ρx ∈ (−1, 1), normalized so that variance equals to one. We have the following classical recursive
formula

Xk = ρxXk−1 +
√

1− ρ2x εk, (9)

where εk’s are independent zero mean Gaussian variables with variance one (Gaussian white noise).
The parameter ρx completely determines the joint distribution of Xk’s. We note that the vector process
(Xk, Rk) has the Markov property, while Yk, defined in (5) as a function of (Xk, Rk) is not a Markov
process, anymore.

4 Autocorrelation functions

One approach to estimation of the parameters that govern correlation structures is to consider sample
correlation estimates and matching them with the theoretical ones. For this one has to derive the formu-
las for autocorrelations of some functions defined on the process. For our model two autocorrelation
functions are of interest: ρy2(k) = corr

(
Y 2
k , Y

2
0

)
and ρy(k) = corr (Yk, Y0), k = 0, 1, 2, . . . . In the
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case of process Yk centered at zero, Y 2
k can be viewed as a local estimate of the variance, and thus

ρy2(k) should roughly represent the dependence of the random variance Rk. Thus, the autocovariances
of the squared records should serve well for estimation of the parameter ρr. On the other hand, the
covariance of the Gaussian part of the model, i.e. the process Xk should be more evident in the covari-
ance of ρy(k). These claims are formalized in the following result, where we provide explicit formulas
for autocorrelations, while their derivation is elaborated in the appendix.

Proposition 1. For the model Yk given in (5) with Rk and Xk following (6) and (9), respectively, we
have

(i) the autocorrelation of non-negative process Y 2
k is given by

ρy2(k) =
2ρ2kx + (2ρ2kx + 1)ν ρkr

2 + 3ν
. (10)

(ii) the autocorrelation of process Yk is given by

ρy(k) = (aν + (1− aν)ρr1/2(k)) ρkx, (11)

where

aν = ν
Γ2( 1

ν + 1
2 )

Γ2( 1
ν )

(12)

and ρr1/2(k) is the autocorrelation of R1/2
k .

The autocorrelation ρr1/2(k) of
√
Rk depends on ρr and also on ν, so it can be formally written as

a certain function h(ρr, ν, k), ρr ∈ (0, 1), ν > 0, k = 1, 2, . . . . A general explicit form of h(ρr, ν, k)
is rather difficult to obtain. Here we present only the case k = 1:

h(ρr, ν, 1) =
Γ2( 1

ν + 1
2 )
(

(1− ρr)
1
ν+1 · F 1

ν+
1
2 ,

1
ν+

1
2 ,

1
ν

(ρr)− 1
)

Γ( 1
ν )Γ( 1

ν + 1)− Γ2( 1
ν + 1

2 )

=
aν

1− aν

(
(1− ρr)

1
ν+1 · F 1

ν+
1
2 ,

1
ν+

1
2 ,

1
ν

(ρr)− 1
)
,

(13)

where Fa,b,c(z) is a hypergeometric function defined as

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (q)n is the (rising) Pochhammer symbol. We note that for most practical purposes, one can use
a simpler approximate relation. Namely, Figure 4 (left) shows the behavior of h(ρr, ν, 1) = ρr1/2(1)
in terms of different ν and ρr. Since the deviation of ρr1/2(1) from ρr is very small (with the max-
imal error of approximation reaching 0.0464), one can simply use ρr instead of ρr1/2(1), with the
approximation error illustrated in Figure 4 (Right).

From (11), in the case of k = 1, we get

ρy(1) = aν (1− ρr)
1
ν+1

F 1
ν+

1
2 ,

1
ν+

1
2 ,

1
ν

(ρr) ρx,

where aν is given in (12). However, we saw in Figure 4 that there is a quite range of parameters which
this relation can be approximated by

ρy(1) = (aν + (1− aν)ρr)ρx. (14)

Finally, we note that while both Xk and Rk have AR(1)-type correlations, the autocorrelation func-
tion ρy(k) of Yk is not of an exponential form ρkx except in the case when ρr = 0. In this latter case

ρy(k) = aνρ
k
x, if k > 0. (15)

In this special case, there is a jump in autocorrelation at k = 0 and this property can be used for
detection if the simplified model is applicable to the data.
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Figure 4: Left: Graph of h(ρr, ν, 1) = ρr1/2(1) as a function of ν and ρr . Right: Graph of difference of ρr1/2(1)
and ρr .

5 Estimation of model parameters

The model (5) has all together five parameters, the center m, the scale σ, the shape parameter ν and
two one-step correlations, ρr and ρx. Estimation of the center m and the scale σ can be done in the
standard way, i.e. by taking the sample mean and sample standard deviation. From now on, we assume
that our data are standardized so we can assume that m = 0 and σ = 1 and our goal is to estimate the
remaining three parameters: the shape parameter ν and the two correlations, ρx and ρr. Parameter ν
can be obtained from matching sample excess kurtosis with ν via (3), which reduces the problem to
estimation of the two one-step correlations, ρr and ρx.

5.1 Autocorrelation method

Fitting ρx and ρr can be obtained through fitting the covariances of Y and Y 2. The method is based on
the equations (11) and (17). The formula for the one lag autocorrelation of Y can be used to establish
a relation between ρx and ρr. Namely, for a sample estimate ρ̂y of one step correlation of the data, we
can set the equation

ρ̂y = ((1− â)h(ρr) + â) ρx,

where â = aν̂ and h(ρ) = h(ρ, ν̂, 1) is given by (13). To make the relation even simpler, one can use
approximated relation (14) to obtain the explicit relation

ρx =
ρ̂y

â+ (1− â)ρr
. (16)

Let us now introduce a function

Gk(ρ) =
1

ν

(
1 + (3ν + 2)ρy2(k)

2ρ2k + 1
− 1

)
. (17)

Based on (10), the function Gk should be equal to ρkr when it is evaluated at ρ = ρx. Consequently,
we have the possibility of using (17) to match ρr with the empirical evidence, by replacing ρy2 by the
standard sample estimate of the autocorrelation of the squared values of the signal. Then, using the
right hand side of (17), one can use sample estimates ρ̂y2(k) of ρy2(k) to obtain functions Ĝk(ρx),
k = 1, . . . ,K of the yet undetermined ρx. The value of the maximal lag K should be chosen not too
large so that at this lag there is still some meaningful dependence in the data. Since these functions
should be approximately equal to ρkr , we set them equal to one when Ĝk(ρx) exceeds one and to zero
when it is smaller than zero. Further, if we use (16), this function becomes a function of ρr, denoted
now by Hk(ρr):

Hk(ρr) = Ĝk

(
ρ̂y

â+ (1− â)ρr

)
. (18)
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An estimate of ρr can be found by solving in ρ:

ρk = Hk(ρ).

The solutions, say ρ̂rk, can be combined through a weighted geometric average with linearly decreasing
weights

ρ̂r =
(
ρ̂Kr1ρ̂

K−1
r2 . . . ρ̂rK

) 2
K(K+1) .

Finally, ρ̂r can be plugged into (16) to get the corresponding estimate ρ̂x of ρx.
We note that the above fitting method is suitable when the Gaussian component is characterized by

one parameter, as it is the case in our AR(1) model. For more general Gaussian components, one can
alternatively use the one-step correlation formula for Yk to relate ρr with ρx(1) and then use (22) in the
appendix to fit ρx(k), for more general models of ρx(k).

5.2 Zero-crossing method

The Gaussian component X is characterized by a single parameter ρx. Since in our process the factors√
Rk are strictly positive, the observed zero crossings coincide with the zero crossings of X; the prop-

erty that can be used to estimate ρx. In other words, we can utilize an important characteristic of the
time series of slopes – the frequency of encountered hills f (in the sampling frequency unit) is defined
as follows.

Let Nn be the number of encountered hills, i.e. the number of times that Yk up-crosses level zero
for k = 0, . . . , n. Then the (dimensionless) frequency is defined as

f = lim
n→∞

Nn
n

= lim
n→∞

#{i = 1, . . . , n− 1 : Yi < 0, Yi+1 > 0}
n

,

where #A denotes number of elements in a set A. For the slopes Yk, defined in (5), the frequency
of hills is equal to the frequency of zero upcrossings in the Gaussian time-series Xk. Now, for a zero
mean stationary and ergodic Gaussian time series, the frequency of zero upcrossings is given by

f = P(X1 < 0, X2 > 0) =
1

4
− 1

2π
arcsin ρx, (19)

which is the special case α = 0, β = 0 of a general relation for standardized jointly Gaussian variables
X and Y with correlation ρ:

E
[
X+αY −

β
]

=
Γ
(
α+β
2 + 1

)
2
α+β

2

2π

(
1− ρ2

)α+β+1
2

∫ π/2

0

cos2 φ · sinβ φ

(1− ρ sin(2φ))
α+β

2 +1
dφ,

that can be found in [1]. Here x+ = max(0, x) while x− = max(0,−x) . One can use (19) by taking
ρ̂x matching the empirically observed frequency

f̂ =
#{i = 1, . . . , n− 1 : Yi < 0, Yi+1 > 0}

n
,

giving
ρ̂x = − sin(2π(f̂ − 0.25)). (20)

Once the estimation of ρx is concluded, one can substitute the estimate of ρx in (10) and estimate
ρr by fitting it to the empirical correlation ρ̂y2(k). Namely, the resulting

ρ̂rk =
[
Ĝk(ρ̂x)

]1/k
, k = 1, . . . ,K,

are used to match ρr. There are many ways to do so, since we have a sequence of values and only one
parameter ρr to match them. Since the accuracy of these estimators depends and generally decreases

8



Table 1: Estimation of ν, ρx and ρr for two trajectory lengths: 1500 – roman, and 10000 – italics. The numbers
represent Monte Carlo approximation of the mean values of the estimates (in the parentheses are the standard
deviation of the estimates) based on independent samples of size 20 and lag K = 3

Parameters Estimators
Autocorrelation mehtod Zero-crossing method

ν ρx ρr ν̂(σ̂ν̂) ρ̂x ρ̂r ρ̂x ρ̂r

1

0.6
0.7

0.93 (0.21) 0.60 (0.04) 0.57 (0.19) 0.60 (0.04) 0.58 (0.20)
1.02 (0.12) 0.60 (0.01) 0.70 (0.06) 0.60 (0.01) 0.69 (0.05)

0.9
0.87 (0.25) 0.60 (0.03) 0.83 (0.06) 0.59 (0.03) 0.87 (0.11)
0.96 (0.12) 0.60 (0.01) 0.89 (0.08) 0.60 (0.01) 0.89 (0.09)

0.8
0.7

0.87 (0.22) 0.80 (0.02) 0.63 (0.12) 0.78 (0.03) 0.66 (0.10)
1.00 (0.10) 0.79 (0.01) 0.74 (0.06) 0.80 (0.01) 0.72 (0.06)

0.9
0.98 (0.42) 0.82 (0.05) 0.82 (0.16) 0.81 (0.02) 0.85 (0.11)
1.05 (0.16) 0.80 (0.02) 0.88 (0.07) 0.80 (0.01) 0.90 (0.06)

2

0.6
0.7

1.76 (0.43) 0.58 (0.05) 0.68 (0.13) 0.59 (0.03) 0.68 (0.14)
2.04 (0.26) 0.60 (0.02) 0.70 (0.08) 0.60 (0.01) 0.71 (0.07)

0.9
1.84 (0.49) 0.62 (0.04) 0.81 (0.10) 0.60 (0.03) 0.86 (0.11)
1.90 (0.28) 0.60 (0.02) 0.88 (0.07) 0.59 (0.01) 0.91 (0.06)

0.8
0.7

1.92 (0.44) 0.78 (0.06) 0.69 (0.15) 0.75 (0.02) 0.74 (0.14)
1.95 (0.18) 0.79 (0.03) 0.69 (0.09) 0.78 (0.02) 0.70 (0.07)

0.9
1.58 (0.53) 0.81 (0.05) 0.79 (0.13) 0.78 (0.04) 0.84 (0.12)
1.95 (0.39) 0.79 (0.01) 0.90 (0.06) 0.79 (0.01) 0.91 (0.05)

with k, the fitting procedure should account for this effect. Here, we take a simple approach again using
the weighted geometric average with linearly decreasing weights to combine the solutions

ρ̂r =
(
ρ̂Kr1ρ̂

K−1
r2 . . . ρ̂rK

) 2
K(K+1) . (21)

It is worth to note that the method described in the previous subsection did not use the observed
frequency of hills which were used here to estimate ρx. Consequently, by combining the previous
approach with the zero-crossing method one can, in principle, fit models for which autocorrelation of
X involves two parameters. Such more general models are not considered in this work.

5.3 Comparisons of the estimation methods

For verification of the proposed estimation procedures, we simulate data points from the model using
different combinations of parameters ν, ρx and ρr. From this we obtain Monte Carlo approximation of
the mean values and standard deviations of the estimates. Two different trajectories of length 1500 and
10000 are considered and ensuing results are shown in Table 1.

The results are satisfactory and comparable for both methods with acceptable variances of the es-
timators. Although the estimation accuracy is better for longer trajectory, it is still acceptable even
for the sample size of n = 1500. Since we deal here with fairly dependent data, estimation accuracy
will largely depend on the strength of the dependence in the data – closer ρx and ρr are to one more
data is needed to estimate these parameters. In both of the zero-crossing and autocorrelation methods,
estimation of ρx performs similarly. For lower values of ρr, the autocorrelation method estimates ρr
accurately. For higher values of ρx and ρr, the zero-crossing method appears to be better. Variances for
estimates of ρr are quite comparable and in some cases somewhat smaller for the zero-crossing method
but evidence is not compelling. In addition, the value of ν parameter has not any significant effect on
the estimation of ρx and ρr but the estimate of ν is quite variable and appears to be slightly biased
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Figure 5: Top: The topography (elevation in [m]) of the road. Bottom: Graphical demonstration of defined
hilliness characteristics.

for the larger ν and ρr. These are preliminary findings and more studies are needed to confirm these
observations.

6 Modeling slopes in a mine

Here the Laplace autoregressive model is used to describe a real road topography data set. In Figure 2
it was shown that the long term distribution of encountered slopes is well described by means of a
generalized Laplace distribution. It is rather unreasonable to expect that the complex dependence in
the actual data can be described completely by our simple model. While, as mentioned before, it is
possible to consider a more complicated Gaussian component, the goal here is to examine how well
our two parameter dependence model captures the important hilliness characteristics encountered in
the road profile, see Figure 5 (Top).

6.1 Hilliness characteristics

In order to discuss properties of our random model for slopes variability, road topography and, in par-
ticular, variability of their hilliness, there is a need for a mathematical definition of some characteristics
of the road topography. These definitions are represented graphically using a portion of hilliness data
in Figure 5 (Bottom).

A hill starts when the slope becomes positive and continues as long as one drives upwards to the
crest. Then slope becomes negative and a hill continues until the slope becomes positive again and the
next hill starts. Mathematically speaking, a hill is a part of a sequence of slopes Yk, say, between two
consecutive upcrossings of zero level by Yk. The horizontal length of a hill is the distance between

10
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Figure 6: Comparison of amplitude spectra of hill lengths L (Left), hill heights H (Middle) and average slopes
S (Right) encountered in the actual data (dashed lines) and in simulated ones. Simulated Yk process is defined by
fitted parameters. The zero-crossing method is represented by thick lines and the autocorrelation method by the
thin lines.

two consecutive upcrossings. Here we split a hill in the part where road goes up (uphill) and the part
when it goes down (downhill). The length of the two parts are denoted by L+ and L−, respectively.
The steepness is described by averaging slopes. Namely, S+ is the average slope on the uphill while
S− is the average slope on the downhill. Clearly, a hill height is H+ = 0.01 · S+ · L+ on the uphill
side and H− = 0.01 · S− · L− on the downhill side (S is measured in %). We aim to find a model
of the time series of slopes Yk which theoretically provides distribution of the hills characteristics.
Since the model is symmetric, the model characteristics L+, S+, H+ will have the same distribution
as L−, −S− and −H−, respectively. For simplicity of the presentation, in the following we will only
consider characteristics L+, S+, H+ and denote them by L, S,H , respectively. We shall demonstrate
that the important hill characteristics; horizontal length L, average slope S, and vertical height H are
reasonably well modeled by means of the introduced model.

Distributions of hill characteristics are compared using the so-called amplitude spectrum that is
defined as follows. Suppose that we have a sequence of positive quantities (amplitudes) zi > 0, i =
1, . . . , n. The observations have the cumulative distribution function (cdf) FZ(z). To illustrate the
distribution of zi, instead of plotting the pairs (z, FZ(z)), one can alternatively use the amplitude
spectrum which is a graph of (n (1−FZ(z)), z), z ≥ 0. In a plot of amplitude spectra of two sequences,
one can verify whether the signals have the same distribution of large to moderate amplitudes. This is
often used in fatigue analysis to compare two sequences of cycles amplitudes, see e.g. [10].

6.2 Hilliness characteristics using the zero-crossing method

Variability of L - estimation of the parameter ρx

We begin with the horizontal length L that is completely determined by time series Xk, i.e. a Gaus-
sian AR(1) process having parameter ρx. Since the records are measured every 20[m], the estimated
intensity of hills is f̂/20 = 0.0053 [m−1] which gives E [L] = 10/f̂ = 94.9[m] and also, by (20),
ρx = 0.79. We turn next to comparison of the variability of Li found in the measured signal and ex-
tracted from a simulation of 100 Gaussian AR(1) processes of the same length as the measured signal.
In Figure 6 (Left), the dashed line represents the amplitude spectrum of the observed horizontal lengths
Li, i = 1, . . . , n. The amplitude spectra from 100 simulations for the horizontal lengths of the hills
each fit by the zero-crossing method have been averaged and presented using thick lines. We observe
a quite good agreement between the model and the empirical amplitude spectrum for the zero-crossing
method marked by the thick solid line. In this figure it is also marked by the thin line, the corresponding
amplitude spectra for the autocorrelation fit to the data. The result shows that the autocorrelation fitting
slightly overestimates sizes of the hill lengths.
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Figure 7: Comparison of the autocorrelations ρ̂y2(k), ρ̂y(k), left, right plots respectively, fitted to the data pre-
sented in Figure 1. The thick dashed lines are the empirical autocorrelations. The thin solid lines are the theo-
retical autocorrelations of the introduced model with parameters ρx = 0.852, ρr = 0.679 fitted using the auto-
correlation method, while in thick solid lines, the fit obtained from the zero-crossing method yields parameters
ρx = 0.789, ρr = 0.839 and is presented .

Variability of S and H - estimation of the parameter ρr

Since the correlation ρx is already estimated in the previous section, it remains to fit ρr. For this, we
use relation (10) in which ν has be replaced by its estimated ν̂ = 1.11 obtained from the empirical
kurtosis. We apply (17) for this purpose, as described in Section 5. In our particular example, we have
chosen K = 3, which corresponds to using autocorrelations at 20[m], 40[m], and 60[m] – a reasonable
choice of lags for the topography records. This has yielded ρ̂r = 0.84.

In Figure 7, we present the sample estimate of ρy2(k) versus the one obtained from the model using
the fitted values of ρr and ρx. The fits are quite reasonable but our model does not capture all the
dependencies observed in the data. This could be remedied by considering more general correlation
(spectra) for the Gaussian component. This approach, however, is not explored in this paper as our
simple model seems to capture well the essential topographical features of the data.

To seek confirmation of the adequacy of the fitted gamma autoregressive variance AR(1) model, we
present averages of the vertical heights of hills H and the extracted slopes S based on 100 simulations.
The resulting amplitude spectra are shown in Figure 6 (Middle) and (Right) using a thin line. The thick
lines are amplitude spectra found in the measured signal. We observe that the model captures the distri-
bution of the height of hills and average slope. In fact, as expected, the zero-crossing model performs
better than the autoregressive model in retrieving fairly accurate amplitude spectra. Nevertheless, both
the fits are fairly accurate as far as to capture the fundamental hill characteristics.

6.3 Hilliness characteristics using the autocorrelation method

As described in Section 5.1, we can alternatively use the one-step correlation formula for Yk to relate
ρr with ρx(1) and then use (10) to fit ρx(k), which might be very usefull especially for more general
models of ρx(k). The solution ρ̂x to this equation has to be found numerically due to the involvement
of non-linear function of ρr in (18). Using the autocorrelation method, we have obtained ρ̂x = 0.85
and ρ̂r = 0.68. As shown in Figure 7, autocorrelation functions are estimated in a satisfactory manner
by both the methods.

7 Simulating from the model

For convenience of the reader, we present a MATLAB script to simulate the discussed model and use it
to simulate samples from the model.

>> N=1651;
>> sy=14.18; nu=1.11;
>> rho_x=0.789; rho_r=0.839;
>> rAR=zeros(N,1); xAR=zeros(N,1);
>> riid=nu*wgamrnd(1/nu,1,N,1); xiid=wnormrnd(0,1,N,1);

12
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Figure 8: (Top): Observed road slope topography. (Middle): Simulated road slope topography. (Bottom): Corre-
sponding simulated autoregressive gamma variance. The Laplace model has the following parameters; the variance
σ2
y = 14.18, the distributional parameter ν = 1.11 and the correlations are ρx = 0.789 and ρr = 0.839.

>> rAR(1)=riid(1); xAR(1)=xiid(1);
>> for i=2:N
>> m=rho_r/(1-rho_r)/nu*rAR(i-1);
>> NPois=poissrnd(m);
>> if NPois>0, W=wexprnd(1,NPois,1); else W=0; end
>> kj=sum(W)/m;
>> rAR(i)=rho_r*kj*rAR(i-1)+(1-rho_r)*riid(i);
>> xAR(i)=rho_x*xAR(i-1)+sqrt(1-rho_x^2)*xiid(i);
>> end
>> y=sqrt(sy)*xAR.*(sqrt(rAR));
>> y=y-mean(y);
>> plot(1:N,cumsum(y))
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Figure 9: Three samples of simulated elevations (thin solid lines) are compared with the observed road elevation
topography (solid thick line). The Laplace model has the following parameters; the variance σ2

y = 14.18, the
distributional parameter ν = 1.11 and the correlations ρx = 0.789, ρr = 0.839.

In the program the variance of Yk, σ2
y = 14.18, the distributional parameter ν = 1.11 while the

correlations ρx = 0.793, ρr = 0.839. Using the MATLAB code, the road slope topography and the
corresponding autoregressive gamma variance are simulated and plotted in Figure 8 together with the
observed slope topography of a 12 [km] section. The samples have the same number of points as the
measured slopes in that section, i.e. N = 621. Using the mentioned code, three random elevation
topographies are evaluated and plotted in Figure 9. The simulated topographies are compared with the
observed elevation topography presented using a thick solid line. Here N = 1621 which corresponds
to the size of the entire data set.

The changes in variability of the observed slope topography of the road are captured fairly well in
the simulated slopes and also the observed elevation topography is well emulated by the model.

8 Conclusions

In the paper we discuss an extension of the classical Gaussian autoregressive models to account for non-
Gaussian distribution of the records as well as to provide a more flexible representation of topography in
the data of a road. The model has two components: the first one is given by a classical Gaussian AR(1)
time series while the second one represents the randomly varying variance given by an autoregressive
gamma process. The dependence in the model is governed by two autoregressive parameters: ρx for
the Gaussian AR(1) part and ρr for the autoregressive gamma part.

The distributional parameters, location, scale and shape are obtained by fitting sample mean, vari-
ance and kurtosis to their sample equivalents. We consider two estimation methods to fit the autoregres-
sive parameters. In the first one, the parameter ρx is a function of the expected length of the hills and
can be simply fit using the empirical distribution of the length. The parameter ρr is harder to estimate
since the distributions of the height of the hills and their steepness are both influenced by its value.
We used a simple relation between ρr, ρx and the autocorrelation of the squared values of the slopes
to obtain an estimate of ρr. In the second method, we have used the one-lag correlation of the slope
values instead of the expected length of the hills. We illustrate that both the methods perform quite well
for simulated data.

We also fit the model to an example of real-life road topography data. It is shown that the model
satisfactory retrieves the distributions of the length, the average slope, and the height of the hills. The
model uses only the order-one autoregressive dependence and thus is not capable of capturing longer
lag dependencies that are also present in the data. This can be remedied by an extension that involves
the Gaussian component with a more complex dependence structure. This direction of research will be
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pursued in future.

Appendix

Autocorrelation function of Yk and Y 2
k

The goal of this appendix is to present the argument for the theses in Proposition 1. Generally, without
assuming anything except than independence between Rk and Xk, ρy2(k) is given by

ρy2(k) =
ρr(k)ρx2(k) + ρr(k)cv−2x2 + ρx2(k)cv−2r

1 + cv−2x2 + cv−2r
,

where ρr(k) = corr (R0, Rk), ρx2(k) = corr
(
X2

0 , X
2
k

)
, and cvx2 , cvr are coefficients of variation for

X2 and R, respectively.
Similarly, the correlation of Y can be written as

ρy(k) =
ρr1/2(k) + cv−2

r1/2

1 + cv−2
r1/2

ρx(k).

If we add the assumption that Xk is a Gaussian process, then we have

Cov
(
X2

0 , X
2
k

)
= 2 [ Cov (X0, Xk) ]

2
,

which leads us to

ρy2(k) =
ρr(k)ρ2x(k) + ρr(k)/2 + ρ2x(k)cv−2r

3/2 + cv−2r
.

Further, by assuming that Rk is autoregressive gamma and utilizing the formula for the moments of
a gamma distribution we get cvr =

√
ν and ρr(k) = ρkr , where ρr is set to ρr(1) which leads to

ρy2(k) =
2νρ2x(k)ρkr + νρkr + 2ρ2x(k)

3ν + 2
. (22)

Similarly, since
cvr1/2 =

√
aν − 1,

where

aν =
Γ( 1

ν + 1)Γ( 1
ν )

Γ2( 1
ν + 1

2 )
,

we obtain
ρy(k) = [ρr1/2(k) + aν (1− ρr1/2(k))] ρx(k).

For our special AR(1) example, it is equal to

ρy2(k) =
(2ρ2kx + 1)(ν ρkr + 1)− 1

3ν + 2
. (23)
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