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Abstract 

The expected statistical error (standard deviation) of the area and position of a spectral line con
taining noise, obtained from fitting a Gaussian or a Lorentzian to the line shape, is modelled as a 
function of the signal-to-noise ratio, the width of the line and the sampling distance. A simple ana
lytical expression - of the same form for both Gaussian and Lorentizan shapes, and with a common 
numerical coefficient for both area and position - is found to describe the errors accurately for a wide 
range of parameters. 

1 Introduction 

When determining the position and intensity of a spectral line, the standard method is to fit a line profile 
to the experimental data. The algorithm used for the fitting usually supplies some estimate of the error 
in the fitted parameters. In contrast, this report will provide means for predicting the statistical error in 
the same kind of fit, when three basic parameters are known: the signal-to-noise ratio (SNR), the width 
(FWHM) of the line, and the sampling density. 

The difference between these two ways of estimating the error in the fitted parameters is fundamental, 
but perhaps not obvious. The error estimate supplied by the fitting routine is only based on one single 
observation of the line shape, and deals only with the statistical properties of that particular measurement. 
This will take into account statistical fluctuations of the samples (noise), the fact that our model perhaps 
does not agree perfectly with the observation (the line shape may not be perfectly Gaussian), and also 
errors caused by the fitting algorithm itself. However it does not provide any means to distinguish between 
these different sources of errors, and can in some cases be misleading, either over- or under-estimating 
the errors, due to spurious data. 

The method described in this report instead focuses entirely on the aspect of noise. To do this, a 
synthetic spectrum, consisting of a perfect line shape (Gaussian or Lorentzian) plus added random noise, 
was generated. To this was then fitted a line profile of the same shape. By comparing the difference 
between the results obtained from the fit and the original parameters used for generating the line, and 
repeating this for the same parameter combination but with different noise, the desired error may be 
estimated as the standard deviation of the individual differences. 

By performing this for a large number of different combinations of parameters, it was finally possible 
to parametrize the error as an analytical function of the signal-to-noise ratio, the width of the line, and 
the sampling density. 
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Thus there is an important difference between the two methods which can be put to good use. While 
the error estimate supplied by the fit routine is only known after the fit is performed, the expressions 
provided in this report allow the errors to be predicted beforehand. This means that given say the sampling 
distance and the line width (parameters usually known at least approximately before a measurement is 
carried out), it is possible to determine the required signal-to-noise ratio (which in practice controls the 
time required for the data acquisition) such that the errors will be acceptably low. 

In this report is first presented the model used, then the analysis and the thereby obtained results, 
and finally as an Appendix a User's Guide to the computer program used for the analysis. 

2 Definitions and method 

• Definitions 

Noise is white (random) noise, normally distributed with zero mean and standard deviation 0.5. 
This makes approximately 95% of the noise fall between ±1. 

The spectral line is assumed to be either Gaussian 

(1) 

or Lorentzian 
A w 

y(a) = 211" (a- a 0 ) 2 + (w/2) 2 ' 
(2) 

where in both cases a0 is the center wavenumber and w the FWHM (both in cm-1 ). For the 
Lorentzian the area under the curve is A; for the Gaussian it is Aw. 

Signal-to-noise ratio (SNR) is defined as the ratio of the maximum value of the spectral feature 
to the rms (root-mean-square) value of the noise. Given the above stated definition of the 
noise amplitude the rms value is 0.5, so for a peak amplitude of 10, the SNR is 20. 

Resolution (dx) is taken as the distance between two data sampling points, in units of cm- 1 . 

• Method 

1. Generate a spectral line with a Gaussian or Lorentzian shape. Its center position is chosen to 
lie between two data sampling points1 . 

2. Generate noise distributed as stated, and add noise and spectral line to make a synthetic 
spectrum. 

3. Fit a Gaussian/Lorentzian to the synthetic spectrum. Initial fit parameter values are found 
from a very rough analysis (simply locate the sample of highest amplitude), which is adequate 
since the spectrum has such a simple appearance and only three parameters are fitted. The 
fit tolerance can be set to provide very high accuracy. 

4. Calculate the intensity (area) of the original line and the fitted one and compare. Do the same 
for the original and fitted center position. 

5. Do this many times, for the same synthetic line but with different noise, and make statistics. 

1 This is introduced just in case the fit algorithm is influenced by whether the peak value is sampled or not. Most likely 
this is not important. 
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3 Analysis 

Data was generated using the program described in Appendix A, covering an extensive parameter range. 
The total calculation time was around 50 hours on a moderately fast PC. For each parameter combination, 
a large number of iterations (N = 1000) were made, each with regenerated noise, for both Gaussian and 
Lorentzian profiles. For each iteration the fitted position ai and area Ai of the spectral line was compared 
to the true, known, values a and A. Estimates of the standard deviations2 

(~a)* = JL-(~ = ~*)2' (3) 

were calculated and recorded. These are the quantities of interest, as they give an estimate of the error 
in the position and area determination. 

To avoid repeating the same information, only one of the two cases (Gaussian and Lorentzian) will 
be shown in this report for each type of plot, but the same dependencies apply to both, as was verified 
explicitly during the analysis. 

An important feature of the results is that the fitted positions and areas within the same parameter 
combinations are close to normally distributed, as shown in Fig. 1, which justifies the use of the normal 
approximation for the estimation of the standard deviation. Possibly the statistical arguments for using 
the normal approximation are valid even for much fewer iterations, but by using such a large number 
of iterations, the errors in the fitted parameters could be reduced substantially, compared to a similar 
analysis made for N = 200. 

To decompose the problem, the dependence on the signal-to-noise ratio was considered first. When 
plotting the inverse of the standard deviation3 against the SNR (denoted by S in the formulas) for a 
fixed width and dx, a linear trend is obvious; see Fig. 2. Therefore direct proportionalities 

(4) 

were assumed. Note that for the area we need to normalize by studying A/ ~A, since the absolute error 
of the fit increases as the area itself increases, whereas for the position the accuracy is independent of 
the actual wavenumber, as it should be4 . The exclusion of a constant term is reasonable; when the SNR 
is zero, there is no line and therefore the error is infinite. 

This fit is performed for many different values of the width for a fixed sampling distance ( dx = 
0.01 cm- 1 ), and the results (the different c's) are recorded. The errors of the fits are very small, indicating 
good agreement with the assumed relations (4). 

To study the dependence on the width we plot the error against w (not shown in this report). From 
this plot one finds it reasonable to assume a power-law relation awb, and when this is fitted to the data, 
the exponents come out as bA = 0.515 and bu = -0.472. These both values are close to ±0.5, so it seems 
reasonable to use simple square-root dependencies: 

1 
~A ex ,;w· (5) 

These relations are further motivated5 by plotting the c's (from Eq. ( 4)) obtained from the SNR fit 
mentioned above against w; fitting a power law to these curves gives exponents 0.498 and -0.501 (these 
are example numbers only, but they are representative). 

2 Since the symbol a is used for the wavenumber, we use D. for the standard deviation. 
3 In the following we drop the stars indicating estimates to simplify the notation. 
4 There are however other factors in spectroscopy which are wavenumber dependent, such as the sampling frequency, and 

so may enter implicitly. The independence of the actual wavenumber was also verified within the framework of this 
analysis. 
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Finally we turn to the sampling distance dx, defined as the distance in wavenumbers between the 
individual samples. For obvious reasons this parameter must be constrained to satisfy 

(6) 

if the analysis is to be physically meaningful. It is however not clear from the outset whether the 
dependence on dx is as simple as Llu = f(dx), or of the form Llu = f(w - dx), which could seem 
reasonable because of the constraint (6). This will have to be answered within the analysis. 

To study the effect of dx, the errors were calculated for the same number of iterations (N = 1000) 
for a fixed width and a fixed SNR. However, to be able to verify that the expressions (4) and (5) are still 
valid, this was done for a couple of different combinations of SNR and w. 

When plotting the errors Llu and D.A/A against dx (keeping dx < w in mind), the result again 
resembles a power law, and when fitting, the exponents again come out very close to 0.5; c.f. Fig. 3, 
where the two lines are fitted square-root curves. 

To resolve the issue whether there is any dependence in the error on ldx- wl, the two curves in Fig. 3 
were re-scaled to remove the dependence of w. Since w = 0.05 and 0.10 for the two curves, from (5) the 
scaling factor becomes V2. The result is shown in Fig. 4, where the error is plotted against v'JX. From 
this we conclude that the dependence on dx may be taken as the simple square-root proportionalities 
(5), as long as the constraint (6) is fulfilled. Similar plots for different SNR show that also (4) is valid 
independently of dx. 

So, the final dependencies can be written 

(7) 

The proportionality factors a may easily be found from the extensive amount of data already generated 
for the SNR and w analyses, as long as dx is eliminated. Using Eqs. ( 4) and (7) we immediately see that 
the proportionality factors are obtained by fitting a straight line (with intercept zero) from to following 
relations (Figs. 5 and 6): 

2 1 
cAdx= 2 w, 

a A 

The results from the fitting (traditional linear regression) are given below. 

(8) 

To provide an error estimate of the fitted parameters, one could use standard statistical methods for 
error propagation through the steps of the analysis. It is however judged that this will underestimate 
the errors, due to the following facts. The fitting of the final parameters has very small errors, as seen 
from Figs. 5 and 6; even when magnified by a factor 10, the residuals are still one order of magnitude 
smaller than the data itself, and the errors in the fitted parameters as estimated by the fit algorithm are 
in all cases smaller than 1%. However, the scatter in the plot against dx (Fig. 3) will not be properly 
accounted for, since we assumed the square-root dependencies (albeit after finding the fitted exponents 
to be very close to 0.5), so any errors associated with non-compliance to exact square-root dependence 
are swept under the rug. Also, it is difficult to estimate the statistical errors in the original results, i.e. 
the errors in the calculated standard deviations (3). 

Therefore, to estimate the errors of the fitted numerical coefficients, each individual measurement was 
used. The corresponding coefficient was calculated from Eqs. (7) (since for each measurement the three 

5 To be even more statistically correct, the proper procedure should probably be to perform a hypothesis test to check 
the probability that the data is consistent with an exponent of 0.5 at a confidence level of say 95%. This has not been 
done yet. Still, the results themselves are not modified by this, only their justification, which anyway is reasonable from 
the arguments presented already. 
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parameters w, dx and SNR are known), and a traditional estimate of the standard deviation was taken 
as an estimate of the error in the fitted parameters. 

The results were: 

Gaussian: 

Lorentzian: 

O:A = 1.41 ± 0.04 

O:A = 1.60 ± 0.04 

O:u = 0.69 ± 0.02 

O:u = 0.80 ± 0.13 
(9) 

These numbers show an astonishing result: it seems likely to conclude that O:A = 2a:u, valid for both 
Gaussian and Lorentzian shapes. 

4 Summary and conclusions 

We have found from a careful numerical analysis that the final expressions for the expected statistical 
error (standard deviation) of the fitted position and area can be written 

The errors depend on a single numerical coefficient, 

a:= { 0.7 
0.8 

Gaussian, 

Lorentzian. 

(10) 

(11) 

The type of dependencies found are physically very reasonable: increasing the SNR naturally makes 
it easier to determine the position of the line. An increased width, however, will make the uncertainties 
of the position determination larger. It also becomes easier to determine the area with an increased 
SNR and with an increased width, even when the error is taken relative to the area, which of course 
itself increases with the width and the SNR. The fact that an increased sampling density (decreased dx) 
reduces the errors is also to be expected. 

The most interesting point of the results is that all dependencies follow linear or square-root functions, 
and furthermore that the numerical coefficients for the two cases, area and position, are so simply related. 
None of these relations were initially assumed, but came out as results of the analysis. 

These findings seem rather unlikely to occur by coincidence; however, to derive theoretically this 
relation would probably require a formidable effort, considering the large number of steps in the analysis 
- the addition of random noise, the linear fitting to the SNR, and then the subsequent fitting for w 
to the results of the SNR-fitting. However, for applications, whatever way the results were obtained is 
immaterial, as long as they provide a correct description. 

As for extrapolating the results to even wider lines (or higher resolution) or stronger SNR, there are 
indications that the analytical expressions given above will fail to provide correct results for very large 
SNR, say over 500. But for these extreme cases, the errors described here are so small anyway that 
probably other errors involved in the measurement process will dominate. 

An final interesting point to notice is that expressions like ( 10) have occurred earlier in the literature 
[3], but there is nowhere given any indication of how they were obtained. They also include a "constant of 
order unity". In this report we have given a clear justification of these expressions, and also determined 
the constant. 
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Figure 1: A histogram of the difference between the fitted and the true area for a Gaussian with SNR=20, 
w = 0.05 em - 1 and dx = 0.01 em - 1, based on 1000 iterations. The figure indicates that the iterations are 
normally distributed around the true area, which is to be expected for a large number of iterations from the 
central limit theorem. The solid curve is a Gaussian fitted to the distribution. 
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Figure 2: The inverse of the error D.a of the position is directly proportional to the SNR; c.f. Eq. ( 4). The plot 
shows the Gaussian case for w = 0.05 cm- 1 and dx = 0.01 cm- 1 . For large SNR the errors become very small, 
and so any small fluctuation in D.a will give a large change in 1/ D.a, hence the increased scatter in the right hand 
part of the plot. 
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Figure 3: The error plotted against sampling distance dx for the Gaussian case of SNR=20 and w = 0.05 and 
w = 0.10 cm- 1 , respectively. For both widths a fitted square-root curve interpolates the data well. Also see 
Fig. 4. 
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Figure 4: To verify that there is no dependence on ldx - wl, the errors for w = 0.10 were re-scaled by a factor 
/2, and compared to w = 0.05. As seen from this figure. the two cases overlap almost exactly. The straight lines 
correspond to the same fitted square-root curves as in Fig. 3, again with the case w = 0.10 re-scaled by /2. The 
fit to the data is very good indeed, and the slopes of the lines, after the re-scaling, coincide to within 1.5%. 
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Figure 6: Again according to Eq. (8), the error in the area for the Gaussian case shown here, the points fall on 
a straight line. The residuals are also here magnified by a factor 10. 
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Appendix A: User's guide to the program 

To run the program, simply launch the SNERR. EXE executable file. When running under Windows NT 
or 2000 the file RTM.EXE is also required in the program directory. The program is very easy to use and 
mostly self-explaining. No special hardware or software is needed to run the program, except for some 
basic requirements: 

• 486 processor or above (Pentium or above strongly recommended) 

• Microsoft operating system, DOS version 5.0 or above (Windows works fine, both NT, 95/98 and 
20006) 

• VGA color graphics 

Even if a single calculation will execute very quickly, iterations over a large parameter set may take 
hours to complete. As an example, the data used for the results presented in this report took over 9 hours 
to compute on a Pentium 133 MHz. Therefore methods for increasing the computation speed have been 
implemented, involving turning off unnecessary program parts - most notably the graphical presentation. 

The fit algorithm used in the program is the Levenberg-Marquardt method for non-linear least squares 
fitting [1, 2]. The code was translated into Pascal from a translation by Steve Moshier into C from the 
original Fortran code of the MINPACK package from Argonne National Laboratories. 

To obtain a copy of the program, please contact the author by email at blom~teorfys .lu. se. 

A.l Program parameters 

The program parameters which can be changed are (here presented as they appear in the menu for 
changing them; for the basic definitions see page 2): 

- SNR 
Signal-to-noise ratio 

-WIDTH 
FWHM of the spectral line (in cm-1) 

- DX 
Sampling distance or resolution interval (in em - 1 ) 

- PROFILE Lorentz / Gauss 

- POINTS 
Number of sample points- sets the desired wavenumber interval. Example: POINTS=100, SIGMAO 
= 16000 and DX=O.OlO will make the wavenumber interval [15999.50,16000.50]. A high value will 
not increase the accuracy of the calculations but only slow the program down. However, unless a 
high enough value is set, erratic results may be produced if the spectral line does not fit completely 
inside the interval. As a rule of thumb, the interval should be at least ten times the FWHM of a 
Lorentzian, perhaps slightly less if the SNR is very large. For a Gaussian, five times is enough. 

6 There is a problem when running Windows 2000 in terminal mode, since this does not give access to full-screen text 
mode. The program will not be able to run under this special circumstance. 
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- SIGMAO 
Center wavenumber of the interval (in cm- 1 ). This parameter is not really used in the program, 
but is included for completeness of the physical picture. 

- SHOW yes I no 
If set to yes, then each iteration will present the spectra graphically on the screen when running 
in batch or multi mode (see section A.2). If set to no, only an iteration counter is showed. Setting 
this parameter to no will increase calculation speed by a large amount, especially if the machine 
has slow graphics. 

- MULTI- ITER 
How many iterations to run in multi mode for each SNR. 

- STEP DX I SNR 
In multi mode, step in dx or SNR. 

- STEP_FROM 
In multi mode, start dx or SNR at this value. 

- STEP_TO 
In multi mode, end at this value. 

- STEP_STEP 
In multi mode, increase by this amount in each step. 

- STEP _MODE LIN I LOG 
In multi mode, increase linearly or logarithmically in each step. If linear, then STEP _STEP is simply 
added to the previous value in each step; if logarithmic then the value x ( =dx or SNR) is updated 
in the following way: logxN+l = logxN+STEP _STEP. Logarithmic example: STEP _STEP=0.5 will 
step through the values 0.01, 0.05, 0.1, 0.5, 1, 5, 10, etc. 

- TOL 
Fit tolerance level. The actual fit tolerance is 10-x if x is the tolerance level. A higher number 
means convergence criteria are stricter. A value of 5-9 is acceptable for testing, making the program 
speed up, but for sharp data runs the maximum value 14 is recommended. 

- FILENAME 
Name of output file. If a non-valid filename is entered, such as a non-existing drive, the program will 
not detect it until it tries to create the file. Then an error message will be shown, and the program 
returns to normal running. Note that the program overwrites, without prompting, any existing file 
with this name. 

A.2 Commands and features 

Available commands and keys to press: 

F2 Change parameters 
This invokes a menu where the parameters of section A.1 can be changed. Simply walk around 
in the menu using the arrow keys, and edit any entry. Upon entrance, each entry will be 
inverted, and any typing will erase the previous value and replace it with the input. To edit 
the value without erasing the contents, first press the left or right arrow key. Other available 
keys are: 
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END j HOME: bring the cursor to the end/beginning of the line 

CTRL+END / CTRL+HOME: bring the cursor to the last/first entry in the menu 

CTRL+ DEL: delete the entire active entry 

INS: toggle insert mode on/off (default is off) 

F 1: display j undisplay help regarding each menu entry 

FlO: save changes and exit 

ESC: discard changes and exit 

Some entries are toggle fields, which means that only two values are possible (such as yes or 
no). In these cases the desired value is entered by pressing the first letter of it (such as G for 
Gaussian) or use the left and right arrow keys to flip between the two possibilities. 

Any typing errors will be detected by the program (such as the entering of a negative value 
for SNR, or a non-numeric value for a numeric parameter) when FlO is pressed. If an error is 
detected, an error message is displayed and the cursor placed on the offending entry. It is not 
possible to exit the menu (and save the changes) unless all inputs are valid. Pressing ESC will 
always exit the menu, no questions asked, but changes are lost. 

F7 Batch mode 
In this mode the program generates a spectral line once, and then iterates - virtually endlessly 7 

- the generation of random noise and fitting to the synthetic spectrum. If SHOW is set to yes then 
each iteration shows the generated and fitted spectra on the screen and displays an iteration 
counter plus statistics. The iterations are interrupted by pressing ESC. When this is done, the 
accumulated data will be exported to a file, with the name given by the parameter FILENAME. 

The output file is an ASCII text file whichincludes a header, parameters used to generate the 
data and the following statistics: 

True area of the spectral line 

Mean area of the fits 

Standard deviation of the fitted areas 

True center position of the spectral line 

Mean center position of the fits 

Standard deviation of the fitted center positions 

Number of performed iterations 

Thereafter follows for each iteration the actual value of the fitted area, and later on in the file 
a similar list of the fitted positions. 

This mode is primarily intended for single calculations, when data is desired for a specific 
combination of SNR, FWHM and resolution. 

F8 Multi mode 
This mode is similar to the previous, with the exception that it runs not only several iterations 
for the same generated spectral line (each time with different noise), but further does this for 
several values of SNR or dx - which one is changed is determined by the parameter STEP. 

7 There is an upper limit of 5000 iterations, but to reach this the program will have to run for a very long time. 
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The number of iterations is set by the parameter MULTI- ITER; the parameters STEP _MODE, 
STEP _FROM, STEP_ TO and STEP _STEP guide the value range to use. Example: STEP _FROM=3, 
STEP _TO=lO and STEP _STEP=2 will generate data for SNR=3, 5, 7 and 9. The output file 
format is also similar to the one from batch mode, except that the individual values of fitted 
areas and positions are omitted, and instead the data is presented in labelled columns (same 
as listed above, plus SNR or dx), one line for each value of SNR or dx. 

ENTER Iterate 
This is the simplest feature of the program; it generates noise and fits a profile to the synthetic 
spectrum, i.e. the same which is done in one iteration in batch mode. The same spectral line 
is used over and over. To change the spectral line, press S. 

F5 The option SHOW (see above) is also available through this keyboard shortcut. Press F5 to 
toggle the option on/off. 

S Pressing S will cause the program to re-initialize all parameters. 

Q To quit the program, press Q. 

A.3 Initilization files and default parameters 

If the program is called with a command line parameter, this parameter is assumed to be the name of an 
initialization file. This file (which need not reside in the same folder as the program) contains values for 
the different parameters. Not all parameters need to be given, but only the ones wanted to be changed 
from the default values (see below how to change these). The program will read the file and set the 
parameters accordingly, and start as normal. 

The format of each line of the file must be as follows: 

PARAMETER = value 

Only one parameter may be specified per line, and they must be entered exactly as given in section A.l 
· - note the underscores - although upper or lower case is optional. Blank lines and spaces and tabs are 
ignored, as are lines starting with a semicolon (;), which is useful for temporarily leaving out a parameter 
without deleting that line. If the file contains unrecognized commands or the given values are unallowed 
(such as entering a negative FWHM), the program will give an error message, stating the offending line 
number in the file. 

There is one additional command for the initilization file which is not available from the program 
menu. It is 

- AUTO yes I no 
See section A.4 for details. 

To change the default program parameters, simply put a parameter file with the above given format 
(the AUTO command is not available for this file) in the directory from which the program is run (need 
not be the same directory as the executable itself resides in) and name it DEFAULT.INI. If the program 
is then called with a command line parameter, parameters specified in that initilization file will be used 
instead of the ones in the default-file. Note that not all parameters need to be specified in DEFAULT.INI; 

those omitted will take program basic default values. 
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A.4 Auto mode 

The parameter AUTO is used to enter auto mode, which is only accessible from an initialization file. If 
this parameter is set to yes8 , the program will not produce any graphics on the screen, but run in multi 
mode as specified by the parameters MULTI- ITER, STEP _FROM etc., save the results to the file specified by 
FILENAME and then quit the program. This way a powerful multi data run can be set up by creating a 
batch-file, e.g. with the following contents: 

ftserror run1.ini 
ftserror run2.ini 
ftserror run3.ini 

where the ini-files each contain specific parameter settings and, very importantly, a unique filename for 
each output file, since the program always overwrites existing files. 

While running in auto mode, the program will present an iteration counter and show the SNR or 
dx interval. Upon completion, a message is printed to what file the data was saved. In auto mode, the 
program may be interrupted by pressing ESC, which will terminate the present program run. Normally 
the program will exit with the DOS environment variable errorlevel set to 0, but if ESC is pressed in 
auto mode, it will be set to 1. This way the whole batch-file may be terminated by testing for this case: 

ftserror run1.ini 
if errorlevel=1 goto end 
ftserror run2.ini 
if errorlevel=1 goto end 
ftserror run3.ini 
:end 

8 Setting it to "no" has no effect. i.e. is equal to omitting the AUTO parameter from the file altogether. 
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