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Modelling and Identification of Power System Components

K. J. ASTROM
Division of Automatic Control, Lund Institute of Technology, Lund, Sweden

SUMMARY

There is a continuing tendency to apply many of the powerful results of modern
control theory to various industrial processes. Power systems have been indicated
as one area where significant progress can be expected. Practically all results of
modern control theory require that models of the processes in terms of state
equations are available. The need to obtain such models has been a strong motiva-
tion for research in the area of modelling and identification. Some progress
made in this area is reviewed in this paper. Modelling based on physical equations
and on plant experiments is discussed and compared. Particular emphasis is given
to parameter estimation techniques like the maximum likelihood method which
offer a possibility of combining physical a priori knowledge with experimental
investigations. The formulation of identification problems is discussed, including
the choice of criteria and model structures.

The techniques are illustrated by applications to data obtained from measure-
ments on various components of a power system. The examples include an electric
generator, a nuclear reactor and a drum boiler, and serve to illustrate the potentials
and limitations of system identification and modelling techniques when they are
applied to real data.

1. INTRODUCTION

The design of a control system is frequently divided into two steps: determination
of a mathematical model and design of a control strategy. In fact most of the
control theory that has been developed postulates that a model of the system and
its environment is available. To use much of the existing control theory it is
therefore necessary to have techniques to determine suitable models for the
processes to be controlled.

Before the advent of modern control theory most results were restricted to linear
systems, assuming a model specified by a transfer function. The modelling then
reduces to the determination of transfer functions. This is conveniently done
experimentally by introducing a sinusoidal variation in the input and measuring
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amplitude and phase relations between the input and the output. Interesting
applications of this technique to power systems were soon made. In Sweden, for
example, a group at the ASEA company under the direction of Dr. A. Garde made
extensive measurements on power system components for the purpose of designing
control systems. A typical study was the determination of the transfer function
from power input to frequency variations in the Swedish power net reported by
Oja®°.

A characteristic feature of many significant results in control theory that have
been developed over the past 20 years is that they require other models than
transfer functions. Typically, many of the results of modern control theory assume
that the system is described by time domain models like

dx
= f(x, u,v) 0
y = gx,u,v)

where u is the input, y the output, x the state variable and v a disturbance.

To apply the results of modern control theory to industrial processes it is
therefore necessary to have techniques available to determine models like eqn. (1)
for the different processes. In this paper we will outline some progress towards the
solution of this problem. The results, which can be applied to many industrial
processes, are illustrated by computations on data obtained from experiments on
power system components. Two approaches, modelling from physical a priori
knowledge and modelling based on measurements of inputs and outputs only, are
discussed in §2. Possibilities of combining the techniques are also investigated.
Parameter estimation methods and formulation of identification problems are
covered in §3. The choice of model structures for linear deterministic and linear
stochastic systems is reviewed in §4 and §5. Selection of criteria for identification
problems is the topic of §6. In §7, §8 and §9 the techniques discussed in the previous
sections are applied to the modelling of power system components. The results are
based on measurements on real processes. The examples include a power generator,
a nuclear reactor and a drum boiler.

2. MODELLING AND IDENTIFICATION

The problem to be considered is thus how to obtain a model like the one given by
eqn. (1) for industrial processes. This problem is sometimes called the inverse
problem because a solution is given and the problem is to find the equation which
has the given solution. Problems of this type do of course arise in many fields:
biology, medicine, economy, physics and chemistry. There are certain advantages
in the modelling and identification problems originating from the field of auto-
matic control:

There is a specific purpose in doing the modelling (design of control strategies).
It is often fairly easy to do experiments. (Control systems are designed in such a
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way that control variables can be manipulated and outputs measured.)

Strictly speaking, the problem may not be so well defined. Even if the design of a
control system is the final goal, it is of course often very valuable to have insight
and understanding of several of the system properties that do not enter the control
design directly. The possibility of making experiments may be severely limited
because it may be necessary to experiment under normal operating conditions, and
large changes in inputs may be prohibitive for safety and economic reasons.

Process models can be obtained from basic physical laws, from pure input—
output experiments or from a combination of these. The different approaches have
advantages and disadvantages which are briefly discussed below.

2.1 Modelling from physical principles

The required models can in principle be derived from basic physical laws expressing
conservation of mass, momentum and energy, combined with material equations
like Boyle’s law or Hooke’s law. The models obtained in this way have the great
advantage of a wide range of validity. Usually, they also provide a good insight
into the behaviour of the system. The drawbacks of modelling from physical laws
are that: the required knowledge is not always available; the procedure is fre-
quently time-consuming (consider the time required to develop Newtonian
mechanics); and it is often difficult to make sensible approximations. A typical
difficulty is to find good approximations of distributed parameter systems.
Experience has shown that the models developed from basic physical principles
tend to be very complex. Since the complexity of the model indirectly implies a
complex control strategy and vice versa, then if a system can be successfully
controlled by a simple strategy it can probably also be modelled satisfactorily by a
simple model. In the area of power systems, dynamics of components like genera-
tors, motors, transmission lines and hydroelectric stations are well understood in
the sense that models can conveniently be derived from physical principles. On the
other hand, components like thermal boilers and nuclear power stations are not
sufficiently well known for models suitable for control to be derived from physical
principles alone. In thermal boilers we have, for example, the difficulty with the
two-phase flow and the uncertainty in heat transfer coefficients. Even if the basic
neutron kinetics in nuclear power stations is well known it leads to very complex
models if three-dimensional effects are considered. A large portion of nuclear
reactor dynamics also consists of thermal dynamics and hydromechanics.

2.2 Input—output modelling

The pure case of input—output modelling consists of the determination of a model
from input—output measurements only. This is often called the black box approach.
The advantage of this method is that it is usually done fairly quickly. Experience
has also shown that it usually leads to fairly simple models. One serious dis-
advantage is that in most methods it is possible to determine linear models only.
This means that the validity of the model is limited. A change in operating condi-
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tions, input signals, etc., may thus lead to a different model. Another disadvantage
is that available a priori knowledge is not used. For example, it is almost impossible
to exploit a priori knowledge when a transfer function is determined using fre-
quency response methods. However, in some cases the input—output approach may
be the only possibility. This may be the case in the characterization of disturbances
such as load variations.

Recognizing the advantages and disadvantages of modelling from physical
equations and from input-output experiments alone it seems highly desirable to
try to exploit both methods in order to solve the modelling problem. In the next
section we will discuss techniques that can be used to do this.

3. PARAMETER ESTIMATION

Using available a priori knowledge about the system to be controlled, it is frequently
possible to arrive at a class of models {M} that can represent the system. The class
of models can, for example, be the class of all stable linear systems having positive
impulse responses, all systems described by equations like eqn. (1), where the
functions f and g depend on a parameter, etc.

The problem is to design an experiment on the real system which makes it
possible to select one model in the class which is a good representation of the real
system. For a control system the most natural way to select a suitable model would
be to compare the performances of the control strategies designed on the models
when used to control the real system. Since such a selection is very difficult to do,
simpler ways are often chosen. It is common to select the models by comparing the
error between the model variables and the corresponding system variables. The
comparison is often based on minimization of a loss function, for example of the

type
V) = L " e @)

where y is the system output, y,, the model output and e the error. The error can
for example be defined as

€=y = Vn (3)
or
e = Ay - Aym (4)

where A is some operator. Examples of this are discussed in ref. 5.

Using this formulation, the identification problem reduces to an optimization
problem. Select the model in the class {M} such that the chosen criterion is as
small as possible. It is natural to ask if there is a unique minimum, if there is a
natural choice of loss functions and how the results are influenced by the choice of
loss functions. Some of these problems will be covered in the following sections.
In particular, it will be shown that if auxiliary assumptions are made there are in
fact natural loss functions and there will be unique minima.
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4. LINEAR DETERMINISTIC SYSTEMS

Consider the case when the model is given by a state equation like (1) where the
functions f and g depend on a set of parameters oy, ds, . . ., &, which are considered
as components of a vector a. Also assume that the functions f and g are linear in x
and u and that disturbances v are neglected. We thus have the standard state space
description of a linear system

d - .
£=Ax+Bu

®)
y=Cx + Du

where the elements of the matrices A, B, C and D depend on the parameter o.
It will be shown that some of the problems raised in the previous section are non-
trivial even in such simple cases. Let the experiment be arranged in such a way
that the input u is constant over sampling intervals of constant length. The values
of the state variables, the inputs and the outputs at the sampling instants are then
given by

x(r + 1) = Ax(t) + Bu(?)

(6)
y(t) = Cx(t) + Du(t)
where the sampling interval is chosen as the time unit and A, B, C and D are
constant matrices whose elements depend on the parameter &. The matrices A and
B are related to A and B through well-known equations.
Let #1, p and » be the dimensions of x, u and y respectively. The descriptions (5)
and (6) of the system then contain

N, =n*+n{r+p)+r1p N

parameters. It is well known that the input-output relation for egns. (6) can be
characterized by at most

Ny =n(r+ p) +1p t)

parameters. It is thus clear that in an identification experiment where the input u
of eqns. (5) or (6) is perturbed and the output y is observed it is possible to determine
at most N, parameters. Since the models (5) and (6) have N; coefficients, it is
clear that it is not possible to determine all coefficients of eqns. (5) or (6) from an
identification experiment. We can thus say that the model is not identifiable. The
difficulty can be overcome by choosing a canonical structure or by using additional
information about the system.

It is well known that if the coordinates in the state space eqns. (6) are changed by
the linear transformation '

2(1) = Tx(?) ©)

References pp. 23-24
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then eqns. (6) transform to
z(t + 1) = TAT 'z(t) + TBu(r)

(10)
y(t) = CT'z(t) + Du(r) ‘
which have the same input—output relation as eqns. (6). It is now natural to ask if
there are transformations T such that the transformed eqns. (10) are characterized
by fewer coefficients than eqns. (6). Many transformations with this property are

known (see, for example, refs. 1, 18 and 26). One example is given below.
4.1 Canonical structures
Assume that the system (6) is completely controllable and completely observable.

Let A be non-singular and let C have rank r. Then there exists & transformation T
such that the transformed system (10) becomes

Fay,  Qya...04,] by bia... by
Ay  Qpp ...z, byy  byy...by,
Z{t + 1) =| : D)+ - : Coju(e)

Gy e S

L E i L by bpp.. by, an
1 0...0...0
0 1...0...0

yioy=| . . . |zt + Du)

0 0..1...0

where E is a matrix with one non-zero element in each row. (This element can be
chosen as 1.) The proof is straightforward and omitted. There are also duel
representations.

The representation (11) contains N, parameters and it is thus a minimum
parameter representation. There are, however, two difficulties with this representa-
tion. The matrix E reflects the way in which the state variables are coupled to the
output. In general, there might be

Ny = (" B 1) (12)

r—1

different matrices E. Hence if there is no a priori knowledge about the manner in
which the outputs are coupled to the states there are (N;) different models of the
type (11). In practice, this means that in order to fit a general linear model (11) to
experimental data it is necessary to determine the best values of the parameters
a;;, b;;and d;; for all N5 possible E matrices. If r = 1 then N; = 1 and there are no
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difficulties, since there is only one alternative. The case r = 1 implies that the
system has only one output. Completely observable and completely controllable
linear systems with one output thus have only one structural parameter—namely
the order of the system. For such systems it is therefore possible to obtain unique
canonical representations. To identify linear systems with one output it is sufficient
to choose a minimal parameter structure and determine the parameters of models
with successively increasing order. For true multivariable systems the problem is
much more difficult, since for each model of order n there are N5 models with
different internal couplings. This means that if no structural information is avail-
able a priori it is necessary to consider Nj cases for each order of the model. Since
Nj is a fairly large number even for moderate values of r and n, investigation of all
possible internal couplings is a significant burden.

There are many canonical structures similar to eqns. (11). They will, however, all
suffer from the same difficulty that unless the internal couplings are known there
are many different models.

If it is attempted to bypass the difficulties by identifying a multivariable system
as an interconnection of single output systems, another difficulty is encountered.
Owing to uncertainties, poles of the single output systems originating from the
same mode of the multivariable system are easily estimated as being different. This
means that the model obtained will be of too high an order due to false modes and
that the internal couplings of the multivariable system will also be represented
incorrectly.

It is thus crucial to exploit a priori information in the identification of a multi-
variable system.

There is also another difficulty with the representation {11). Due to its peculiar
structure it can be shown to be very sensitive to parameter variations. Examples are
given in ref. 15.

4.2 Using a priori knowledge

Having found some difficulties associated with the choice of canonical structures,
we will now consider some problems associated with the use of a priori physical
knowledge. With some knowledge about the physics of the process it may be
possible to impose some conditions on the elements of the matrices A,B CandD
of eqns. (5) or A, B, C and D of eqns. (6). An example is given below.

Example 1
Consider a system described by eqns. (5) where
_051 0 o oy “15_
ay 0 oy oy oy
A=lo, 0 ag o o5
oy 0 O o3 O
las 0 o9 ogp 0y 8 |
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[0 o Oy |
0 Oy %325
ﬁ == 0 0622 0(26
o O 0
1 0 O3 %a7
1 0 0 0 O]
C =
o 1.0 0 O

Lo

D=

0 0

This is in fact a simplified model of a drum boiler (see ref. 9). The state variables and
the inputs have the following meanings:

x, drum pressure

x, drum level

x; drum liquid mean temperature

x, riser tube mean temperature

x5 mean value of steam-to-water ratio in drum and risers

u, fuelflow

u, feedwater flow

u; steam flow
The fact that certain elements of the matrices A, B, C and D are zero is obtained
from physical considerations®.

If it is attempted to fit a model having the structure given in Example 1 it is of
course of interest to know if all the parameters oy, &,,..., %, can be determined
from input-output experiments. The existence of a neat criterion to decide this is
still an open problem. Algorithms which show that the parameters can be deter-
mined locally are available (see ref. 6). In this particular example we have n = 3,
» = 2, p = 3. Also notice that the matrix D vanishes identically. The input-output
relation can be characterized by 25 parameters. We thus find that the 27 para-
meters of the model cannot be determined from an input-output experiment in
this example.

5. LINEAR STOCHASTIC SYSTEMS

When solving control problems, the characteristics of disturbances are frequently
as important as the process dynamics. A significant contribution in modern
control theory has been to model disturbances as stochastic processes and to
exploit the theory of stochastic processes to obtain control strategies that take into
account certain characteristics of the disturbances (see, for example, ref. 2). The
following model is frequently used to represent a control system subject to random
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MODELLING OF POWER SYSTEM COMPONENTS 9
disturbances:
x(t + 1) = Ax(t) + Bu(?) + v(5)
y(t) = Cx(t) + Du(t) + e(1)

In this model {v(t),t = 0, £ 1, +£2,...} and {e(t),t = 0, 1, +2,...} are sequences
of independent equally distributed random vectors with zero mean values and
given covariance matrices

' (13)

cov[v(t), v(t)] = R,
cov[e(t), e(t)] = R, (14)
cov[v(r), e(1)] = Ry,

The model (13) is fairly general. It can, for example, be used to represent finite
dimensional linear systems whose disturbances are weakly stationary random
processes with rational spectral densities.

The problem of determining the parameters of the model (13) will now be
discussed. If all the elements of the matrices A, B, C, D, R,, R, and R, are con-
sidered as parameters the model contains

N, =n(l5n +p + 2r + 0.5) + r(p + 0.5r + 0.5) (15)

parameters. Apart from the difficulties associated with the determination of the
parameters of the deterministic part of the system, i.e. A, B, C and D, it can be
shown that all elements of the matrices R,, R;, and R, cannot be determined from
the data of an input—output experiment.

Assume, for example, that the matrix R, is positive definite. Then the model
given by eqns. (13) is equivalent to the model

R(t + 1) = AR(Y) + Bu(r) + Ke()
y(t) = C&(t) + Du(?) + £(t)

where {g(t),t = 0, +1, +£2,...} is a sequence of independent equally distributed
random vectors with zero mean values and covariances R. The models are equiva-
lent in the sense that the input—output relations are the same and that the stochastic
properties of the outputs are also the same?.

The proof of the statement follows from the Kalman-Bucy filtering theorem.
The assumption that R, is positive definite can be relaxed. The model (16) is not
unique. There are in general many matrices K for which the stochastic properties
are the same. The representation is unique, however, if it is required that the
matrix A — KC has all eigenvalues inside the unit circle.

The model (16) contains

Ny =nm+ 2r + p) + 10.57 + p + 0.5) (17)

(16)

parameters. It has several interesting properties. The state variable % of eqns. (16)
can be interpreted as the best linear estimate of the state x of eqns. (13) based on
observed outputs. The quantities {&(¢)} are the innovations associated with the
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stochastic process {y(t),t = 0, + 1, +2,...} of eqns. (13) or (16). The matrix K can
be interpreted as the steady state gain of the Kalman filter associated with the
model (13). The Kalman filter for estimating the state of eqns. (13) is thus given by

R(t + 1) = AR() + Bu(®) + K[y(r) — CR(t) — Du(t)] (18)

This equation is trivially obtained by eliminating & in egns. (16).

Hence if the purpose of the identification is to design a predictor or a regulator
based on linear stochastic control theory the model (16) has several advantages
over the model given by eqns. (13). If the model (13) is determined it is necessary
to solve a Riccati equation in order to obtain the gain of the Kalman filter. It also
turns out that the algorithms for the identification problem are simpler for the
model structure (16). Notice, however, that even with eqns. (16) there are the
difficulties with ambiguities discussed previously for deterministic systems.

In the special case of systems with one output the redundancy in the general
model can be reduced by first transforming the state variables so that TAT !
becomes a matrix on companion form and then using the transformation given by
eqns. (16). We will then obtain the following model:

C—a, 1 0...0] (b1, .. by, 1 [k, |
—a, 0 1...0 byy ...by, k,

Z(t+ 1) = : R e+ . w(t) +| &(1)
—an.._i 0 0..-1 bll—l,l"'bn_i,l) I(v"_l
—a, 0 0...0 byt by k,
- - - - T (19)

YO =[1 0 0..000)+ &)

By eliminating the state variable z the following input-output relation is obtained:
yO) + ayt — O+ - +ay@t—mny=but— 1)+ -+ byt —n)+---
+ byt — 1) + - + byt — n) + &(t) + crelt — 1) + -+ + et — n)
(20)
where
ci=a;+k for i=12,...,n 21
The model (20) is thus a canonical representation of a linear stochastic system with
one output and several inputs.

The model (20) can be written in a slightly more compact form if the polynomials
A ="+ a2 ' + - +a, ,
B(z)=[by1.. - byJ2" 4+ [byy . by )" 72 4 [Bar - byl (22)
C=2"+c 2" '+ +c,

and
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and the shift operator g defined by

gx(t) = x(t + 1) (23)
are introduced. The model (20) then becomes
Al@y(t) = Blayu(®) + Cla)(t) (24

6. CRITERIA

Having chosen a model whose parameters can be determined from input-output
data it remains to find the parameters of the model such that the model fits the
experimental data. The crucial problem is then to find suitable criteria. Having the
control application in mind, it would be natural to evaluate the model on the basis
of the performance of the control strategies designed from it. This is generally very
difficult to do, and it is thus necessary to use other criteria. The criteria can be
chosen ad hoc as, for example, in eqn. (2).

If statistical assumptions are made, the parameters can also be determined using
statistical parameter estimation techniques. This leads frequently to an optimiza-
tion problem with a given criterion. It is thus often possible to give statistical
interpretations to many criteria.

6.1 Maximum likelihood estimates

Assuming that the process is governed by the model (16) where {(2)} is a sequence
of independent gaussian random variables, the parameters can be determined using
the method of maximum likelihood. It can be shown that the likelihood function
for estimating the model parameters is given by

1 X N
—InL= 3 Y eT(OR™ e(t) + Eln det R + const

t=1

(25)

where N is the record length and R the covariance of g(¢). The identification
problem then reduces to the problem of minimizing the function (25) with respect
to the unknown parameters. The matrix R is frequently not known. This means
that it is necessary to minimize eqn. (25) with respect to R also. Notice that this can
be done analytically. We have

) 1 ¥ . 1 X
Ming |z Y e"(OR ™ 'e(r) + —I\[ln detR |= N + ﬁln det— Y &(0)e"(t) 26)
2.=4 2 2 2 N .=
The minimum is assumed for
1 N
R=R,= N Y e’ (@) 27
=1
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This follows from the identity

N
Y ¥

i=1

N -1
Y xjij) X, =n (28)
i=1
where # is the dimension of the vectors x;.

The maximum likelihood identification thus reduces to the minimization of the
loss function

N
V=det Y &ne’(r) (29)
t=1
and conversely an identification problem with the criterion (29) can be interpreted
as a parameter estimation problem. An estimate of the covariance R is then given
by eqn. (27).
In the special case of systems with one output, ¢ is a scalar and the loss function
reduces to

R T (30)

Under the restrictive assumption that the data were actually generated by a model
(16) where {g(t)} is a sequence of independent gaussian random variables it is
possible to pose and answer several statistical problems. With minor additional
assumptions it can be shown that:

(a) the estimates converge to the true parameters with probability one as the
record length N increases (consistency);

(b) for large N there are no other estimation procedures that give estimates with
smaller variances (asymptotic efficiency);

(c) an estimate of the covariance of the estimate & is given by

2V
covla, o] = N | 2% (31)

(asymptotic normality).
The precise statements of these results are given in ref. 3 for the single output case
and in refs. 7 and 27 for the multivariable case.

Many other statistical problems can also be posed. For example, the determina-
tion of the order of a model can be approached as a statistical problem. Let V,
denote the loss function obtained for a model with n parameters. The function ¥,
decreases with increasing i. The problem is to decide if the decrease in Vis signifi-
cant or not. For systems with one output the test quantity

Vi, = Vi, N — 1,

_ no
Fnl,nz - V

Ha

for n, >n 32
P 2> (32)
where N is the number of observations of the output, can be shown to be asympto-
tically F-distributed. The quantities F, . can thus be used to test whether the loss

function is reduced significantly when the number of parameters in the model is
increased from n, to n,.
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Notice that one can test whether the residuals are gaussian and uncorrelated.
It is, however, virtually impossible to assert that the data were actually generated
by a model (16) with specific parameters. In practice, this is of course never true,
since the model (16) is only an approximation of a complex process. Thus, the
results obtained by using the statistical theories must be handled with great care
when applied to real data. Notice that when the methods are tried on simulated
data it is always possible to assert that the assumptions required by the statistical
theory are fulfilled!

6.2 Other interpretations

The algorithm obtained by minimizing the criterion (29) can be given a physical
interpretation, even in the case when no statistical assumptions are made. Equation
(16) can be rewritten as

%t + 1) = AR() + Bu(t) + K[y(z) — C&(2) — Du(1)]

(33)
g(t) = y(t) — C&(1) — Du(z)

The quantity C%(t) + Du(t) can be interpreted as a one-step prediction of y(¢)
based on y(t — 1), y(t — 2),... . The quantity &(f) can thus be interpreted as the
error in the prediction of the output. To minimize the loss function (29) thus means
that the parameters of the model are changed in such a way that the error in
predicting the output one step ahead is as small as possible according to the
criterion (29). In the case of single output systems the criterion (30) is simply the
mean squares prediction error.

7. POWER GENERATOR DYNAMICS

In this section, the techniques described in the previous sections will be applied to
power generator modelling. The results of this section are based on ref. 17.

The analysis is based on experiments made by Dr. Stanton®* ?° on a 50 MW
turboalternator. The experiments consisted of recording the variations in the
terminal voltage V, the active and reactive components of the armature current, I,
and I, respectively, and the angular velocity w during normal operation. The
instrumentation used is described in ref. 23. This report also contains a description
of the experimental procedure and the difficulties with this type of experiment.
Several experiments were performed by Stanton. In this example, we will base
computations on an experiment performed with the governor blocked, since we are
interested in open loop dynamics. The record length was 600 sec and the sampling
interval was 0.5 sec for the angular velocity and 0.125 sec for the other variables.

In this example, the dynamics relating angular velocity to electric torque
M = VI jo will be considered. A plot of these two variables is shown in the upper
part of Fig. 1. The generator is frequently described by the simplified model
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Fig. 1. The results of identification of power generator dynamics. The uppermost curve shows the

measured input (electric torque dM = I,V /w in per unit and measured output (angular velocity @ in

rad/sec). The model output computed from the fifth order model with coefficients given in Table 1 and
disturbances neglected, the model error and the residuals {¢(t)} are also shown in the diagram.

Vi
CI—00+Da)==Mm— !

J
dt w

(34)

where o is the angular velocity of the rotor, J the moment of inertia of the rotor,
D the damping coefficient, ¥ the terminal voltage, I, the active component of the
armature current and M the mechanical torque. There are also more elaborate
descriptions leading to models of higher order.

Since it is not known a priori that a model like eqn. (34) is compatible with the
data, one could first attempt to fit general linear models with the canonical struc-
ture (20) and different orders n. This will give an indication of the complexity
required to describe the data. The loss functions obtained from a maximum
likelihood identification of models of different order are shown in Table 1. To
save computer time, the computations are based on 1000 input—output pairs only.
Since the sampling interval of the angular velocity is 0.5 sec and the sampling
interval of the electric power is 0.125 sec, a compatible data set is created by inter-
polating the angular velocity. The initial state of the model (20) is also determined.

In Table 1 the test quantities (32) for testing the order of the system are also
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TABLE 1

MINIMAL VALUES OF THE LOSS FUNCTION FOR MAXIMUM
LIKELIHOOD IDENTIFICATION OF MODELS OF DIFFERENT
ORDER RELATING ANGULAR VELOCITY @ TO ELECTRIC
TORQUE I,V/w FOR THE ELECTRIC GENERATOR
The computations are based on 1000 data points

n an Fn.n+ 1
1 0.01442 126
2 0.009562 26

3 0.008560 73

4 0.006656 17

5 0.006230 2.0
6 0.006180

TABLE 2

COEFFICIENTS OF FIFTH ORDER MODEL RELATING ANGULAR
VELOCITY  TO ELECTRIC POWER FOR ELECTRIC GENERATOR

N 1000 2400

a, —2.628 + 0.031 —2.581 + 0.024
a, 2.290 + 0.074 2.204 + 0.049
a, —0.715 + 0.082 —0.640 £+ 0.048
a, 0.078 + 0.067 0.024 + 0.044
as —0.025 + 0.026 —0.004 + 0.019
b, —0.835 £ 0.092 —0.836 + 0.061
b, 1.120 + 0.244 1.016 + 0.016
by —0.805 + 0.308 —0.529 + 0.197
by 0.599 + 0.250 0.198 + 0.162
bs —0.080 + 0.100 0.150 + 0.075
¢y -0.899 + 0.036 —0.8354 £+ 0.027
¢, —0.005 + 0.039 —0.011 + 0.024
c3 —0.013 + 0.036 —0.027 £ 0.024
Cy —0.624 + 0.034 —0.617 + 0.021
Cs 0.579 + 0.029 0.541 + 0.021
A 0.0025 0.0025

evaluated. Assuming that all assumptions required for the order test are fulfilled, a
straightforward application of the order test would thus indicate that a fifth order
model is appropriate. The coefficients of the fifth order model are shown in Table 2.
The accuracy estimates are obtained from eqn. (31). The results obtained by
performing the identification on a longer data set N = 2400 are also shown in
Table 2. A comparison of the results obtained for N = 1000 and N = 2400 shows
that it is not unreasonable to assume that the system is time-invariant, A compari-
son of the accuracy estimates also indicates that they decrease as 1 /\/ﬁ ,as can be
expected from the theory. Notice in Table 2 that there is a significant difference
between the relative accuracies of the parameters b, and the relative accuracies of
a; and ¢;. The results are quite typical of those obtained in other cases when no
perturbations in the input are used.
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The results of the identification are illustrated in Fig. 1, which shows the measured
inputs and outputs, the model output and the difference between the measured
output and the model output. The model output is computed from the model (20)
with the coefficients given in the first column of Table 2 and disturbances {e(t)}
neglected. The model output thus explains how much of the actual output that can
be explained from the input. Figure 1 reveals that only about half of the observed
output can be related to the input. The signal-to-noise ratio is thus fairly low.
The situation is quite typical for data obtained during normal operation with no
extra perturbations introduced. Also notice from Table 2 that with a record of
length 125 sec it is possible to get reasonable parameter estimates of the para-
meters a; and c;.

The residuals can be interpreted as the one-step prediction errors obtained from a
predictor determined from the model (20). The residuals thus show how well the
output can be predicted one step ahead. The standard deviation of the residuals is

= 0.0025, which means that it is possible to predict the angular velocity one
sampling interval ahead with a standard deviation of 0.0025 rad/sec using the
model obtained.

If the identification procedure is to have a nice statistical interpretation the
residuals should be independent stochastic variables. In Fig. 2 the covariance of the
residuals is shown. This diagram indicates that the residuals at least are uncor-
related. The residuals are, however, not normally distributed, as is seen by the
diagram of cumulative frequencies in Fig. 3. This means, for example, that the
results of the order test can be questioned in a case like this.

The results obtained clearly indicate that the simple first order model (34) is not

compatible with the data. %
/
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Fig. 2. Sample covariance function for the residuals of the model (20) with parameters according to
the first column of Table 2.

Fig. 3. Cumulative frequencies of residuals of the model (20). The scales of the diagram are such that
a normal distribution corresponds to a straight line.
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8. NUCLEAR REACTOR DYNAMICS
The experiments were done by AB Atomenergi on the AGESTA reactor, located in

a suburb of Stockholm. A schematic picture of the reactor is shown in Fig. 4. The
results of this section are based on ref. 12.

Cooling Tower

Pressuriser

Control Rod
H,0 Steam
Heat
Jon Exch.
Chamber Main
Pump
D,0

Fig. 4. Schematic diagram of the Agesta nuclear reactor,

In the experiments the control rod position was perturbed and the nuclear power
was measured. The input was chosen as a PRBS* sequence with period 127. The
shortest pulse length was 20 sec and the sampling interval was 5 sec. The input—
output signals from the experiment are shown in Fig. 5. As an initial attempt, a
maximum likelihood identification is carried out using models (20} of different
orders. The values of the loss functions obtained are shown in Table 3.

A straightforward application of the order test indicates that the model has to be
of at least fourth order. At a risk level of 5%, the test limit is 3, and the decrease in
the loss function obtained when going from a fourth order system to a fifth order
system is therefore not significant. The coefficients of the fourth order model are
shown in Table 4.

The results of the identification are illustrated in Fig. 5. It is clear from this
diagram that a major part of the observed output is caused by the input. The
magnitude of the model error never exceeds 0.8 MW. The residuals have a standard
deviation of 0.113 MW, which means that the output can be predicted 5 sec ahead
with a standard deviation of 0.113 MW. The large model error and the large
residual at time 20.2 min were traced to a malfunction of the control rod servo.

By comparing the results given in Table 4 with those in Table 2 we find that the
relative accuracies of the parameters associated with the nuclear reactor dynamics
are significantly higher than those associated with the dynamics of the electric

* PRBS = pseudo random binary sequence.
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TABLE 3

MINIMAL VALUES OF THE LOSS FUNCTION FOR MAXIMUM
LIKELIHOOD IDENTIFICATION OF MODELS OF DIFFERENT
ORDER RELATING NUCLEAR POWER TO CONTROL ROD
POSITION
The computations are based on 1125 input-output pairs

n Va Fons1
1 203.344 2502

2 26.378 218

3 16.642 61.2
4 14.284 12
5 14.238 0.2
6 14.229

e

TABLE 4

PARAMETERS OF A FOURTH ORDER
MODEL RELATING NUCLEAR POWER
TO CONTROL ROD POSITION
The estimates are based on 1125
input—output pairs with a
sampling interval of 5 sec

-

a —2.442 + 0.023
a 2.096 + 0.047
as —0.679 + 0.029
ay 0.032 + 0.004
by 0.1013 & 0.0002
b, —0.2377 + 0.0024
b, 0.1884 + 0.0045
ba —0.0517 + 0.0023
¢ 1479 £ 0,038
s 0.502 + 0.061
s 0.122 + 0.055
Cy 0072 % 0.030

J 0.113

e —

ger
per
we
me



| input, reactivity
(nuclear power),

E 4

A FOURTH ORDER
NUCLEAR POWER
ROD POSITION

e based on 1125
pairs with a

rval of 5 sec

442 + 0.023
.096 + 0.047
.679 + 0.029
.032 + 0.004
).1013 + 0.0002
.2377 + 0.0024
.1884 + 0.0045
.0517 + 0.0023
479 + 0.038
.502 £+ 0.061
.122 + 0.055
.072 + 0.030
).113
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generator; Compare in particular the coeflicients b;. This is due to the fact that
perturbation signals were used in the reactor experiment, while no perturbations
were introduced in the generator experiment. Similar observations have been
made in many other situations.

9. DRUM BOILER DYNAMICS

In this section, applications to drum boiler modelling are discussed. The results are
based on refs. 10 and 4. The experiments were performed on the P16-G16 power
plant of the Oresundsverket of Sydkraft AB in Malmd, Sweden. The unit consists
of a Steinmiiller drum boiler and a Stal-Laval turbine. It has a power of 160 MW.
A schematic picture of the boiler is shown in Fig. 6.

Attemperator valves

Feed water valve
T

Fuelvalve

Fig. 6. Schematic diagram of the boiler—turbine unit.

In the experiment, the input variables fuel flow, feedwater flow and control
valve position were perturbed and the relevant process variables were recorded.
Since the open loop dynamics were of major interest all major regulators except
the fuel-air regulator were removed. For safety reasons only one process variable
at a time was changed. The determination of linear multivariable models was
based on superposition of the results of several experiments. '

Many experiments were performed, both for the purpose of determining linear
steady state models and for the purpose of determining non-linear models. A
detailed discussion of the measurements including identification and modelling
is given by Eklund*®. ‘

In this example, the modelling of the drum boiler only will be discussed. The
inputs are taken as fuel flow, feedwater flow and steam flow. The output variables
are chosen as drum level and drum pressure. A set of experimental data is shown
in Fig. 7. The sampling interval was chosen as 10 sec.

9.1 Linear models

Maximum likelihood identification of single output models for drum pressure
and drum levels leads to models of orders 3 and 2. It is thus not unreasonable that
a model like the one given in Example 1, §4, is compatible with the data. The model
given in Example 1 was obtained from physical considerations. Since it contains
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Fig. 7. Results of linear modelling of a drum boiler. The full lines are the measured data and the
broken lines are the model outputs.

27 parameters, while at most 25 parameters can be determined from input—output
data, some parameters must be fixed. There are disturbances in the data which
are not white measurement noise. It is then necessary to choose the model structure
(16) which allows for a more general noise model. Thus the 10 elements of the
K-matrix must also be included as parameters. Since a model (16) was determined
from physical considerations initial estimates of all parameters except those of the
K-matrix were available. Several attempts were made to identify different para-
meter sets. A typical result obtained is listed in Table 5. Notice the significant
reduction in the value of the loss function. The model obtained with the parameters
of Table 5 is compared with the measurements in Fig. 7.
The estimated covariance matrix is

& [0.0240 0.016:|
o016 124

This means that the drum pressure can be predicted 10 sec ahead with a standard
deviation of 0.16 bar and the drum level with a standard deviation of 3.5 mm.

9.2  Non-linear models

For power system analysis it is highly desirable to have fairly simple models
available which give the gross behaviour of the different system components,
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TABLE 5
INITIAL GUESSES AND PARAMETER ESTIMATES OBTAINED

WHEN FITTING A MODEL WITH THE STRUCTURE OF
EXAMPLE 1 TO DRUM BOILER MEASUREMENTS

Initial Identified
1 0.2567 x 107 0.3850 x 10°
oy —0.02835 —0.02052
o5 0.01382 0.00896
s —0.1341 x 1073 —0.0738 x 1073
%0 0.0406 0.1678
O3 —0.0454 —0.3295
Oie —0.2266 —0.3622
0o 0.1162 x 107# 0.1446 x 107+
Oy —0.01575 —0.00496
kyy 0 1.271
ki, 0 —0.1041 x 1072
kyy 0 0.01027
koo 0 0.1279 x 1072
k3, 0 —0.1214
k3, 0 —0.06576
kay 0 0.5432
k4o 0 0.01398
ks, 0 —0.7702 x 1073
ks, 0 0.3585 x 107%

From studies of linear models like the one just discussed a great deal of insight
into the behaviour of boiler—turbine units was obtained. It was found that the gross
behaviour of a boiler—turbine unit could be described by the equations

d
alti = a[~f(p, uy) + gluy, us)]

(35)
P = f(p,u,)

where p is the drum pressure, P the output power, u, the fuel flow, u, the control
valve setting and u, the feedwater flow. A model of the structure (35) can also be
derived from an energy balance if several (crude) approximations are done. Such a
derivation will also give the structure of the functions f and g. Details of this are
given in ref 4. It is shown that a possible choice is

F(,uz) = oy[u;p°"® — 5] (36)
og(uy, tiz) = Uy — gty (37
o= oy fory (38)

The boiler—turbine unit can thus be represented by a non-linear model with five
parameters oy, o, . .., 5. Determining these parameters from several experiments

covering a wide operating range the following values are obtained for the unit
P16-G16. '
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o, = 0.00305
V(Xz = 0.02

oy = 44 x 1072
o, = 1145

oy = 8.2

The performance of the model at two different operating conditions is illustrated in
Figs. 8 and 9. Notice in particular that the model agrees well with experiments over
a wide operating range.
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45408
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35810°
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Drum pressure

kg/em2

Active power
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=z

1000 2000 3000 Time sec

Fig. 8. Comparison of measured boiler—turbine data (full lines) and the responses of the non-linear
model (35) (broken lines).
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NOTES AND REFERENCES

System modelling and identification is discussed in many recent articles. Many
references are given in the recent survey articles®*® and in the book System Identi-
fication®?. There have also been two IFAC symposia in Prague in 1967 and 1970
entirely devoted to this field. The use of maximum likelihood techniques is dis-
cussed in refs. 3, 7, 8, 11, 13, 14, 16 and 27. Canonical structures for linear multi-
variable systems are treated in refs. 1, 18 and 26. A more detailed discussion of the
nuclear reactor identification is given in ref. 13. The same techniques have also
been applied to the modelling of the Halden reactor in Norway (see ref. 21). The
section on boiler modelling is based on refs. 4 and 10 which include detailed
analyses of many measurements.
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Discussion

J.P. Wana (INTERCOM, S.A., Brussels, Belgium)
In non-linear identification it is felt that quasi-linearization is useful. Work done in
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Belgium on a thermal model of an 80 MVA 150 kV/70kV transformer has shown
its possibilities. The theoretical model used was of the first order, with non-linear
forcing functions of the form U”. Using the m exponent from constructive data,
errors in temperature of more than 10°C were obtained. Identifying by quasi-
linearization and using the new coefficients, including a new m exponent, led to an
identification error of less than 2°C. The measurement length was approximately
one week, the sampling period was of the order of minutes, and the dominant time
constant of the transformer was about 4 hours. '
What method was used to identify the non-linear model of the drum boiler?

K. J. AsTrOM
The particular values of the coefficients were obtained by curve fitting to several
different experiments. The full details are given in ref. 4 of my paper.

L. S. DzunG (Brown, Boveri & Co. Ltd., Baden, Switzerland)

The difference between the measured behaviour and that predicted by the theoreti-
cal model may be due to insufficiency of the model, or to errors of measurement or
of the predictor. Professor Astrém tries to minimize the deviation by successively
increasing the number of free parameters of his model. This is certainly in order if
the aim is to simulate the system behaviour as accurately as possible. Now, in the
case of a small number of model parameters, it is possible to ascribe physical
meaning to each parameter, which may then be modified to obtain the desired
system behaviour. If the number of parameters is increased, it is not always
possible to interpret the proper physical meaning of each parameter. In fact, some
of these parameters may have no physical significance. A model with too many
parameters may therefore be less useful for the designer of the system, although it
may be helpful to the designer of control apparatus. I think there should be some
criterion for the optimal number of parameters for this aspect also.

K. J. AstrOM

The loss function will always decrease with an increasing number of parameters.
The decrease in the loss function, however, may not be significant. As discussed in
§6 of my paper, I have found it useful to approach the problem of order as a
statistical hypothesis test using the test quantity (32). I do not claim that this gives
the optimal number of parameters. It is, however, one way to get an indication of
the order. The possibility of giving a physical interpretation of the model para-
meters depends on the model structure.

C. J. EAGLEN (Brown, Boveri & Co. Ltd., Baden, Switzerland)

How does the sampling interval influence parameter estimation for control and
simulation?

K. J. AstroM
Theselection of the sampling interval is very important. If the sampling interval is h,
1t is virtually impossible to estimate parameters of modes with time constants less
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than, say, 0.3h with a reasonable accuracy. Hence, the selection of sampling
interval puts an upper limit to the frequency range over which the model is valid.
This problem is further discussed in the following references. '

K. I. AsTréM, On the choice of sampling rates in parametric identification of time series, Information
Sciences, 1 (1969) 273-278.

1. GusTavsson, Choice of sampling interval for parametric identification, Report 7103, Division of
Automatic Control, Lund Inst. of Technology, April 1971.

H. GravitscH (Brown, Boveri & Co. Ltd., Baden, Switzerland)
Referring to the first practical case studied, I would like to ask if the power
generator supplied an isolated load or if it was connected to an infinite bus.

K. J. AstroM
The measurements were done by Dr. Stanton. Since he is in this room I would
kindly ask him to answer this question.

K. N. STANTON (Systems Control, Inc., Palo Alto, California, U.S.A.)

The power generator data were collected from a 50 MW machine operating
normally and interconnected with the rest of the power system through high
voltage cables, but the coupling and the data are typical of those experienced in
power systems.

H. GLAvITSCH

From Dr. Stanton’s answer 1 gather that the generator was connected to the rest
of the system. Hence, the model in this case has to be at least of second order
because of the interaction with other generators.

K. J. AsTROM
The order test does in fact indicate that a model of fifth order would be consistent
with the experimental data.

W. B. JErVIS (Merz and McLellan, Newcastle upon Tyne, England)

I should like to confine my remarks to the random sampling measurements which
the author referred to in the nuclear boiler studies. I note that the author employed
a large signal level into the reactor controls which gave an electrical power excur-
sion of approximately 10 MW. This value seems to be an extremely high error level
for injection and the effect of non-linearities could lead to serious error if linearized
theory was assumed for the model. This influence could be shown by injecting a
small level perturbation, e.g. | MW or smaller, and comparing the results obtained.

What precautions would the author take to ensure that site measurements and
model results give comparable results?

Regarding the length of time employed for random sampling, I noticed that the
author gave an illustration for a 30 min period. My personal experience with
sinusoidal sampling has shown that significant error can be introduced if the length
of time employed is sufficient to allow load conditions on the machine and net-
work to change between start and finish of the test. It would seem that short-time
sampling should be the aim, provided that accuracy is not lost by losing the effects
of the largest time lags. I would like to mention that practical models, particularly
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for boilers, have an economic incentive to a user to shorten the commissioning
time at site by predicting the correct setting for the automatic control settings.

K. J. AstroM

The experiments on the nuclear reactor were performed by AB Atomenergi.
According to them (see ref. below) the AGESTA reactor can be modelled by linear
models for the power excursions used. Our models also agree well with those
obtained by other techniques and smaller excursions. I do not know enough about
nuclear reactors to judge whether the AGESTA reactor is non-typical in this
respect. I appreciate your remark concerning the use of models to shorten commis-
sioning.

P. A. BuiseLius, H. VOLLMER AND F. AKERHIELM, Experimental and theoretical dynamic study of the
Agesta Nuclear Power Station, Report AE-376, AB Atomenergi, Stockholm, 1969.

A. H. GLATTFELDER (Eidg. Technische Hochschule, Ziirich, Switzerland)
1 would like to ask a few questions on the last part of your paper—trying to link
modelling and identification (input—output only methods).

Professor Profos has shown that certain characteristic coefficients of boiler
dynamics can easily be calculated from geometrical and physical data. What are
the main connections between these coefficients and the matrix elements given in
your paper? How well do identified and precalculated values agree?

In the normal operation of a power plant, roughly stationary conditions exist for
only about 30-60 min. How large will confidence intervals for the matrix elements
be after this time? Do you feel that this would be a sufficient basis on which to
construct an optimal control scheme giving better results than conventional linear
control?

K. J. AsTROM

The model like the one in Example 1, §4.2, and the non-linear boiler model in §9 are
in fact based on physical considerations following work by Professor Profos and
other related results. Thus the parameters can also be determined from construc-
tion data. A detailed comparison of identified parameter values with construction
data is given in Dr. Eklund’s thesis (ref. 10 of my paper). If some crucial parameters
were drifting so much that the performance of the control scheme deteriorated, I
would propose that you tracked the parameters in real time and incorporated
these estimates in your control strategy.

G. Quazza (ENEL, Milan, Italy)

One difficulty with statistical identification of not entirely stationary systems, as
our experience in trying to determine the transfer function Af/4P of an electric
power system has clearly shown, is associated with the conflicting requirements of
stationariness and low frequency accuracy in the choice of the recording sample
length. Reasonably good confidence limits in the transfer function parameters
affecting low frequency response could be obtained only after several hours of
recording samples—in the case of the electric power system, when spontaneous
random disturbances are used as the stimulating input—while power system
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structure changes are likely to occur and become relevant in 2 or 3 hours, with
consequent modifications in the transfer function itself. On the other hand, the
typical spectrum of spontaneous random load changes is approximately
Poissonian, with decreasing magnitudes for increasing frequencies. Hence, the
“stimulation” of high frequencies is scarce, with consequently a poor approxima-
tion of the identifiable transfer function in that range.

For these reasons, statistical identification of electrical power systems by
spontaneous signals usually yields less accurate results than deterministic identifi-
cation. However, it has the advantage of not necessarily requiring isolation of the
network from interconnected neighbours.

Could the author comment upon such problems and on the comparison of
statistical and deterministic identification?

K. J. AsTROM

The first statistical identification techniques relied on the spontaneous random
disturbances as stimulating inputs. This is not, however, a prerequisite for using
statistical identification techniques. One great advantage of the methods I have
discussed today is that they make few assumptions on the input. In fact I strongly
recommend that external perturbations are used. In the examples presented in my
paper only the power generator experiment was done using natural perturbations.
In all the other cases external perturbations were used. A comparison of the relative
accuracies of the parameters of the power generator with, for example, those of the
nuclear reactor clearly shows the importance of using external perturbations.




