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Abstract—The problem of communicating one bit over a mem- sendsug (yjo,x—1),m) and the decoder receivegs = uy + ex,
oryless Gaussian channel with an energy constraint is disssed. wheree, ~ N(0,1) is Gaussian noise. We will analyse the
Ii is assumcd that the channel is aI.Iowed to be used only WO ~ase with two transmissions, i.e.
times. An ideal feedback channel is also supposed available

The optimal feedback strategy and the bit-error probability are _

derivegl. It is shown that feed%)ack gives a significa)nt perfcmyance Yo = uo(m) + €9 (1)
gain and that the optimal strategy is discontinuous. It is ato Y1 = u1(yo,m) + e1.

shown that most of the performance increase can be obtained . ) . . .
even with a one-bit feedback channel® The task of this paper is to find optimal coder functiens

andu; so that an average energy constraint,
I. INTRODUCTION

Shannon observed in [1] that feedback will not improve the E(ug +ui) < Smax )
capacity Whe.n communicating over a memory-less- channgl. catisfied for a given level, ... and a decoder which
'I_'hI_S. conclu3|o_n relics on the definition of capacity as ghinimizes the bit error probability
limiting case with arbitrary long blocks and no decodingagel
constraints. Several authors have since then analysestetiff P¢ = P(m # m).
effects of feedback, see for instance [2], [3], [4], [5] aid. [
The current paper is inspired by the interesting resultsrpf [
where it is shown that the Shannon-limit on -1.6dB energy p
bit can be obtained even for the case of block length one, if
noise-free f_eedback char_mel is available. The ob_taineeimeh PE toodback= Q(@), ©)
however still has potentially unbounded decoding delay. To
understand the benefits of feedback in the case of finite blogkich can be achieved by antipodal signaling= ++v/Sn.ax
lengths the extreme case with a decoding delay of two chanasdu, = 0. There is no performance benefit with splitting the
uses seems natural to study energy into several transmissions.

We will use the notation(t) = (27)"2e~*"/2 and Q(z) =
ego o(t)dt. Itis well known (e.g. [8]) that the optimal bit error
gte without feedback is given by

A. Problem B. Optimal Decoder

We want to transmit the message € {0, 1} where either  The bit error probability is minimized by the Maximum

message is equally likely. The coder/transmitter is assutde [ ikelihood-decoder, which chooses the decoded message as
send real numbers;, using side-information from a causal

noise-free feedback channel, see Fig. 1. m = a?é‘%{glf}x P(yo,y1 | m = i).
€ The decoder will output the message that maximizes the
posterior probability
U Yy ~
m—  Code ‘ Decode—= m log P(y | m)
: 1 1
;A 1 = —log(2m) — 5(90 — ug(m))* — 5(91 — u1(yo, m))>.

,,,,,,,,,,,,,,,,,,,,

) o The first transmission should be antipodal, iB(uy) =
Fig. 1: The system studied in the paper. The feedback chang@ho(l) + up(0)) = 0, since a nonzero constart (uo)
is assumed noise-free. does not carry any information and just wastes energy since

E(ud) = E(uo—E(uo))?+(E(up))?. We will use the notation
The signal is transmitted over a channel with additive( 0) (o= E(u0))*+(E(uo))

Gaussian noise with unit variance. At tirkethe coder hence xo = ug(l) = —up(0)
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Without loss of generality we assume that> 0, uy(y,1) >

0 andwu;(y,0) <0 for all y.

The decoded bitn is determined by the sign of
Ply|m=1) _ l o 2 2
Ply [m=0) —2( (yo — 20)” + (yo + o)

—(y1 —u1(y0,1))* + (41 — w1 (y0,0))?)

U 1)+ u ,0
_ 2y0$0 +9 (y1 o 1(y0 ) : 1(y0 )) $1(?JO)

If m =1 the bit is correctly decoded if

yoro + (z1(yo) + e1)z1(yo) > 0, (4)

whereyy = ¢ + eg. Form = 0 it is correctly decoded if

—YoZo + (z1(yo) — e1)21(yo) > 0, (5)
whereyy = —x¢ + eg. It follows from (4) and (5) that the bit

error probability is given by

pe = 1/ Q ( yofo_ w1(yo)> ©(yo — xo)dyo

2 )~ \71(%0)

1

2 —o0 zl(yo)

=5 (e (s < mm)

+ Q( Yoo

$1(*ZJO)

3 (2 ) et + o) ©

Far-m)) ) ol = oo, (7

Since the integrands in (7) and (10) are unchanged(ifo) is

changed tor; (—yo) we can assume that (yo) is symmetric

in yo. From (9) we can then conclude that

2

1 e2womo
To find zp > 0 and a symmetric functior;(-) > 0

minimizing P, under the energy constrait < S,,,. We

introduce a Lagrange-multipliex > 0 obtain the following

result.

Theorem The optimal feedback strategsy, ui(-) can be

found by solving

.Hl.il%‘) L(zo,z1(+)) = HliI%v)Pe(xo,xl(J) + AS(xg, 21(+)).
(11)

u1(yo,1) = —u1(—yo,0) r1(Yo)-

and using

u1(yo0,1) = —u1(—yo,0) 71(Yo)-

- 1 + e2yozo
For a givenz, we can findx; (yo) from the implicit equation
2,2 2
yory  xi cosh (yoxo)
riexp| > +—= | - —F——=0. 12
L ( 22} 2 ) 227\ (12)
The optimalz; equals either zero or the largest real root of

(12), depending on which case gives the smallest value of the
integrand in

e > YoZo
P [T (@22 s plan — 0
The expected energy in the left hand side of (2) is given by 0 21(y0)

1 o0
Si=axf+ 5 / w3 (yo, 1)e(yo — x0) + u3 (Y0, 0)p(yo + o) dy.
(8)
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— 00

C. Optimal Encoder

For eachyy, minimizing the integrand ir§ over u; (yo, 1)

andu; (yo, 0) subject to the constraint

%(ul(yo, 1) = u1(y0,0)) = 21(yo)

—YoZxo
+Q (58 4 a1(un)) lun + o)) -

Proof

To find the optimal communication scheme we will fix the
Lagrange multipliets and for eachr, optimize the integrand
of P¢ + \S overzi(yo) for eachyy. The optimalz, is then
found by a one-dimensional search. The procedure is rapeate

is a convex quadratic optimization problem with a linedfor different values ofi resulting in a curve of achievable bit-

constraint. We can therefore use the following result:

error P¢ vs powerS. The resultingP¢ and S are continuous
functions of A, from which it follows that the method of

Lemma Assume thatV > 0 and thatA has full row rank. Lagrange multipliers used actually finds the pareto-ogtima
The minimum of:” Wz subject toAx = b is then obtained boundary of the (convex) domain of achievable, S).

for o = W=LAT(AW—1AT)~1p and is given byr’ Wz =

b (AW 1 AT 1,
Using this we obtain that

©(yo + o)
—¢(yo — o)

ui(yo, 1)| _ 21 (yo)
u1(y0,0)|  ¢(yo — o) + ¢(yo + o)

(9)

and the energy (8) becomes

> 172(?/0)
S =2+ 2/ L d
0 —oo P (W0 — x0) + 07 (yo + x0) vo

— 249 - a3 (yo) + 2% (= o)
Ty + ) )
o ¢ Hyo— o)+ ¢ yo + xo

)dyo. (10)

Optimizing L overz1(yo) can be done separately for each
yo. We therefore seek the infimum of

Q (% +33) ©(yo — o) + Q <$ +$) (Yo + z0)

422\
+ 14
¢~ (yo — @o) + ¢~ (¥ + o) (14)
with respect tar := x1(yo). Using Q'(z) = —p(x), we see

there are stationary points when
g_dL_ 1 ( Bl o g )
dx
8T

+ .
0 Hyo — x0) + ¢~ (yo + o)




This is an implicit equation inc = z1(yo) for eachyy which 10°
can be simplified to

oxp (935623 1‘_2) _ cosh (yowo) _ 0 S
2z 2 2 \Y 271')\ 1072, N 4
where the left hand side has the same signiBgdz. It is K\

easily seen that there are at most two real positive solsitic
of (12) and that the sign of the derivative goes from positiv
to negative to positive. This means that the smallest vafue
L is taken either at = 0 or at the largest solution* of (12).
For z = 0+ the expression (14) becomes

Bit error probability
[
o

10 " f{ — without feedback 0 1
‘P(|y0| + JJO). - - - one bit feedback "
; . - - with feedback, suboptimal using constant x1 4
This value should therefore be compared with —s¢—with feedback. optimal x1(y) b
YoTo Yoo _.|| =™ Shannon bound "

Q <—* =+ :L'*) (P(yo — xo) —+ Q (7 " + x*) 80(?40 + xo) 10_510 —E‘S 1 (5 . ;
x z Average Total Power = E(u 2+u§) [dB]
4x*2 )\ 9 h 01
+ . . - .
0~ Hyo — o) + ¢~ (yo + o)’ Fig. 2: Bit error probability versus average power: Optimal

where z* is the largest solution from the implicit equatiorfr@nsmission without use of feedback (full), one-bit feackb
above and the alternative with smallest result should beamo Scheme (dashed) suboptimal feedback scheme (dash-dotted)
An alternative is to directly minimize optimal feedback scheme (full-x), Shannon bound for irdinit
Yo Yo block transmissions (full). Notice the significant perfamee
Q (% + z) o(yo — z0) + Q (—% + x) o(yo + o) gain with feedback, even using only one-bit feedback.

D

+
o~ (yo — z0) + ¢ (yo + 7o) 0.4

over .

Note that the solution:;(yo) = 0 corresponds to that the
second transmission is not used. Close analysis showshnat
value ofz for which the minima occurs can be a discontinuot
function ofy, see Figure 5.

0.35

0.3

Il. RESULTS

Figures 2-3 compare achievable performance for optin
transmission without use of feedback (top blue) and op £
mal transmission with use of feedback(black). Also showz 02

0.25

ror probability

is a suboptimal feedback scheme (red) correspondin.g tc  without feedback

constantzi(yo) = 1 (such as used in [7]). There is @ |/~ - -onebit feedback

F i H H ' - - with feedback, suboptimal using constant x1

significant performan_ce_ gain of many dBs using feedbgc —cwith feedback. optimal x1(y)

The performance gain increases with SNR. The suboptin —— Shannon bound

scheme with constant;(yo) = x1 (which for eachA was 0l % = & 4,38, 2 - 0
optimized jointly withz,) is rather close to optimal, except for Average Total Power = E(u +u}) [dB]

the low SNR regime where the optimal scheme outperforr]gf%g_ 3: Zoom of previous figure. There is a performance cost

the suboptimal with some _tenths O_f dBs. N_otice also tha? 0.5-1dB with the one-bit feedback channel, compared to
the feedback scheme obtainable with one-bit feedback (rﬁgng an infinite-capacity feedback channel.

dashed) captures most of the performance gain with feedback

The one-bit feedback scheme was obtained by assuming the

feedback to give information about whether or ngf| < a.

The levela was found by straight-forward search. We have noegime, for high SNR the discontinuity threshold moves to

been able to prove that this is the optimal use of the one-bigry high levels ofy,, corresponding to turning off the

feedback channel, but think it is true. 2nd transmission only at exteremly unlikely outcomes from
The optimal use of power in the second transmissiothe first transmission. Note that for low SNR the second

determined byt (yo), is interesting. The functiom, (yo) turns  transmission is used mainly whep, is close to zero. A

out to be discontinuous, showing that the second transomissmajority of the power is used for the first transmission. The

should not be used if the first outpyt is far away from optimalu;(yo,1) andus(yo,0) for Sy,a. = 2.42 is illustrated

zero. The discontinuity is most pronounced in the low SNR Fig 6.
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Fig. 4. The optimal z;(y,), which is discontinuous, Fig. 6: The optimal functions:; (yo, 1) andui(yo,0) when
is shown for four cases corresponding to BER 0fmax = 2.42 andzo = 1.19.

0.26(lowest), 0.09, 0.02, 0.004 (highest) respectively.

The discontinuity of the upper curve is outside the

visable range. For the four different cases we havdth rather similar performance. The generalization togien
zo = 0.48,0.89,1.19,1.39 respectively and the total decoding delay constraints is open.
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Fig. 5: The minima of the function in (14) change whgn
changes. This results in a discontinuity of the functigifyy).

The figure corresponds tey = 1.19, S,,4. = 2.42 and three
values ofyg around 3.2, compare Fig 4.

IIl. CONCLUSION

The optimal feedback scheme for transmission of one bit
of information over a energy constrained Gaussian channel
has been found for the case when the Gaussian channel can
be used two times. The optimal scheme is discontinuous,
but a continuous simpler suboptimal scheme can be found



