Using a Gaussian Channel Twice

Bernhardsson, Bo

Published in: International Symposium on Information Theory

2013

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—The problem of communicating one bit over a memoryless Gaussian channel with an energy constraint is discussed. It is assumed that the channel is allowed to be used only two times. An ideal feedback channel is also supposed available. The optimal feedback strategy and the bit-error probability are derived. It is shown that feedback gives a significant performance gain and that the optimal strategy is discontinuous. It is also shown that most of the performance increase can be obtained even with a one-bit feedback channel.\(^1\)

I. INTRODUCTION

Shannon observed in [1] that feedback will not improve the capacity when communicating over a memory-less channel. This conclusion relies on the definition of capacity as a limiting case with arbitrary long blocks and no decoding delay constraints. Several authors have since then analysed different effects of feedback, see for instance [2], [3], [4], [5] and [6]. The current paper is inspired by the interesting results of [7] where it is shown that the Shannon-limit on -1.6dB energy per bit can be obtained even for the case of block length one, if a noise-free feedback channel is available. The obtained scheme however still has potentially unbounded decoding delay. To understand the benefits of feedback in the case of finite block lengths the extreme case with a decoding delay of two channel uses seems natural to study

A. Problem

We want to transmit the message \(m \in \{0, 1\} \) where either message is equally likely. The coder/transmitter is assumed to send real numbers \(u_k \) using side-information from a causal noise-free feedback channel, see Fig. 1.

The signal is transmitted over a channel with additive Gaussian noise with unit variance. At time \(k \) the coder hence sends \(u_k(y_{[0,k-1]}, m) \) and the decoder receives \(y_k = u_k + \epsilon_k \), where \(\epsilon_k \sim N(0, 1) \) is Gaussian noise. We will analyse the case with two transmissions, i.e.

\[
\begin{align*}
y_0 &= u_0(m) + \epsilon_0 \\
y_1 &= u_1(y_0, m) + \epsilon_1.
\end{align*}
\]

The task of this paper is to find optimal coder functions \(u_0 \) and \(u_1 \) so that an average energy constraint,

\[
E(u_0^2 + u_1^2) \leq S_{\text{max}}
\]

is satisfied for a given level \(S_{\text{max}} \) and a decoder which minimizes the bit error probability

\[
P^e = P(\hat{m} \neq m).
\]

We will use the notation \(\phi(t) = (2\pi)^{-1/2}e^{-t^2/2} \) and \(Q(x) = \int_x^\infty \phi(t)dt \). It is well known (e.g. [8]) that the optimal bit error rate without feedback is given by

\[
P^e_{\text{no feedback}} = Q(\sqrt{S_{\text{max}}}),
\]

which can be achieved by antipodal signaling \(u_0 = \pm \sqrt{S_{\text{max}}} \) and \(u_1 = 0 \). There is no performance benefit with splitting the energy into several transmissions.

B. Optimal Decoder

The bit error probability is minimized by the Maximum Likelihood-decoder, which chooses the decoded message as

\[
\hat{m} = \arg \max_{i \in \{0, 1\}} P(y_0, y_1 | m = i).
\]

The decoder will output the message \(m \) that maximizes the posterior probability

\[
\log P(y | m) = -\log(2\pi) - \frac{1}{2}(y_0 - u_0(m))^2 - \frac{1}{2}(y_1 - u_1(y_0, m))^2.
\]

The first transmission should be antipodal, i.e. \(E(u_0) = \frac{1}{2}(u_0(1) + u_0(0)) = 0 \), since a nonzero constant \(E(u_0) \) does not carry any information and just wastes energy since \(E(u_0^2) = E(u_0 - E(u_0))^2 + (E(u_0))^2 \). We will use the notation

\[
x_0 := u_0(1) = -u_0(0) \\
x_1(y_0) := \frac{1}{2}(u_1(y_0, 1) - u_1(y_0, 0)).
\]

\(^1 \)The research was supported by the ELLIIT Excellence Center and by the Swedish Research Council through the LCCC Linneaus Center.
Without loss of generality we assume that $x_0 \geq 0$, $u_1(y, 1) \geq 0$ and $u_1(y, 0) \leq 0$ for all y.

The decoded bit m is determined by the sign of
\[
\log \frac{P(y \mid m = 1)}{P(y \mid m = 0)} = \frac{1}{2} \left(-(y_0 - x_0)^2 + (y_0 + x_0)^2
ight)
= 2y_0x_0 + y_0(x_1(y_0))
\]
If $m = 1$ the bit is correctly decoded if
\[
y_0x_0 + (x_1(y_0)) > 0,
\]
where $y_0 = x_0 + \epsilon_0$. For $m = 0$ it is correctly decoded if
\[-y_0x_0 + (x_1(y_0)) > 0,
\]
where $y_0 = -x_0 + \epsilon_0$. It follows from (4) and (5) that the bit error probability is given by
\[
P_e = \frac{1}{2} \int_{-\infty}^{\infty} Q \left(\frac{y_0x_0}{x_1(y_0)} + x_1(y_0) \right) \varphi(y_0 - x_0) \, dy_0
+ \frac{1}{2} \int_{-\infty}^{\infty} Q \left(\frac{y_0x_0}{x_1(y_0)} + x_1(y_0) \right) \varphi(y_0 + x_0) \, dy_0
\]
\[
= \frac{1}{2} \int_{-\infty}^{\infty} \left(Q \left(\frac{y_0x_0}{x_1(y_0)} + x_1(y_0) \right) + Q \left(\frac{y_0x_0}{x_1(y_0)} + x_1(y_0) \right) \right) \varphi(y_0 - x_0) \, dy_0.
\]
The expected energy in the left hand side of (2) is given by
\[
S := x_0^2 + \frac{1}{2} \int_{-\infty}^{\infty} u_1^2(y_0, 1) \varphi(y_0 - x_0) + u_1^2(y_0, 0) \varphi(y_0 + x_0) \, dy_0.
\]

C. Optimal Encoder

For each y_0, minimizing the integrand in S over $u_1(y_0, 1)$ and $u_1(y_0, 0)$ subject to the constraint
\[
\frac{1}{2} (u_1(y_0, 1) - u_1(y_0, 0)) = x_1(y_0)
\]
is a convex quadratic optimization problem with a linear constraint. We can therefore use the following result:

Lemma Assume that $W > 0$ and that A has full row rank.

The minimum of $x^T W x$ subject to $Ax = b$ is then obtained for $x = \hat{x}^T (A^T W^{-1} A^T)^{-1} b$ and is given by $x^T W x = b^T (A^T W^{-1} A^T)^{-1} b$.

Using this we obtain that
\[
\begin{bmatrix} u_1(y_0, 1) \\ u_1(y_0, 0) \end{bmatrix} = \begin{bmatrix} 2x_1(y_0) \\ \varphi(y_0 - x_0) + \varphi(y_0 + x_0) \\ -\varphi(y_0 - x_0) \end{bmatrix}
\]
and the energy (8) becomes
\[
S = x_0^2 + \int_{-\infty}^{\infty} x_1^2(y_0) \varphi^{-1}(y_0 - x_0) + x_1^2(y_0) \varphi^{-1}(y_0 + x_0) \, dy_0
\]
\[
= \int_{-\infty}^{\infty} x_1^2(y_0) \varphi^{-1}(y_0 - x_0) + x_1^2(y_0) \varphi^{-1}(y_0 + x_0) \, dy_0.
\]

Since the integrands in (7) and (9) are unchanged if $x_1(y_0)$ is changed to $x_1(-y_0)$ we can assume that $x_1(y_0)$ is symmetric in y_0. From (9) we can then conclude that
\[
u_1(y_0, 1) = -u_1(-y_0, 0) = \frac{2}{1 + e^{2y_0x_0}} x_1(y_0).
\]
To find $x_0 \geq 0$ and a symmetric function $x_1(\cdot) \geq 0$ minimizing P_e under the energy constraint $S \leq S_{\text{max}}$ we introduce a Lagrange multiplier $\lambda > 0$ obtain the following result.

Theorem The optimal feedback strategy x_0, $u_1(\cdot)$ can be found by solving
\[
\min_{x_0, x_1(\cdot)} L(x_0, x_1(\cdot)) = \min_{x_0, x_1(\cdot)} P_e(x_0, x_1(\cdot)) + \lambda S(x_0, x_1(\cdot)).
\]
and using
\[
u_1(y_0, 1) = -u_1(-y_0, 0) = \frac{2}{1 + e^{2y_0x_0}} x_1(y_0).
\]

For a given x_0 we can find $x_1(y_0)$ from the implicit equation
\[
x_1 \exp \left(\frac{2x_1^2 x_0^2}{2x_1^2} - \frac{\cosh (y_0x_0)}{2} \right) = 0.
\]
The optimal x_1 equals either zero or the largest real root of (12), depending on which case gives the smallest value of the integrand in
\[
P_e = \int_{-\infty}^{\infty} \left(\varphi(y_0x_0) + x_1(y_0) \right) \varphi(y_0 - x_0)
+ Q \left(\frac{-y_0x_0}{x_1(y_0)} + x_1(y_0) \right) \varphi(y_0 + x_0) \, dy_0.
\]

Proof

To find the optimal communication scheme we will fix the Lagrange multiplier λ and for each x_0 optimize the integrand of $P_e + \lambda S$ over $x_1(y_0)$ for each y_0. The optimal x_0 is then found by a one-dimensional search. The procedure is repeated for different values of λ resulting in a curve of achievable bit-error P_e vs power S. The resulting P_e and S are continuous functions of λ, from which it follows that the method of Lagrange multipliers used actually finds the pareto-optimal boundary of the (convex) domain of achievable (P_e, S).

Optimizing L over $x_1(y_0)$ can be done separately for each y_0. We therefore seek the infimum of
\[
Q \left(\frac{y_0x_0}{x_0} + x \right) \varphi(y_0 - x_0) + Q \left(\frac{-y_0x_0}{x_0} + x \right) \varphi(y_0 + x_0)
+ \frac{4\pi^2 \lambda}{\varphi^{-1}(y_0 - x_0)} + \varphi^{-1}(y_0 + x_0)
\]
with respect to $x := x_1(y_0)$. Using $Q'(x) = -\varphi'(x)$, we see there are stationary points when
\[
0 = \frac{dL}{dx} = -\pi \exp \left(-\frac{y_0^2x_0^2}{2x_0^2} - \frac{x^2}{2} - \frac{y_0^2}{2} - \frac{x_0^2}{2} \right)
+ \frac{8\pi \lambda}{\varphi^{-1}(y_0 - x_0)} + \varphi^{-1}(y_0 + x_0)}.
\]
This is an implicit equation in \(x = x_1(y_0) \) for each \(y_0 \) which can be simplified to
\[
x \exp \left(\frac{y_0^2 x_0^2}{2x^2} + \frac{x^2}{2} \right) - \frac{\cosh (y_0 x_0)}{2\sqrt{2\pi} \lambda} = 0,
\]
where the left hand side has the same sign as \(dL/dx \). It is easily seen that there are at most two real positive solutions of (12) and that the sign of the derivative goes from positive to negative. This means that the smallest value of \(L \) is taken either at \(x = 0 \) or at the largest solution \(x^* \) of (12). For \(x = 0^+ \) the expression (14) becomes
\[
\varphi(|y_0| + x_0).
\]
This value should therefore be compared with
\[
Q \left(\frac{y_0 x_0}{x^*} + x^* \right) \varphi(y_0 - x_0) + Q \left(\frac{y_0 x_0}{x^*} + x^* \right) \varphi(y_0 + x_0) + \frac{\varphi^{-1}(y_0 - x_0) + \varphi^{-1}(y_0 + x_0)}{4x^* \lambda},
\]
where \(x^* \) is the largest solution from the implicit equation above and the alternative with smallest result should be chosen. An alternative is to directly minimize
\[
Q \left(\frac{y_0 x_0}{x} + x \right) \varphi(y_0 - x_0) + Q \left(\frac{y_0 x_0}{x} + x \right) \varphi(y_0 + x_0) + \frac{\varphi^{-1}(y_0 - x_0) + \varphi^{-1}(y_0 + x_0)}{4x^2 \lambda}
\]
over \(x \).

Note that the solution \(x_1(y_0) = 0 \) corresponds to that the second transmission is not used. Close analysis shows that the value of \(x \) for which the minima occurs can be a discontinuous function of \(y \), see Figure 5.

II. Results

Figures 2-3 compare achievable performance for optimal transmission without use of feedback (top blue) and optimal transmission with use of feedback (black). Also shown is a suboptimal feedback scheme (red) corresponding to a constant \(x_1(y_0) \equiv x_1 \) (such as used in [7]). There is a significant performance gain of many dBs using feedback. The performance gain increases with SNR. The suboptimal scheme with constant \(x_1(y_0) \equiv x_1 \) (which for each \(\lambda \) was optimized jointly with \(x_0 \)) is rather close to optimal, except for the low SNR regime where the optimal scheme outperforms the suboptimal with some tenths of dBs. Notice also that the feedback scheme obtainable with one-bit feedback (red dashed) captures most of the performance gain with feedback.

The one-bit feedback scheme was obtained by assuming the feedback to give information about whether or not \(|y_0| \leq a \). The level \(a \) was found by straight-forward search. We have not been able to prove that this is the optimal use of the one-bit feedback channel, but think it is true.

The optimal use of power in the second transmission, determined by \(x_1(y_0) \), is interesting. The function \(x_1(y_0) \) turns out to be discontinuous, showing that the second transmission should not be used if the first output \(y_0 \) is far away from zero. The discontinuity is most pronounced in the low SNR regime, for high SNR the discontinuity threshold moves to very high levels of \(y_0 \), corresponding to turning off the 2nd transmission only at extremely unlikely outcomes from the first transmission. Note that for low SNR the second transmission is used mainly when \(y_0 \) is close to zero. A majority of the power is used for the first transmission. The optimal \(u_1(y_0, 1) \) and \(u_1(y_0, 0) \) for \(S_{\text{max}} = 2.42 \) is illustrated in Fig 6.
Fig. 4: The optimal $x_1(y_0)$, which is discontinuous, is shown for four cases corresponding to BER of 0.26(lowest), 0.09, 0.02, 0.004 (highest) respectively. The discontinuity of the upper curve is outside the visible range. For the four different cases we have $x_0 = 0.48, 0.89, 1.19, 1.39$ respectively and the total power $S_{max} = 0.35, 1.32, 2.42, 3.12$.

Fig. 5: The minima of the function in (14) change when y_0 changes. This results in a discontinuity of the function $x_1(y_0)$. The figure corresponds to $x_0 = 1.19, S_{max} = 2.42$ and three values of y_0 around 3.2, compare Fig 4.

III. CONCLUSION

The optimal feedback scheme for transmission of one bit of information over a energy constrained Gaussian channel has been found for the case when the Gaussian channel can be used two times. The optimal scheme is discontinuous, but a continuous simpler suboptimal scheme can be found with rather similar performance. The generalization to longer decoding delay constraints is open.

REFERENCES