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Abstract

We show that the small signal permeability derived from a linearization of the Landau-Lifshitz-Gilbert
equation describing a ferromagnetic particle is unstable.Stability is recovered when the field external to
the particle is considered as input signal. When calculatingthe effective permeability of a composite
material, consisting of aligned, biased single domain particles, the result is a stable, and hence causal,
material.

1 Introduction

Magnetism is one of the earliest documented electromagnetic phenomena, one of the first references being Plato [1].
In ferromagnetic media, there is a strong coupling between the magnetic moments in neighboring atoms. The precise
mechanism of this coupling still remains obscure, but a phenomenological model based on the time evolution of a
magnetic moment in a magnetic field was presented in 1935 by Landau and Lifshitz [2]. Their model has subsequently
been augmented, and in particular Gilbert has refined the phenomenological model of losses [3]. In this paper, we
discuss some consequences of linearizing this equation to obtain a small signal permeability, which is often done in
the modelling of ferrites.

2 Physical description

In a ferromagnetic material, each atom has a magnetic momentwhich tend to be aligned with each other. In a mesoscale
model, we consider the magnetic moment per unit volume,i.e., the magnetizationM . This is described by the Landau-
Lifshitz-Gilbert model [2, 3]

∂M

∂t
= −γµ0M × Heff + α

M

Ms

×
∂M

∂t
(1)

Since the right hand side is orthogonal toM , it is immediately seen that the amplitude of the magnetization is pre-
served,|M | = Ms, whereMs is the saturation magnetization. The first term, whereγ = 1.76 · 1011 C/kg is the
gyromagnetic ratio andµ0 is the permeability of vacuum, corresponds to the torque on amagnetic moment in a mag-
netic field, which typically produces a precessional motionof the magnetization around an axis parallel to the effective
magnetic fieldHeff . The second term is the phenomenological damping term suggested by Gilbert, which describes
the tendency of the magnetization to eventually align with the fieldHeff . The loss parameter is typicallyα ≈ 0.1.

The effective fieldHeff has many contributions, some of which do not belong to classical electromagnetism
but rather to quantum mechanics. The most common and strong effects are

Heff = H + Han + Hex + Hme (2)

whereH is the classical magnetic field, which appears in Maxwell’s equations. By including the possibility of a
demagnetization contribution in this field (which is sometimes called shape anisotropy), the anisotropy fieldHan is



only due to the atomic lattice of the material. For some materials, a linear model is sufficient for this field, but it is
in general a nonlinear function of the direction of the magnetization. The exchange fieldHex in its turn, models the
strong alignment and formation of magnetic domains in the material. It is often writtenHex = l2ex∇

2M , where the
exchange lengthlex is of the order of a few nanometers. Finally, the magnetoelastic field Hme models the possibility
that mechanical strain may affect the magnetization of the material.

3 Single domain particles

The different terms in the effective fieldHeff contribute with different strengths depending on the situation. When the
magnetization varies on a nanometer scale, the exchange field becomes very strong and therefore the material tends to
align its magnetic moment locally in order to reduce the influence of∇2M . If a magnetic specimen is small enough,
say 10–100 nm, it is energetically favorable to alignall of the atoms in the particle, except for a thin boundary layer.
This is the spontaneous formation of a single magnetic domain in nanosized particles [4].

For describing single domain particles, the Landau-Lifshitz-Gilbert equation (1) is very suitable, since the
situation is strongly idealized. For spherical (or more generally, spheroidal) particles, the classical magnetic field can
be written (due to the classical solution of a spherical particle in a homogeneous external field being a homogeneous
internal field and an external dipole field)H = He − NdM , whereHe is the magnetic field external to the particle,
andNd is the demagnetization tensor of the particle. For spherical particles, we haveNd = I/3. Since the saturation
magnetization is very strong, this shows that the internal field in a single domain particle is usually very strong, even
in the absence of an external field. In the following, we describe the delicate interplay between the external bias field
and the demagnetization field.

4 Small signal model

When the magnetic specimen is subjected to a (relatively weak) time-varying magnetic field, we assume the fields can
be written

H = H0 + H1e
−iωt, M = M0 + M1e

−iωt, Heff = Heff0 + Heff1e
−iωt (3)

where the fields with index 0 indicates static quantities. For simplicity, we ignore all effects except demagnetization
and linearize the Landau-Lifshitz-Gilbert equation (1) around the static fields. This leads to the gyrotropic relation[5]

M1 =
1

(β − iαω/ωs)2 − (ω/ωs)2

(

(β − iαω/ωs)I + i(ω/ωs)m0 ×
)

H1 = χ(ω)H1 (4)

whereβ = |He

0|/Ms − 1/3 is the bias parameter,ωs = γµ0Ms is the intrinsic precession angular frequency, and
m0 = M0/Ms is the direction of the zeroth order magnetization. The term−1/3 in the expression forβ corresponds
to the demagnetization tensorNd. Since the relation between the magnetization and the magnetic field is gyrotropic
with the axis of gyrotropy being equal to the static magnetization, the natural waves propagating along the direction
of magnetization are left and right hand circularly polarized, with effective permeabilities

µ± = 1 +
1

β + (±1 − iα)ω/ωs

(5)

Magnetic losses are proportional toω Im(µ±), and it is readily verified that this number is positive for all realω. But
this does not mean the material is neither passive, causal, or stable, since the union of these properties require that all
poles ofµ = I + χ, and hence all poles of its eigenvaluesµ±, are in the lower half complexω plane. As we shall see,
this is no obvious thing.

5 Causality and stability

Causality and stability are two important system aspects, and are usually studied in terms of the location of the poles
of the system transfer function. In our case, the transfer function is the susceptibilityχ(ω). The criterion for this
representing a causal system is that all poles are in a lower half plane,i.e., there is an upper bound on the imaginary
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Figure 1: A system with negative feedback, corresponding tousing a model where the external magnetic field is used
as input. Even though the susceptibilityχ(ω) is unstable with respect to its inputH1, the negative feedback makes
the relation between the external fieldHe

1 and the magnetizationM1 stable.

part. The system is stable if this upper bound is negative,i.e., stability implies causality. The poles are given by setting
the denominator in (5) to zero, implying

ω± =
−β(±1 + iα)

1 + α2
(6)

i.e., the imaginary part of the pole is−βα/(1 + α2). Sinceβ = |He

0|/Ms − 1/3 is negative for a small external field,
the pole can very well be in the upper half plane, which means the impulse response can be exponentially increasing
in time. This violates stability but not causality. When considering causality and stability, one must be careful to
choose anoutput which should be related to a suitableinput. The output should obviously be the magnetization
M1, but the proper input could be both the internal fieldH1 and the external fieldHe

1, and these are related via the
demagnetization factor1/3 according toH1 = He

1 − M1/3. Inserting this expression in (4), implies

M1 = χ(ω)

(

He

1 −
M1

3

)

=⇒ M1 =

(

(β + 1/3 − iαω/ωs)I + i(ω/ωs)m0 ×
)

He

1

(β + 1/3 − iαω/ωs)2 − (ω/ωs)2
(7)

The first part of this equation can be interpreted as a system with negative feedback as depicted in Figure 1. It is seen
that the poles of the transfer function betweenHe

1 andM1 are

ω± =
−(β + 1/3)(±1 + iα)

1 + α2
(8)

and sinceβ +1/3 = |He

0|/Ms−1/3+1/3 = |He

0|/Ms > 0, we see that this transfer function is stable, and therefore
causal. Thus, the small signal susceptibilityχ(ω) can not be deemed unphysical just on account of its poles, which
simply reflects the choice of input signal.

6 Homogenization

We now turn to the question of what happens when the small signal susceptibilityχ(ω) is used in the calculation of
effective material parameters for a composite material. Weassume the composite material is of infinite extension,
where an idealized microgeometry consisting of aligned single domain magnetic particles embedded in a nonmagnetic
background material is shown in Figure 2.

The first effect of this configuration is to change the static magnetic field acting on each particle. If the volume
fraction of particles isf1 and each particle has magnetizationM0 = Msm0, then the effective static magnetization is
f1M0. If the composite material is subjected to an externally controlled bias magnetic fieldHe

0, then the field at one
particle isHe

′

0 = He

0 + f1M0/3, see for instance [6, p. 162]. This implies the bias parameter β in this case is

β =
|He

′

0 |

Ms

−
1

3
=

|He

0|

Ms

+
f1

3
−

1

3
=

|He

0|

Ms

−
f2

3
(9)

wheref2 = 1 − f1 is the volume fraction of the surrounding material. The effective relative permeability can be
calculated using the following generalized Maxwell-Garnett (or Hashin-Shtrikman) formula [7, p. 145]

µeff = I + f1(µ1 − I)[I + (f2/3)(µ1 − I)]−1 (10)



Figure 2: Idealized microgeometry of the composite material. Spherical particles, possibly with varying size but
having the same magnetization, are dispersed in a nonmagnetic background material.

It can be shown that the poles of the effective permeability calculated according to this formula usingµ1(ω) =
I + χ(ω) are [8]

ω± =
−(β + f2/3)(±1 + iα)

1 + α2
(11)

Sinceβ in the composite material is given by (9), we see that these poles lie in the lower half plane, and thus the
effective material properties of the composite material correspond to a stable, and thus causal, material. It is also seen
that the poles do not depend on the volume fraction, only on the material parameters of the ferromagnetic particles and
the external bias fieldHe

0.

7 Conclusions

We have demonstrated that the stability and causality of thesmall signal material parameters describing single domain
ferromagnetic particles depend on which field is taken as theinput. When the Landau-Lifshitz-Gilbert equation, which
models the full dynamics of the magnetization, is linearized, the relation between the internal magnetic field and the
magnetization is unstable. Though surprising at first sight, the explanation is due to the fact that the internal field is
not independent of the magnetization, and stability and causality is recovered when taking the external field as input.
When the effective material permeability of a composite material is calculated with a standard mixing formula, the
result is shown to be stable and causal, in spite of the fact that the calculation was formally made using unstable
susceptibilities describing the particles.
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