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Modeling and Identification of Position and Temperature
Dependent Friction Phenomena without Temperature Sensing

Fredrik Bagge Carlson* Anders Robertsson Rolf Johansson

Abstract—This paper investigates both positional
dependence in systems with friction and the influ-
ence an increase in temperature has on the friction
behavior. The positional dependence is modeled with
a Radial Basis Function network and the temperature
dependence is modeled as a first order system with the
power loss due to friction as input, eliminating the
need for temperature sensing. The proposed methods
are evaluated in both simulations and experiments
on two industrial robots with strong positional and
temperature friction dependence.

Index Terms—Friction, System Identification, Ra-
dial Basis Function Network, Temperature Modeling

I. INTRODUCTION
All mechanical systems with moving parts are subject

to friction. The friction force is a product of interaction
forces on an atomic level and is always resisting relative
motion between two elements in contact. Due to the com-
plex nature of the interaction forces, friction is usually
modeled based on empirical observations. The simplest
model of friction is the Coulomb model, Eq (1), which
assumes a constant friction force acting in the reverse
direction of motion

Ff = kc sign (v) (1)

where kc is the Coulomb friction constant and v is the
relative velocity between the interacting surfaces.

A slight extension to the Coulomb model includes also
velocity dependent terms

Ff = kvv + kc sign (v) (2)

where kv is the viscous friction coefficient. The Coulomb
model and the viscous model are illustrated in Fig. 2. If
the friction is observed to vary with sign (v), the model
(2) can be extended to

Ff = kvv + k+
c sign (v+) + k−c sign (v−) (3)

where the sign operator is defined to be zero for v = 0
and v+ = max(0, v) and v− = min(0, v).
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Fig. 1. ABB YuMi and ABB IRB140 used for experimental
verification of proposed models and identification procedures.
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Fig. 2. Illustrations of simple friction models.

It is commonly observed that the force needed to
initiate movement from a resting position is higher than
the force required to maintain a low velocity. This phe-
nomenon, called stiction, is illustrated in Fig. 2. The
friction for zero velocity and an external force Fe can
be modeled as

Ff =
{
Fe if v = 0 and |Fe| < ks
ks signFe if v = 0 and |Fe| ≥ ks

(4)

where ks is the stiction friction coefficient. An external
force greater than the stiction force will, according to
model (4), cause an instantaneous acceleration and a
discontinuity in the friction force.

The models above suffice for many purposes but can
not explain several commonly observed friction related
phenomena, such as the Stribeck effect and dynamical
behavior etc. [1]. To explain more complicated behaviour,
dynamical models such as the Dahl model [2] and the
LuGre model [3] have been proposed.

Most proposed friction models include velocity-
dependent effects, but no position dependence. A depen-
dence upon position is however often observed, and may
stem from, for instance, imperfect assembly, irregularities
in the contact surfaces or application of lubricant etc.
[4]. Modeling of the position dependence is unfortunately
nontrivial due to an often irregular relationship between
the position and the friction force. Several authors have



however made efforts in the area. In [5] the author uses
accurate friction measurements to implement a look-up
table for the position dependence and in [6] the authors
adaptively identify a sinusodial position dependence.

More recent endeavors include [7] where an Iterative
Learning Control approach is used to learn a feedforward
model including position dependent friction terms.

In [8], no significant positional dependence of the
friction in a robot joint was found, however, a clear
dependence upon the temperature of contact region was
reported. To allow for temperature sensing, the grease in
the gear box was replaced by an oil-based lubricant which
allowed for temperature sensing in the oil flow circuit.

A standard approach in dealing with systems with
varying parameters is recursive identification during nor-
mal operation [9]. Recursive identification of the models
(1) and (2) could account for both position- and temper-
ature dependence. Whereas straight forward in theory, it
is often hard to perform in a robust manner in practical
situations. Presence of external forces, accelerating mo-
tions etc. require either a break in the adaptation, or an
accurate model of the additional dynamics. Many control
programs, such as time-optimal programs, never exhibit
zero acceleration, and thus no chance for parameter
adaptation.

This paper suggests a model that incorporates po-
sitional friction dependence as well as a temperature
dependent term. Since many industrially relevant sys-
tems lack temperature sensing in areas of importance
for friction modeling, a sensor-less approach is proposed.
Both models are used for identification of friction in the
joint of an ABB YuMi robot, see Fig. 1, and special
aspects of position dependence are verified on an ABB
IRB140. The models and identification procedures are
introduced in Sec. II and verification is performed in
Sections III and IV. The paper is summarized in Sec. VI.

II. Models and Identification Procedures
This section first introduces a general identification

procedure for linear models, based on the least-squares
method, followed by the introduction of a model which
allows for the friction to vary with position. Third, a
model which accounts for temperature varying friction
phenomena is introduced. Here, a sensor-less approach
where the power loss due to friction is used as an input
to a first order system, is adopted.

As the models are equally suited for friction due
to linear and angular movements, the terms force and
torque are here used interchangeably.

A. Least-Squares Identification
A standard model of the torques in a rigid-body

dynamical system, such as industrial robots, is [10]

τ = M(p)a+ C(p, v)v +G(p) + F (v) (5)

where a = v̇ = p̈ is the acceleration, τ the con-
trol torque, M,C,G are matrices representing inertia-,

Coriolis-, centrifugal- and gravitational forces and F is a
friction model. If a single joint at the time is operated,
at constant velocity, Coriolis effects disappear [10] and

C(p, v) = 0
a = 0

}
⇒ τ = G(p) + F (v) (6)

To further simplify the presentation, it is assumed that
G(p) = 0. This can easily be achieved by either aligning
the axis of rotation with the gravitational vector such
that gravitational forces vanish, by identifying and com-
pensating for a gravity model1 or, as in [8], performing
a symmetric experiment with both positive and negative
velocities and calculating the torque difference.

The simple models described in Sec. I are commonly
identified with the well-known least-squares procedure
[9], [11], [12]. For the model (2), this amounts to arrang-
ing data that satisfies Eq. (6) according to

y =

 τ1
...
τN

 , A =

 v1 sign (v1)
...

...
vN sign (vN )

 ∈ RN×2, x =
[
kv
kc

]
(7)

and solving optimization problem (8) with solution (9).

x∗ = arg min
x

∥∥Ax− y∥∥2 (8)

x∗ = (AᵀA)−1Aᵀy (9)

B. Position Dependent Model

As mentioned in Sec. I, a positional, repeatable friction
dependence is often observed in mechanical systems. This
section extends the simple nominal models presented in
Sec. I with position dependent terms, where the posi-
tion dependence is modeled with a radial basis function
network (RBFN)2 [13].
Define the Gaussian RBF kernel κ and the kernel

vector φ

κ(p, µ, σ) = exp
(
− (p− µ)2

2σ2

)
(10)

φ(p) : (p ∈ P)→ R1×K

φ(p) =
[
κ(p, µ1, σ), · · · , κ(p, µK , σ)

]
(11)

where µi ∈ P, i = 1, ...,K is a set of K evenly spaced
centers. For each input position p ∈ P ⊆ R, the
kernel vector φ(p) will have activated (>0) entries for
the kernels with centers close to p. The parameter σ in
Eq. (10) determines the bandwidth of the RBFs. A large
value of σ will result in a smooth estimate of the position
dependence with low variance. Smaller values increase
the variance but are able to capture finer detail. Refer

1For a single joint, this simply amounts to appending the regres-
sor matrix A with

[
sin(p) cos(p)

]
2Other common terms are Kernel Machines and RBF expansion.



to Fig. 3 for an illustration of RBFs. The kernel vector
is appended the matrix A from Sec. II-A such that

A =

 v1 sign (v1) φ(p1)
...

...
...

vN sign (vN ) φ(pN )

 ∈ RN×(2+K), x =

kvkc
kκ


(12)

where kκ ∈ RK denotes the parameters corresponding to
the kernel vector entries. The number of RBFs to include
and the bandwidth σ is usually chosen based on evidence
maximization or cross validation [13].

The position dependent model can now be summarized
as

Ff = Fn + kκφ(p) (13)

where Fn is one of the nominal models from Sec. I.
The above method is valid for position-varying

Coulomb friction. It is conceivable that the position
dependence is affected by the velocity, in which case
the model (13) will produce a sub-optimal result. The
RBF network can however be designed to cover the space
(P×V) ⊆ R2. The inclusion of velocity dependence comes
at the cost of an increase in the number of parameters
from Kp to KpKv, where Kp and Kv denote the number
of basis function centers in the position and velocity
input spaces respectively.

The expression for the RBF kernel will in this extended
model assume the form

κ(x, µ,Σ) = exp
(
−1

2(x− µ)ᵀΣ−1(x− µ)
)

(14)

where x =
[
p v

]ᵀ ∈ P × V, µ ∈ P × V and Σ is
the covariance matrix determining the bandwidth. The
kernel vector will be

φ(x) : (x ∈ P × V)→ R1×(KpKv)

φ(x) =
[
κ(x, µ1,Σ), · · · , κ(x, µKpKv ,Σ)

]
(15)

This concept extends to higher dimensions, at the cost
of an exponential growth in the number of model param-
eters.
1) Normalization: For some applications, it may be

beneficial to normalize the kernel vector for each input
point [14] such that

φ̄(x) =

KpKv∑
i=1

κ(x, µi,Σ)

−1

φ(x) (16)

One major difference between a standard RBF network
and a normalized RBF network (NRBFN) is the behavior
far (in terms of Mahalanobis distance) from the training
data. The prediction of an RBFN will tend towards zero,
whereas the prediction from an NRBFN keeps its value.
Figure 3 shows two networks fit to the function f(t) =
0.3t2 − 0.5 together with the basis functions used. The
RBF tends towards zero both outside the data points and
in the interval of missing data in the center. The NRBF
on the other hand generalizes better and keeps its current

−4 −2 0 2 4
−1

0

1

t

f
(t

)

Data f(t) Non normalized Normalized

Fig. 3. RBF networks fit to noisy data from the function
f(t) = 0.3t2 − 0.5 using normalized (-) and non-normalized (- -)
basis functions. Non-normalized basis functions are shown mirrored
in the x-axis.

prediction trend outside the data. The performance of
NRBF networks is studied in detail in [14].

C. Energy Dependent Model
Friction is often observed to vary with the temperature

of the contact surfaces and lubricants involved [8]. Many
systems of industrial relevance lack the sensors needed
to measure the temperature of the contact regions, thus
rendering temperature dependent models unusable.

The rise in temperature that occurs during operation
is mostly due to friction losses. This section introduces
a model which includes the generated energy, and esti-
mates its influence on the friction.

A simple model for the temperature change in a system
with temperature T , surrounding temperature Ts, and a
power input W , is given by

dT (t)
dt

= −ks(T (t)− Ts) + kWW (t) (17)

for some constants ks, kW . After the variable change
∆T (t) = T (t) − Ts, and transformation to the Laplace
domain, the model (17) can be written

∆T (s) = kW
s+ ks

W (s) (18)

where the power input generated by friction losses is
equal to the friction force times the velocity

W (t) = |Ff (t)v(t)| (19)

We are now ready to introduce the proposed model,
which takes on the form

Ff = Fn + sign (v)E (20)

E(s) = G(s)W (s) = k̄e
1 + sτ̄e

W (s) (21)

where the friction force Ff has been divided into the
nominal friction Fn and the signal E, corresponding to
the influence of the thermal energy stored in the joint.
The nominal model Fn can be chosen as any of the
models previously introduced, including (13). The energy
is assumed supplied by the instantaneous power due to
friction,W , and is dissipating as a first order system with



time constant τ̄e. A discrete representation is obtained
after Zero-Order-Hold (ZOH) sampling [15] according to

E(z) = H(z)W (z) = ke
z − τe

W (z) (22)

In the suggested model form (20) to (22), the transfer
function H(z) incorporates both the notion of energy
being stored and dissipated, as well as the influence of
the stored energy on the friction.

The proposed model suggests that the change in
friction due to the temperature change occurs in the
Coulomb friction. This assumption is always valid for
the nominal model (1), and a reasonable approximation
for the model (2) if kc � kvv or if the system is both
operated and identified in a small interval of velocities.
If, however, the temperature change has a large effect
on the viscous friction or on the position dependence,
a 3D basis function expansion can be performed in the
space P × V × E , E ∈ E . This general model can handle
arbitrary nonlinear dependencies between position, ve-
locity and estimated temperature. The energy signal E
can then be estimated using a simple nominal model, and
included in the kernel expansion for an extended model.
Further discussion on this is held in Sec. V.

Denote by τ̂n the output of the nominal model Fn.
Estimation of the signal E can now be done by rewriting
Eq. (20) in two different ways

Ê = (τ − τ̂n) sign (v) (23)
Fn = τ − sign (v)Ê (24)

The joint estimation of the parameters in the nom-
inal model and H(z) in Eq. (22) can be carried out
in an Expectation-Maximization like fashion [13]. This
amounts to iteratively finding an estimate F̂n of the
nominal model, using F̂n to find an estimate Ê of E
according to Eq. (23), using Ê to estimate H(z) in
Eq. (22) and, using H(z), filter Ê = H(z)W .
1) Initial Guess: For this scheme to work, an initial

estimate of the paramters in H(z) is needed. This can be
easily obtained by observing the raw torque data from
an experiment. Consider for example Fig. 4, where the
system (20) and (21) has been simulated. The figure
depicts the torque signal as well as the energy signal E.
The envelope of the torque signal decays approximately
as the signal E, which allows for easy estimation of the
gain k̄e and the time constant τ̄e. The time constant
τ̄e is determined by the time it takes for the signal to
reach (1 − e−1) ≈ 63 % of its final value. Since G(s)
is essentially a low-pass filter, the output E = G(s)W
will approximately reach E∞ = G(0)E(W ) = k̄eE(W ) if
sent a stationary, stochastic input W with fast enough
time constant (� τ̄e). Here, E(·) denotes the statistical
expectation operator and E∞ is the final value of the
signal E. An initial estimate of the gain k̄e can thus be
obtained from the envelope of the torque signal as

k̄e ≈
E∞
E(W ) ≈

E∞
1
N

∑
kWk

(25)

0 τ̄e 30 40 50 60-12

k̄eE(W )
0.63k̄eE(W )

0

5

10

15

Time [minutes]

τ
[N

m
]

τ W E

Fig. 4. A realization of simulated signals. The figure shows how the
envelope of the applied torque approximately decays as the signal
E. Dashed, blue lines are drawn to illustrate the determination of
initial guesses for the time constant τ̄e and the gain k̄e.

Refer to Fig. 4 for an illustration, where dashed guides
have been drawn to illustrate the initial guesses.

The discrete counterpart to G(s) can be obtained by
discretization with relevant sampling time [15].
2) Estimating the Model: An algorithm for the esti-

mation of all parameters in Eqs. (20) to (22) is given in
Algorithm 1. The estimation of Ĥ(z) in Eq. (22) can be
done with e.g., the Output Error Method3 [9] and the
estimation of the nominal model is carried out using the
LS procedure from Sec. II-A.

Algorithm 1 Estimation of the parameters and the
signal E in the energy dependent friction model.
Require: Initial estimate Ĥ(z, ke, τe);

repeat
Calculate Ê according to Eq. (23);
Update Ĥ(z) using Eq. (22);
Ê ← Ĥ(z)W . Filter W through Ĥ(z);
Update Fn according to (24) using Eq. (9);

until Convergence

III. Simulations

To analyze the validity of the proposed technique for
estimation of the energy dependent model, a simulation
experiment was performed. The system described by
Eqs. (20) and (21) was simulated to create 50 realizations
of the relevant signals, and the proposed method was
run for 50 iterations to identify the model parameters.
The parameters used in the simulation are provided in
Table I. Initial guesses were chosen at random from the
uniform distributions ˆ̄ke ∼ U(0, 3k̄e) ˆ̄τe ∼ U(0, 3τ̄).
Figure 5 shows that the estimated parameters converge

rapidly to their true values, and Fig. 6 indicates that
the Root Mean Square output Error (RMSE) converges
to the level of the added measurement noise. Figure 6
further shows that the errors in the parameter estimates,
as defined by Eq. (26), were typically below 5 % of the

3E.g. Matlab System Identification Toolbox, command oe()



TABLE I
Parameter values used in simulation. Values given on the format x/y represent continuous/discrete values.

Parameter kv kc ke τe Measurement noise στ Sample time h Duration Iterations

Value 5 15 -3/-0.5 10/0.9983 0.5Nm 1s 3600s 50

0 25 500

2

4

6
kv

0 25 500

5

10

15

20
kc

0 25 50
−1

−0.998
−0.996
−0.994
−0.992
−0.99

τe

0 25 50
−2

−1.5

−1

−0.5
0 ·10−2 ke

Fig. 5. Estimated parameters during 50 simulations. The hori-
zontal axis displays the iteration number and the vertical axis the
current parameter value. True parameter values are indicated with
green, dashed lines.

0 25 500

0.1

0.2

0.3

0.4

Normalized Parameter Error

0 25 500.4

0.6

0.8

1

1.2

RMSE

Fig. 6. Evolution of errors during the simulation experiment, the
horizontal axis displays the iteration number. The left plot shows
normalized norms of parameter errors, defined in Eq. (26), and
the right plot shows the RMS output error using the estimated
parameters. The standard deviation of the added measurement
noise is shown with a green, dashed line.

parameter values.

NPE =

√√√√ Np∑
i=1

(
x̂i − xi
|xi|

)2
(26)

IV. Experiments
The proposed models and identification procedures

were applied to data from an experiment with an ABB
YuMi, and an ABB IRB140 industrial robot, see Fig. 1.

A. Procedure
For IRB140, the first joint was used. The rest of the

arms were positioned so as to minimize the moment of
inertia. For YuMi, joint four in one of the arms was
positioned such that the influence of gravity vanished.

A program which moved the selected joint at piecewise
constant velocities between the two joint limits was exe-
cuted for approximately 20 min. Torque-, velocity-, and
position data were sampled and filtered at 250 Hz and
subsequently sub-sampled and stored at 20 Hz, resulting
in 25 000 data points. Points approximately satisfying

0 π
2

π 3π
2

2π
0

10

20

30

Motor position [rad]

To
rq

ue

Fig. 7. Illustration of the torque dependence upon the motor
position for the IRB140 robot.

Eq. (6) were selected for identification, resulting in a set
of 16 000 data points.
1) Nominal Model: The viscous model (3) was fit us-

ing the ordinary LS procedure from Sec. II-A. This model
was also used as the nominal model in the subsequent
fitting of position model (13) and energy model (20)
to (22).
2) Position Model: For the position dependent model,

the number of basis functions and their bandwidth was
determined using cross validation. A large value of σ has
a strong regularizing effect and resulted in a model that
generalized well outside the training data. The model was
fit using normalized basis functions.

Due to the characteristics of the gear box in many
industrial robots, there is a clear dependence not only
on the arm position, but also on the motor position.
Figure 7 shows the torque versus the motor position
when the joint is operated at constant velocity. This is
especially strong on the IRB140 and results are there-
fore illustrated for this robot. Both arm and motor
positions are available through the simple relationship
pmotor = mod 2π(g · parm), where g denotes the gear
ratio. This allows for basis function expansion also for the
motor positions. To illustrate this, pmotor was expanded
intoKpm

Kv = 36×6 basis functions,corresponding to the
periodicity observed in Fig. 7. The results for the model
with motor position dependence are reported separately.

To reduce variance in the estimated kernel parameters,
all position-dependent models were estimated using ridge
regression [13], where a Gaussian prior was put on the
kernel parameters. The strength of the prior was deter-
mined using cross validation. All basis function expan-
sions were performed with normalized basis functions.
3) Energy Model: The energy dependent model was

identified for YuMi using the procedure described in Al-
gorithm 1. The initial guesses for H(z) were τ̄e = 10 min
and k̄e = −0.1. The nominal model was chosen as the
viscous friction model Eq. (3). Once the signal E was
estimated, a kernel expansion in the space P × V × E
with 40×6×3 basis functions was performed to capture
temperature dependent effects in both the Coulomb and
viscous friction parameters.



0 10 20 30 405.266

5.268

5.27

5.272 ·10−2 kv

0 10 20 30 400.46

0.47

0.48

0.49

0.5
kc

v > 0
v < 0

0 10 20 30 402.8

2.9

3

3.1

3.2
τ̄e [minutes]

0 10 20 30 40
−5.8

−5.6

−5.4

−5.2 ·10−5 ke

Fig. 8. Estimated parameters from experimental data. The hori-
zontal axis displays the iteration number and the vertical axis the
current parameter value.

TABLE II
Performance indicators for the identified models, YuMi.

Nominal Position Position + Energy

Fit 86.968 93.193 96.674
FPE 3.63e-03 1.03e-03 2.65e-04
RMSE 6.03e-02 3.15e-02 1.54e-02
MAE 4.71e-02 2.36e-02 1.22e-02

B. Results

The convergence of the model parameters is shown in
Fig. 8 and Fig. 9 illustrates how the models identified for
YuMi fit the experimental data. The upper plot shows an
early stage of the experiment when the joint is cold. At
this stage, the model without the energy term underesti-
mates the torque needed, whereas the energy model does
a better job. The lower plot shows a later stage of the
experiment where the mean torque level is significantly
lower. Here, the model without energy term is instead
slightly over estimating the friction torque. The observed
behavior is expected, since the model without energy
dependence will fit the average friction level during the
entire experiment. The two models correspond well in
the middle of the experiments (not shown). The nominal
model (3), can not account for any of the positional
effects and produces an overall, much worse fit. Different
measures of model fit for the three models are presented
in Table II and Fig. 11 (Fit (%), Final Prediction Error,
Root Mean Square Error, Mean Absolute Error). For
definitions, see e.g. [9].

For the IRB140, three models are compared. The nom-
inal model Eq. (3), a model with a basis function expan-
sion in the space Parm and a model with an additional
basis function expansion in the space Pmotor × V. The
resulting model fits are shown in Fig. 10. What may seem
like random measurement noise in the torque signal is in
fact predictable using a relatively small set of parameters.
Figure 12 illustrates that the large dependence of the
torque on the motor position results in large errors. The
inclusion of a basis function expansion of the motor
position in the model reduces the error significantly.
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Fig. 9. Model fit to experimental data (YuMi). Upper plot shows
an early stage of the experiment when the joint is cold. Lower plot
a later stage, when the joint has been warmed up.

V. Discussion
The proposed models try to increase the predic-

tive power of common friction models by incorporating
position- and temperature dependence. Systems with
varying parameters can in theory be estimated with
recursive algorithms, so called online identification. As
elaborated on in Sec. I, online identification of friction
models is often difficult in practice due to the presence
of additional dynamics or external forces. The proposed
methods are identified offline, during a controlled exper-
iment, and are thus not subject to the problems asso-
ciated with online identification. However, apart from
the temperature related parameters, all suggested models
are linear in the parameters, and could be updated
recursively using for instance the well-known recursive
least squares or Kalman filter algorithms [9].

Although outside the scope of this work, effects of
joint load on the friction behavior can be significant [8].
Such dependencies could be incorporated in the proposed
models using the same RBF approach as for the incor-
poration of position dependence, i.e. through an RBF
expansion in the joint load (l ∈ L) dimension according
to φ(x) : (x ∈ P × E ×L)→ R1×(KpKeKl), with Kl basis
function centers along dimension L. This strategy would
capture possible position and temperature dependencies
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Fig. 10. Model fit including kernel expansion for motor position on
IRB140. During t = [0 s, 22 s], the joint traverses a full revolution of
2π rad. The same distance was traversed backwards with a higher
velocity during t = [22 s, 33 s]. Notice the repeatable pattern as
identified by the position dependent models.
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Fig. 11. Performance indicators for the identified models, YuMi.

in the load-friction interaction.
In its simplest form, the proposed energy dependent

model assumes that the change in friction occurs in
the Coulomb friction level. This is always valid for the
Coulomb model, and a reasonable approximation for the
viscous friction model if kc � kvv or if the system is both
operated and identified in a small interval of velocities. If
the viscous friction kvv is large, the approximation will
be worse. This suggests modeling the friction as

Ff = kv(E)v + kc(E) sign (v) (27)

where the Coulomb- and viscous constants are seen as
functions of the estimated energy signal E, i.e., a Linear
Parameter-Varying model (LPV). To accomplish this, a
kernel expansion including the estimated energy signal
was suggested and evaluated experimentally.

Although models based on the internally generated
power remove the need for temperature sensing in some
scenarios, they do not cover significant variations in the
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Fig. 12. Performance indicators for the identified models, IRB140.

surrounding temperature. The power generated in, for in-
stance, an industrial robot is, however, often high enough
to cause a much larger increase in temperature than the
expected temperature variations of its surrounding [8].

VI. CONCLUSIONS
The modeling of both position and temperature de-

pendence in systems with friction have been investi-
gated. To model position varying friction, a Radial Basis
Function network approach was adopted. It has been
experimentally verified that taking position dependence
into account can significantly reduce the model output
error. It has also been reported that friction phenomena
on both sides of a gearbox can be modeled using the
proposed approach.

The influence of an increase in temperature due to
power generated by friction has been modeled and es-
timated. The proposed approach was based on a first-
order temperature input-output model where the power
generated by friction was used as input. The model
together with the proposed identification procedure was
shown to capture the decrease in friction seen in an
industrial robot during a long term experiment, this was
accomplished without the need of temperature sensing.
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