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Populärvetenskaplig
Sammanfattning

Denna avhandling kretsar kring förmaksflimmer, en av våra vanligaste hjärtsjukdo-
mar. Förmaksflimmer betraktas i regel inte som livshotande, men anses kunna leda
till värre sjukdomar, i synnerhet stroke. Forskning rörande förmaksflimrets mekanis-
mer motiveras alltså dels av att lindra symptomen, men även av att utveckla metoder
att identifiera patienter så att åtgärder mot stroke kan sättas in i tid. Detta arbete tar sig
an signalbehandling av EKG-signaler, elektriska hjärtsignaler inspelade från kroppsy-
tan, och syftar till att utveckla analysmetoder som är robusta och tar fysiologiska och
teknologiska begränsningar i beaktning.

Ett friskt hjärta styrs av sinusknutan i hjärtats högra förmak, som skickar elekt-
riska impulser ner till kamrarna, vilka kontraherar och pumpar ut blod i kroppen,
ett “hjärtslag”. Under förmaksflimmer är detta system satt ur spel, då den oordnade
elektriska aktiviteten i förmaken leder till en oregelbunden hjärtrytm. EKG-signaler
domineras av den elektriska aktiviteten i kamrarna, och analysen baseras ofta endast på
hjärtrytmen. Signalerna innehåller dock även den elektriska aktivitet i förmaken, vil-
ket för patienter med förmaksflimmer innebär flimmervågor, vars upprepning, storlek
och regelbundenhet varierar kraftigt mellan olika patienter. Flera studier av flimmer-
vågor har funnit att deras egenskaper kan ge en indikation på hur patienten kommer
att reagera på olika läkemedel, eller på kirurgisk behandling.

Utmaningen med att analysera flimmervågor består dels av att vågorna i viss mån
döljs bakom den mer dominanta kammaraktiviteten, dels av att deras signalstyrka
är förhållandevis låg. Det första problemet har behandlats grundligt under en längre
tid, och det existerar numera flera metoder som med goda resultat filtrerar bort kam-
maraktiviteten från EKG-signalerna så att “rena” flimmervågor tillhandahålls. Proble-
met med låg signalstyrka har dock ofta förbisetts. Detta gör flimmervågsanalys väldigt
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vi Populärvetenskaplig Sammanfattning

känslig för störningar, orsakade av, t.ex., elektroder som sitter lösa, eller elektrisk ak-
tivitet från muskler.

Centrala teman i denna avhandling är modellering och signalkvalitet, samt de be-
gränsningar låg signalkvalitet innebär för tillförlitligheten av flimmervågsanalys. Ett
arbete presenterar en ny modell av AV-knutan, den delen av hjärtat som möjliggör
överledning av elektriska impulser från förmaken till kamrarna. Modellen använder
sig utav förhållandet mellan hjärtslagen och flimmervågornas dominanta frekvens för
att uppskatta AV-knutans egenskaper på ett mer robust vis än tidigare metoder. Ett
annat arbete använder sig av en flimmervågsmodell för att introducera ett nytt signal-
kvalitetsindex, speciellt utvecklat för flimmervågor. Detta index bedömer tillförlitlig-
heten av analysen och höga indexvärden visar sig dessutom indikera närvaro av flim-
mervågor, vilket utnyttjas för att förbättra prestandan hos en förmaksflimmerdetektor.
Övriga arbeten kretsar kring flimmervågsanalys och använder sig utav signalkvalitets-
indexet. En studie finner att flimmervågornas kvalitet försämras avsevärt under viss
fysisk aktivitet, och en annan studie demonstrerar hur flimmervågornas dominanta
frekvens minskar under isolering av lungvenerna, en vanlig behandlingsmetod för för-
maksflimmer. Det sista arbetet undersöker hur olika flimmervågsparametrar varierar
inom och mellan olika patienter.



Abstract

This doctoral thesis revolves around the analysis of electrocardiogram (ECG) signals
during atrial fibrillation (AF). Special emphasis is put on the atrial fibrillatory waves,
sometimes called the f-waves, which is the ECG component reflecting the electrical
activity of the atria.

The thesis comprises an introduction and five papers that introduce and apply
methods on ECG-based analysis of AF. Paper I deals with modelling of the relation-
ship between atrial and ventricular activity while papers II–V deal with the modeling,
analysis and quality assessment of the f-waves, the atrial activity component of the
ECG.

Paper I presents a novel statistical dual pathway model of the atrioventricular (AV)
node during AF. The model accounts for pathway switching, meaning that atrial im-
pulses may alternate between arriving at the slow and the fast pathway, even if the
preceding impulse did not cause a ventricular activation. Comparison between the
present model, defined by four parameters, and a reference model, defined by five
parameters, does not reveal any difference in modelling capability. However, param-
eter estimates of the present model exhibit considerably lower variation, a finding that
may be ascribed to the reduction of model parameters.

Paper II proposes an f-wave signal quality index (SQI). The SQI is computed
using a harmonic f-wave model which allows for variation in frequency and amplitude.
Unlike the noise level estimator used for comparison, the f-wave SQI reflects signal
quality adequately also when the spectral content of the noise overlaps with that of
the observed f-waves. The SQI is shown to be highly associated with f-wave presence,
obtaining considerably smaller values when computed from non-AF signals, which is
exploited to improve the performance of an AF detector.

Paper III investigates the signal quality aspects of 24h tracking of the dominant
atrial frequency (DAF), using the f-wave SQI from Paper II. The use of the SQI reveals
that 40% of all 5-s signal segments of the database should be excluded due to poor
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viii Abstract

quality, with the recordings of some patients being completely removed. Removal
of the noisy segments reduced the variation of the DAF trend during both day- and
night-time . A decrease in signal quality is observed during veloergometry exercise,
with the quality restored immediately afterwards.

Paper IV investigates the f-wave changes occurring during pulmonary vein isola-
tion, a treatment option for AF patients. Three f-wave parameters, derived from the
harmonic f-wave model from Paper II, are included – the DAF, the f-wave ampli-
tude, and a novel regularity parameter named the phase dispersion. All three f-wave
parameters correlate with clinical characteristics, but none of them can predict AF
recurrence. However, the DAF decreases significantly during the procedure.

Paper V investigates the reproducibility of f-wave parameters, including the three
from paper IV as well as the spectral organization index and spatiotemporal variability,
which have been included in previous studies on f-wave analysis. For each parameter,
the variance ratio between the inter- and intrapatient variance, is computed, a larger
ratio corresponding to better parameter stability and reproducibility. A substantial
difference in inter- and intrapatient variation is found among different parameters,
with the DAF and f-wave amplitude obtaining considerably larger variance ratios than
the rest.

In summary, this thesis presents and evaluates tools for ECG-based AF analy-
sis with special attention on robustness and quality control. The SQI presented in
Paper II is applied in Paper III–V, and it is concluded that some kind of quality as-
sessment should be considered in all future studies involving f-wave analysis.
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Chapter 1

Motivation and Background

This thesis deals with the analysis of atrial fibrillation (AF) from electrocardio-
gram (ECG) signals, measured non-invasively from the body surface. The increasing
prevalence of AF demonstrates the need for reliable screening and diagnosis, where
large amounts of data may need to be automatically classified. Also, many aspects
of the disease remain unclear, which motivate the development of research tools that
provide ways to identify AF properties.

The common theme of all included papers is the analysis of atrial fibrillatory
waves, sometimes called f-waves, which is the atrial component of the ECG. Spe-
cial consideration is given to signal quality. All papers involve classifying subsets of
signals or estimates as unreliable, and consequently removing them from further anal-
ysis. The thesis sets out to investigate the boundaries of ECG-based AF analysis, and
shed some light on what can be expected from current measurement techniques.

The work presented in this thesis consists of five parts.

• Paper I presents a novel model of the atrioventricular (AV) nodal function dur-
ing AF, enabling robust estimation of multiple AV nodal parameters.

• Paper II presents a novel index for assessment of f-wave signal quality, and
investigates its significance in frequency estimation and AF detection.

• Paper III studies frequency tracking in long-term ambulatory ECG recordings,
applying the signal quality index from Paper II.

• Paper IV investigates the changes in f-wave parameters occurring during isola-
tion of the pulmonary veins.

• Paper V studies the reproducibility of several f-wave parameters.
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4 Introduction

The remainder of this introductory chapter presents a general overview of the
human heart (Sec. 1.1) and AF (Sec. 1.2), including treatment options. Chapter 2
deals with the basics of ECG signal processing and presents various types of analysis
using only ventricular information (Sec. 2.1), ways to determine the quality of ECG
signals (Sec. 2.2), and mathematical models of the AV node (Sec. 2.3). Chapter 3
deals with f-waves, including ways to extract (Sec. 3.1) and to model (Sec. 3.2) them.
Section 3.3 introduces several parameters used to characterize the f-waves as well as
their use in AF detection, while Sec. 3.4 discusses the influence of noisy on f-wave
analysis—a central theme of this thesis. Finally, summaries of the five included papers
are presented in Ch. 4.

1.1 The human heart

The human heart consists of a right and a left part, each of which is made up
of an atrium and a ventricle. The anatomy of the heart is illustrated in Fig. 1.1.
During a cardiac cycle, the right atrium receives deoxygenated blood from the veins
and pushes it to the right ventricle through the right AV valve. The right ventricle
then contracts and the blood is pushed through the pulmonary artery to the lungs
where it is oxygenated before entering the left atrium. The subsequent contraction of
the left atrium lets the blood pass through the left AV valve to the left ventricle which
finally contracts and pushes the oxygenated blood into the aorta which transports it
to the organs of the body.

In a healthy heart, this process is coordinated by electrical impulses originating
from the sinoatrial (SA) node located in the right atrium. The SA node, described as
the natural pacemaker of the heart, generates electrical impulses at a rate modulated
by the autonomic nervous system. Each impulse traverses the atria and causes the
right and the left atrium to contract simultaneously. The impulse then enters the AV
node, the part of the electrical conduction system of the heart which connects the atria
and the ventricles. The conduction velocity of the impulse is slowed significantly in
the AV node, causing a delay. When any part of the electrical conduction system of
the heart, e.g. the AV node, is activated, its tissue gets depolarized and it needs to
be repolarized before being activated again. During the repolarization, the tissue is
said to be refractory. The refractory period of the AV node will therefore limit the
heart rate, as two impulses arriving close to each other may not both be conducted
to the ventricles. The shortest time interval between conducted impulses is referred
to as the functional refractory period of the AV node. After passing through the AV
node, the conduction velocity increases again as the impulse traverses the bundle of
His and the Purkinje fibers before it causes both the left and the right ventricle to
contract simultaneously. The delay of the impulse in the AV node causes a sufficient



5

Left ventricle

Left ventricle

Septum

Purkinje fibers
Right ventricle

Right ventricle

Right bundle

Right atrium

Left atrium

His bundle

Left bundle

Sinoatrial
node

Atrioventricular
node

Right atrium

Left atrium

To the body

From
the body

To the
lungs

From the
lungs

Figure 1.1: Anatomic overview of the heart. Reprinted with permission from [1].

time difference between the atrial contractions and the ventricular contractions to
allow the ventricles to be filled with blood. The heart rate is consequently directly
controlled by the rate of impulses from SA node, and this is referred to as normal
sinus rhythm (SR).

1.2 Atrial fibrillation

Atrial fibrillation is the world’s most common arrhythmia, characterized by rapid and
irregular heart beats. Recent reports suggest an AF prevalence rate of approximately
3% in adults, a number which is expected to increase with an ageing population [2].

While the exact mechanisms of AF remain unknown, it is distinguished by electri-
cal disorganisation in the atria, causing incomplete atrial contractions, and preventing
the SA node from acting as the natural pacemaker of the heart during AF. The AV
node is bombarded by electrical impulses in a seemingly uncoordinated manner which
ultimately results in irregular ventricular contractions and, consequently, an irregular
heart rhythm.

Atrial fibrillation is often classified into different AF types, including; paroxysmal
AF, consisting of self-terminating episodes lasting no more than seven days; persistent
AF, consisting of AF episodes failing to terminate within seven day; long-standing
persistent AF, where AF has lasted more than one year; and permanent AF, where
attempts to restore SR have been unsuccessful and the physician has accepted the
presence of AF. The AF type is not considered to be static as, e.g., a paroxysmal AF
patient may very well transition into persistent AF.

Atrial fibrillation may manifest itself in a variety of symptoms, most commonly
palpitations and shortness of breath [3]. However, many patients suffering from AF
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are symptom-free, suggesting an underestimation of AF prevalence. Atrial fibrillation
is also associated with increased mortality, in particular by the increased risk of stroke.
This since the incomplete contraction of the atria may cause blood to coagulate and
form blood clots. Atrial fibrillation is therefore generally treated by prescribing antico-
agulants medication to the patient. Restoration of SR can also be attempted by either
pharmacological or electrical cardioversion. If the restoration to SR is unsuccessful,
rate-control drugs can be used to control the heart rhythm.

1.2.1 Treatment

Apart from the admission of anticoagulants, AF management strategies can be clas-
sified into one of two options; rate control, which sets out to control the fast and
irregular heart rate; and rhythm control, which is focused on preventing AF recur-
rence or restoring SR.

Rate control has been referred to as the therapy of choice for AF [4]. It commonly
involves lowering the heart rate to at most 80 beats per minute at rest, typically by the
use of pharmaceuticals such as beta-blockers or calcium-channel blockers. The drugs
influences the properties of the AV node so that fewer atrial impulses are conducted,
thus slowing down the heart rate. The electrical isolation of the AV node through the
use of catheter ablation is another treatment option, although it is rarely performed
due to the severity of the procedure as it leaves the subject completely pacemaker-
dependent.

Rhythm control therapy may be attempted if a rate control approach has proven
unsatisfactory, or if AF is at an early stage and the progression to persistent or per-
manent AF wants to be avoided. Restoration of SR may be attempted through the
use of antiarrhythmic drugs or electrical cardioversion. Another approach is to iso-
late the pulmonary veins in the left atrium, being a frequent source of AF-inducing
ectopic beats [5]. Catheter ablation is performed either by application of a radiofre-
quency current or a cryoballoon, with the former being the most common, although
the cryoballoon has been suggested to be safer, simpler, and with similar clinical per-
formance [6, 7, 8]. The outcome of catheter ablation is typically determined from
whether AF is recurrent during follow-up studies, with worse outcome associated with
the more advanced AF types [9, 10, 11]. For this reason, most catheter ablations are
performed on paroxysmal AF patients [12]. The pulmonary vein isolation is often
followed by an electrical cardioversion, or by additional ablation in the left or right
atrium steps if considered necessary.



Chapter 2

ECG Signal Processing

The electrical activity of the heart can be measured in different ways, where the ECG
is the arguably most accessible and widely studied approach. The original ECG tech-
nique was presented already in the 1880s and has since evolved to become the most
common cardiological diagnostic test in clinical practice. The ECG is obtained from
electrodes placed on the body surface and records variations in the electrical field
caused by the electrical activity of the heart. The standard 12-lead ECG, using 10
electrodes, is the most commonly used ECG configuration, with six of the electrodes
placed on the torso and four on the limbs. However, the standard 12-lead ECG is not
optimized to obtain atrial information, since, historically, ECG analysis has mainly
been focused on ventricular activity. Other lead configurations specifically designed
to record atrial activity have been proposed [13, 14], although replacing the 12-lead
configuration in a clinical setting has proven difficult since it is so widely used.

ECG recordings from lead V1, which is the lead closest to the right atrium in
the 12-lead configuration, are presented in Fig. 2.1. The large wave is denoted the
R-wave and the region around it is referred to as the QRS complex. The QRS complex
is caused by rapid depolarization of the ventricles preceding ventricular contraction.
Repolarization of the ventricles is reflected by the wave following the QRS complex,
called the T-wave. In Fig. 2.1(a), obtained from a patient in SR, the QRS complex is
preceded by an impulse of smaller amplitude, which is called the P-wave and reflects
atrial depolarizaton. Note that atrial repolarization is not visible in the ECG as it has
too low amplitude and usually coincides with the QRS complex. An ECG recording
from a patient with AF, illustrated in Fig. 2.1(b), no longer contains P-waves. Instead,
irregular waves, reflecting the disorganization of the atria, is present. These f-waves are
used in the analysis and characterization of AF. The separation of atrial and ventricular
activity enables the analysis of f-waves, see Sec. 3.1.

When long-term ECG recordings are desired, the 12-lead configuration is no
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Figure 2.1: Example of an ECG in lead V1 record from a patient in (a) SR and
(b) AF.

longer feasible. Instead, portable ECG recorders, often called Holter monitors, are
being used. A three-lead configuration is usually applied, although many different
variants exist. A subject wears the device during ordinary daily activities, and contin-
uous signals are recorded during a period as long as one or two days. The quality of
the recordings are usually considerably poorer than 12-lead ECG signals, mainly due
to electrode motion and excessive muscle noise. Just like for 12-lead ECGs, Holter
lead configurations which enhance the atrial activity have been proposed [15].

Handheld recorders constitute a special type of portable ECG devices. They only
record one single lead by having the user press their hands or fingers against the device.
Instead of recording one long continuous signal, the user records ECG signals in
episodes ranging from 5–10 s to a couple of minutes. The recording procedure can
be repeated several times per day if necessary, and potentially being sent to a web
server for analysis. Handheld recorders have demonstrated great potential for AF
screening [16], although problems remain with low signal quality and the need to
manually review large amounts of data. Also, the options for atrial activity extraction
are considerably more limited due to the lack of additional leads.

Other lead systems or recording devices, not further studied in this thesis, in-
clude body surface potential maps, where a large number of electrodes are placed on
the body surface to enable enhanced spatial resolution. Wearable ECG monitoring
systems, with textile-based sensors, is also an emerging field [17], as is the use of small
biopatches [18]. Localized electrical activity can be provided by electrogram record-
ings, obtained from intracardiac (i.e. inside the heart) electrodes. Since electrograms
are recorded invasively, they are not a realistic alternative for wide use because of the
cost and risk involved.
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2.1 Characterization of ventricular response

When no atrial information is directly available, for example when the signal qual-
ity does not allow for the extraction and analysis of f-waves, evaluation of AF has to
be accomplished using only the ventricular response which constitutes the dominant
part of the ECG. Contrary to when in SR, in which the ventricular response typically
is regular, the ventricular response during AF is more chaotic with some studies sug-
gesting it as being random in the short-term [19]. However, other studies suggested
deterministic attributes and related weak short-term predictability, leaving the matter
unsettled for the time being [20].

Analysis of the ventricular response is typically performed using the RR interval
series, sometimes referred to the interval tachogram, dRR(k), computed from the
detected QRS complexes ,

dRR(k) = tk − tk−1, k = 1, . . . , Nd (2.1)

where Nd is to total number of detected QRS complexes and tk denotes the timing
of the k:th R-wave. Several methods for analysis of the RR interval series have been
proposed and used to assess, e.g., the properties of the AV node [21] and the effect
of drugs [22]. A major limitation of this analysis is the requirement of long win-
dows of data, commonly several minutes long, making the analysis of short variations
unfeasible.

2.1.1 RR interval histogram analysis

The RR interval series dRR(k) may be presented as a histogram. For SR, a sharp
peak is typically present, indicating a regular heart rhythm as the timing between
consecutive heart beats is relative constant, see Fig. 2.2(a). For AF, the histogram is
typically smeared out, illustrating the irregular heart rhythm, see Fig. 2.2(b). Also, in
many AF patients, two or more distinct peaks are present. One study found bimodal
RR interval histograms in 55% of the patients [23]. Another study found a significant
correlation between bimodal RR interval histograms and early recurrence of AF after
electrical cardioversion [24]. The presence of bimodal RR interval histogram is also
widely considered to indicate the presence of dual pathways in the AV node [25].
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Figure 2.2: RR interval histograms from 20 min ECG recordings of; (a) a SR
patient, from the PTB Diagnostic ECG Database [26]; and (b) an AF patient,
from the RATAF database [27].

2.1.2 Variability and irregularity parameters

The variability and irregularity of dRR can be quantified by a number of different
parameters, which have been used to classify or describe AF. Common variability
measures include the coefficient of variation VCV, defined as the standard deviation
divided by the mean, and the root mean square of successive differences VRMSSD [28],
defined as

VRMSSD =

√√√√ 1

Nd

Nd−1∑
n=1

d2RR(k). (2.2)

Irregularity is often described by measures such as the sample entropy, ISampEn,
which was introduced in [29] and has, among other things, been shown to be indica-
tive of the onset of paroxysmal AF [30]. It is defined as

ISampEn(m, r) = ln
(

B(m, r)

B(m+ 1, r)

)
(2.3)

where B(m, r) denotes the estimated probability that a signal segment of length m
will repeat itself, with r defining the required degree of similarity. It is computed as

B(m, r) =
1

(Nd −m)(Nd −m− 1)

Nd−m∑
i=1

Nd−m∑
j=1,j ̸=i

H (r − ||dmRR(i)− dmRR(j)||∞) ,

(2.4)
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whereH(.) denotes the Heaviside step function and ||.||∞ denotes the infinity norm.
The vector dmRR(i) consists ofm RR intervals, starting at dRR(i). For a regular signal,
B(m+1, r) obtains a value similar toB(m, r), which corresponds to a low ISampEn.
However, an increase in ISampEn corresponds to an increasingly irregular signal and
serves as a predictor for the transition from SR to AF.

Another commonly used irregularity measure is the Shannon entropy, IShEn, com-
puted using the estimated probability density function (PDF), p̂(k), of the signal.
The PDF p̂(k) is typically obtained from the RR interval histogram, where D(k)
is the number of RR interval values in the k:th bin. The Shannon entropy is then
computed as

IShEn = −
K∑
k=1

p̂(k) log2(p̂(k)) = −
K∑
k=1

D(k)

Nd
log2

(
D(k)

Nd

)
(2.5)

where K is the number of bins in the histogram.
A low or decreasing RR interval variability or irregularity in AF has been associated

with increased mortality [31, 32]. Rate-control drugs have been found to increase RR
interval variability [22, 33, 34]. Another use of variability and irregularity measures
is to separate AF recordings from non-AF recordings, which is the topic of the next
section.

2.1.3 Detection of AF using the RR interval series

As mentioned earlier, one of the main characteristics of AF is the irregular heart
rhythm. Therefore, AF detection methods operating on dRR(k), commonly referred
to as rhythm-based AF detectors, constitute the by far most common detection ap-
proach. A great advantage of these methods is their ability to function in relatively
noisy or low-resolution environments, such as recordings from handheld ECG de-
vices. The limitations of rhythm-based AF detectors are mainly the challenge of dis-
tinguishing between AF and non-AF arrhythmias, as well as the need of long signals
to provide a sufficient number of RR intervals for analysis, rendering it difficult to
detect very short AF episodes. Ectopic beats may constitute a problem as they can
cause false detections, an issue which some rhythm-based detectors acknowledge by
excluding RR intervals if their pattern resembles that of premature beats [36].

Rhythm-based AF detectors typically compute a metric from dRR(k) which is
then used to determine the presence of AF. The metric is often obtained from a slid-
ing time window which enables detection of AF episodes. The length of the window
varies between methods, but may be as short as 8 beats [35]. Many detectors make
use of the measures described in Sec. 2.1.2, including VCV [37], and irregularity met-
rics such as IShEn [38] or ISampEn [39]. An extension of the sample entropy named
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Figure 2.3: (a) The RR interval series dRR(k) of an paroxysmal AF patient and (b)
the corresponding output of the rhythm-based AF detector R [35]. The detec-
tor correctly identifies one AF episode, however, the ectopic beats starting around
600 s also cause an increase in R.

normalized fuzzy entropy, specifically developed for rhythm-based AF detection, has
also been presented [40]. Other approaches to AF detection include RR interval his-
tograms [41], Poincaré plots [42] and a time-varying coherence function [43].

All these methods rely upon correct beat detection, which may degrade in the
presence of noise. In [44], the impact of added motion artefact noise on several dif-
ferent rhythm-based AF detection methods was studied. The results were relatively
similar among all the studied methods as the number of false positive increases with
increasing noise levels since many false detections are made. The study suggested a
linear relationship between AF detection performance and SNR. It is thus highly rec-
ommended that signal quality assessment is incorporated in the detection method to
ensure that the presence of muscle noise or motion artefacts does not cause correct
detections.

An example of rhythm-based AF detection using the irregularity metric described
in [35], R, is presented in Fig. 2.3. Although an episode of paroxysmal AF is correctly
identified, the detector output is also influenced by the non-AF arrhythmia. This
influence can be reduced by including analysis of atrial activity in the detector, see
Sec. 3.3.4.

The performance of an AF detector is typically evaluated using an annotated
database, where the annotator output defines the gold standard. One of the databases
frequently used for this purpose is the MIT-BIH AF database (AFDB) from Phys-
ionet [45, 46], which contains recordings of 25 AF patients.
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2.2 Signal quality considerations

The ECG signal may be corrupted by noise from several different sources. While
some disturbances, such as baseline wander or power line interference, typically can
be removed by linear filtering, others, such as those originating from muscle activity
or electrode movements, may overlap spectrally with the content of the ECG signal,
thereby being considerably more difficult to remove which may cause the signal to be
unusable for certain types of analysis [1]. A variety of algorithms designed to remove
artifacts from the signals have been developed, but there is currently no gold standard
method and the research field is considered to be open [47]. The assessment of signal
quality is therefore of great importance when determining the reliability of the results
from ECG analysis.

One of the most important applications of ECG signal quality assessment is to
determine whether the detection is reliable. False beat detections seriously impair
the reliability of RR interval analysis and could cause false alarms, which has been
identified as a problem associated with patients under surveillance [48]. A number
of studies from intensive care units have found that less than 10% of the alarms are
of clinical importance [49, 50, 51]. Other applications of signal quality assessment
include evaluation of recordings obtained in mHealth environments [52], where it
is essential to exclude noisy data from further analysis without having to manually
review the data.

Many proposed signal quality assessment methods rely on computations of a
number of metrics which are then combined to define a signal quality index (SQI) of
the signal [53, 54, 55, 56]. Typical metrics are the kurtosis, the agreement between
outputs of beat detectors with different sensitivity and the relative power in the fre-
quency range expected to contain the QRS complex. All these metrics are expected
to attain large values for signals without noise. A machine learning algorithm is then
applied to a training set in order to define the weights which will be applied to all the
signal quality metrics in order to compute the final SQI. A limitation of this approach,
typical of machine learning methods, is the need for large annotated training datasets
which contain sufficient representations of many different patients and rhythms.

Examples of other metrics include those based directly on dRR(k) itself [57], or
on the similarity of the signal segment surrounding the R-wave [58], neither approach
being feasible when assessing the quality of AF recordings. Signal quality assessment
of ECG signals can be considered a growing research field, and several review articles
have been written on the subject [59, 60].
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2.3 AV node modelling

Contrary to when in SR, the main determinant of the ventricular response during
AF is no longer the SA node but rather the AV node in combination with the atrial
activity, see Sec. 1.1. The AV node, described by its characteristics and functionality
such as dual pathways, concealed conduction and refractoriness, has been modelled
in a variety of ways. This section describes some of the advances in modelling of the
AV nodal function during AF.

2.3.1 Modeling of atrial activations series

When modeling the AV nodal function during AF, simulated atrial activations (AA)
are needed. This is often accomplished by simulation, commonly involving a Poisson
process [61, 62, 63, 64, 65]. The Poisson process is a practical choice because of its
rigid mathematical description and the fact that it is defined solely by one variable,
the arrival rate of its impulses. This means that the time interval between two atrial
impulses is exponentially distributed and the there are a lack of statistical dependences
between impulses.

However, the Gaussian distribution has also been used to define the timing be-
tween two atrial activations [66]. Comparisons between the Poisson distribution, the
Gaussian distribution and the Type IV Pearson distribution found that the latter more
accurately captured the statistical properties of real AA series and therefore suggested
as an alternative to the Poisson distribution when evaluating the AV node and its
influence of the ventricular response [67].

Some studies on the AV node involve using recordings of AA series. In [68], elec-
trogram recordings from the right atrium are obtained from a patient with permanent
AF. The AA series is then determined by identifying the atrial activation times from
the recording.

2.3.2 Dynamic modelling of the AV node

In [68], a dynamic model of the AV nodal function is presented which incorporates
concealed conduction, i.e. when an incomplete conduction results in a prolonged
refractory period, by increasing the default refractory time with a fixed amount for
each atrial impulse arriving while the AV node is refractory. The refractory period
is reset to its default value after each ventricular activation. The conduction time
for the atrial impulse, c, is determined by the time interval ∆t, defined as the time
between the end of the last refractory period and the activation time of the current
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atrial impulse,

c = cmin + cext exp
[
−∆t

tc

]
(2.6)

where cmin is the minimum conduction time, cext is the maximal extension of con-
duction time, and tc is a time constant.

Another dynamic model, based on the model presented in [61], was originally
described in [62] and later extended in [63] to include both atrial and ventricular
pacing. The AV node is treated as one lumped structure and is described by parameters
defining, for example, the resting potential of the AV node, the refractory period
and the conduction delay. Designed to be used for simulations of RR intervals, the
model is, because of its complexity, not suitable for model parameter estimation. The
refractory period τ is defined as

τ = τmin + τext

(
1− exp

[
−∆t

tτ

])
, (2.7)

where τmin is the minimum refractory period, τext is the maximal extension of the
refractory period, and tτ is a time constant. To incorporate concealed conduction, a
term is added to τ to define the prolonged refractory period τ ′,

τ ′ = τ + τmin

(
∆tB
τ

)ρ1 (
max

(
1,

∆V

Vt − Vr

))ρ2

, (2.8)

where ∆tB is the time interval between the end of the last refractory period and the
activation time of the blocked atrial impulse, ρ1 and ρ2 are electrotonic modulation
factors, Vr and Vt are the AV node’s resting potential and depolarisation threshold,
respectively, and∆V is the increase in voltage created by each atrial impulse. An atrial
impulse is conducted when the potential Vm exceeds the threshold Vt,

Vm = Vr + nAA∆V + V̇∆tB ≥ Vt, (2.9)

where Vr is the resting potential, nAA is the number of arrived atrial impulses and V̇
is the spontaneous depolarisation rate. The conduction time is described as in (2.6),
and neither of the models include dual pathways of the AV node.

Another approach to AV node modeling was presented in [69]. Instead of treating
the AV node as one lumped structure, it is presented as a number of connected nodes,
each with a conduction time and refractory period as defined by (2.6) and (2.7). In
order for an atrial impulse to traverse the AV node, it consequently has to pass several
separate nodes constituting one of the two pathways, making concealed conduction
an intrinsic property of the model. Parameter estimation is performed by matching
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the observed RR interval series to the simulated RR interval series obtained from
1000 different parameter sets, although it does not result in a unique set of AV node
parameters.

A very detailed model of the AV node was proposed in [70]. The model is designed
to simulate action potentials and is, because of its computational complexity, not
suited for the simulation of RR intervals or the estimation of AV nodal properties.

2.3.3 Statistical modelling

Described in [64, 65], a statistical model of the AV node is designed to provide a
realistic ventricular response from atrial activations while also being simple enough
for ECG-based parameter estimation, thereby providing a non-invasive approach for
estimation of AV nodal properties. A graphic presentation of the model is illustrated
in Fig. 2.4.

The AV node is modelled with dual pathways defined by a total of five parameters.
The parameter τ1 corresponds to the minimum refractory period of the slow pathway,
meaning that all atrial impulses arriving before τ1 are blocked. The prolongation
parameter τp,1 defines the maximum time that the slow pathway can remain refractory
after τ1, meaning that no atrial impulses arriving after τ1 + τp,1 are blocked. The
likelihood of the slow pathway being refractory decreases at a linear rate, meaning
that the probability of the slow pathway being refractory at the time t following a
ventricular contraction, β1(t), can be formulated as

β1(∆t) =


0, 0 ≤ ∆t ≤ τ1
∆t− τ1
τ1,p , τ1 ≤ ∆t ≤ τ1 + τ1,p

1, τ1 + τ1,p ≤ ∆t.

(2.10)

The function β2(∆t), describing the corresponding probability for the fast pathway, is

Atrial impulse 

τ1,τp,1 

τ2,τp,2 

1-  

 

Figure 2.4: Modelling of the dual pathway AV node. Reprinted with permission
from [65].
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defined in a similar way using the minimum refractory time τ2 and prolongation τ2,p.
The minimum refractory period of the slow pathway is assumed to always be shorter
than the minimum refractory period of the fast pathway, i.e. τ1 < τ2, meaning that τ1
can be seen as an estimate of the functional refractory period. The parameterα defines
the probability that an atrial impulse will be conducted through the slow pathway,
thus influencing the bimodality of the RR histogram. Unlike previous models, an
atrial impulse arriving at the AV node is always conducted unless the AV node is
refractory. Neither the spontaneous depolarisation of the AV node nor the conduction
time are featured in the model.

By assuming that the atrial activations arrive according to a Poisson process with
an intensity defined by the estimated dominant atrial frequency (DAF), see Sec. 3.3.1,
the model parameters can be obtained using maximum likelihood estimation (MLE)
on recorded RR series. This approach to estimation has been applied on a number of
studies to evaluate the effect of rate-control drugs during AF [71, 72, 73, 74].

The model presented in Paper I is also based on this statistical modelling ap-
proach [75]. To compensate for the observed overfitting of the previous models [64,
65], the number of estimated parameters is reduced by omitting α from the estima-
tion. The value of α is instead computed and used as a measure of the reliability of
the other parameter estimates.
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Chapter 3

Analysis of Atrial Activity

3.1 Extraction of atrial activity

Since f-waves have far smaller amplitude than the QRS complexes, it is necessary to
remove the ventricular activity if atrial information is to be studied. This is not fea-
sible to accomplish by linear filtering since there is an overlap between the frequency
content of the f-waves and the frequency content of the ventricular activity. Several
different methods for atrial activity extraction, sometimes referred to as QRST can-
cellation, have been proposed and evaluated [76, 77]. This section describes atrial
activity extraction methods based on average beat subtraction (ABS), independent
component analysis (ICA), and adaptive filtering.

3.1.1 Average beat subtraction methods

Average beat subtraction methods constitute one of the most commonly used ap-
proaches for atrial activity extraction. The idea is that the QRS complex and the
T-wave (referred to as the QRST complex in the following) are removed from the
signal by subtraction of a template QRST complex ȳ, created by averaging several
QRST complexes in the signal. The averaging procedure is assumed to attenuate
the f-waves since they are decoupled from the ventricular activity. The subtraction
is preceded by beat detection and morphology grouping, as several different QRST
complex morphologies may be present which requires different templates ȳ. For each
signal segment y, containing one QRST complex, the corresponding ȳ is shifted τs
samples using the shift matrix Jτs to find the optimal fit.

A problem with the standard ABS approach is that the morphology of the QRST
complex may be subjected to minor changes, primarily caused by movements of elec-
trodes due to respiration. The fix QRST template will therefore not always be an
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Figure 3.1: (a) ECG signal from lead V1 before and (b) after spatiotemporal
QRST cancellation.

optimal match. This is taken into account when using spatiotemporal QRST cancel-
lation [78], where the signal segment y is replaced with the matrix Y, consisting of
simultaneous recordings from multiple leads. The matrix Ȳ, consisting of the QRST
templates for all leads, is multiplied with the diagonal amplitude scaling matrix D
and the rotation matrix Q. The minimization problem now becomes

ϵ2min = arg min
D,Q,τs

∥Z− Jτs ȲDQ∥2F , (3.1)

where ∥.∥2F denotes the Frobenius norm. Note that a grid search involving all variables
is not feasible and the optimization is instead performed iteratively. Also, the matrixZ,
defined as

Z = Y− ȲA (3.2)

is used instead of Y, where ȲA is the intermediate fibrillation signal obtained from the
segment between the T-wave and the subsequent QRS complex. This is to prevent
the minimization in (3.1) from attenuating the f-waves. The result of spatiotemporal
QRST cancellation on an ECG signal from an AF patient is illustrated in Fig. 3.1.

When dealing with ABS methods, problems may arise involving ectopic beats
with morphologies differing from the QRST complexes. The removal of ectopic beats
from the atrial signal may therefore be unsuccessful. A method has been developed
which deals with the removal of ectopic beats prior to the atrial activity cancellation
using principal component analysis [79]. In conclusion, ABS methods are robust,
easy to implement, and also the only method described in this thesis applicable on
single-lead ECG recordings. This makes ABS the most common and widely accepted
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technique for atrial activity extraction. Spatiotemporal QRST cancellation is used to
extract atrial activity in Papers I, II and V.

3.1.2 Independent component analysis

Signal separation by ICA is a general approach to separating different components in
an observed signal. In ICA, it is assumed that the observed signal is a linear mix of a
number of signals from independent sources. In [80], ICA was used to separate the
atrial and ventricular signals, using the assumption that atrial and ventricular activity
are independent. While it is certainly not a valid assumption during SR, it may be
during AF as the coupling between the atrial and the ventricular activity is influenced
by the complex properties of the AV node.

The observed signal is the M × N matrix X which consists of ECG recordings
from M leads, each of N samples length. The number of sources K is often defined
beforehand and needs, in order for the ICA to work, to be less or equal to the number
of signals, i.e. K ≤ M . The K × N source signal matrix S is then defined as the
matrix which, when multiplied with an unknownM×K mixing matrix A, produces
the observed signal X,

X = AS. (3.3)

The objective of the ICA is to obtain an estimate of S, denoted Ŝ, by finding an inverse
to A

Ŝ = WX, (3.4)

where W serves as an estimate of the inverse of A. The matrix W is chosen to maxi-
mize the independence between the source signals in Ŝ, usually done by maximizing
the non-Gaussianity of the sources, quantified by, for example, the absolute value of
kurtosis, i.e. the fourth order moment of the source signal. This relates to one of
the fundamental assumptions regarding ICA for signal separation, that the signals to
be separated are of non-Gaussian character, which appears to be valid for both the
ventricular and the atrial component of the ECG signal. The ventricular signal has
a super-Gaussian distribution while the atrial signal, with all its values more evenly
distributed within an interval, has a sub-Gaussian distribution.

The extracted atrial activity signal using ICA is not related to any specific lead but
rather a global atrial signal. As such, it can not be directly applied to, e.g., estimate
f-wave amplitude (Sec. 3.3.2). A challenge is to identify which of the row vector of Ŝ
that corresponds to the desired atrial signal [81]. Methods based on ICA require more
leads than ABS methods but does not depend upon beat detection and may be able
to handle changing QRST morphologiess.
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3.1.3 Adaptive filtering

Another approach to QRST cancellation is the use of adaptive filtering. The general
idea is to select one lead, preferably one with substantial atrial activity like V1 or V2, as
target signal xt(n), and another lead with considerably less atrial activity, like I or V6,
as reference signal xr(n). The reference signal is filtered and subtracted from xt(n) to
obtain the error signal e(n), which constitutes an estimate of the atrial activity signal.

In its most simple form, a linear filter is used, with weights obtained using the least
mean square (LMS) algorithm to minimize the expected value of e2(n). However,
this LMS approach has not proven very successful, with large QRST-related residuals
due to the slow convergence of the filter weights, and has therefore not received much
attention in the literature [82]. Instead, nonlinear techniques using neural networks,
e.g. recurrent neural networks [83] or echo state neural networks (ESN) [84], have
been proposed. In the ESN method, xr(n) is expanded to the vector xr(n) which
includes its first two derivatives, x′

r(n) and x′′
r (n),

xr(n) =

xr(n)x
′
r(n)

x
′′
r (n)

 , (3.5)

offering a more complete characterization of the reference signal. The convergence is
considerably faster than the LMS algorithm, which is crucial due to the rapid changes
in QRST morphologies. The ESN was found to outperform ABS methods and was
therefore chosen as atrial activity extraction method in Papers II, III, and IV. How-
ever, the requirement of a reference lead makes the ESN and other adaptive filtering
methods unusable on single-lead ECG recordings. Also, it is crucial that the atrial
activity is negligible in the reference signal to preserve the extracted f-waves, which
may otherwise be heavily attenuated.
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3.2 Modeling of atrial activity

The f-waves extracted from ECG signals may not be sufficient, e.g., when the pur-
pose of the study is to evaluate the f-wave extraction method itself [78, 85], or when
detection of brief AF episodes, rarely encountered in annotated databases, is to be
studied [86]. This need is catered for by the introduction of simulated f-waves, de-
signed to replicate the appearance and behaviour of waves from actual recordings.
Simulation also offer the advantage of being able to control f-wave properties, such as
frequency and amplitude, in detail, thus enabling the evaluation of estimation pro-
cedures [87]. Models for creating complete synthetic ECG signals with ventricular
activity have also been proposed [88, 89], and P-waves have been modeled using a
linear combination of Hermite functions [90].

A widely used f-wave model was originally introduced in [78] and further de-
veloped in [84]. Referred to as the f-wave sawtooth model, it consists of a number
of sinusoids modulated both in frequency and amplitude, and is capable of creating
sawtooth-shaped f-waves. The sawtooth signal xs(n) is defined as

xs(n) =

K∑
k=1

ak(t) sin
(
2πkf0n+ k

∆F

Fm
sin(2πFmn)

)
, (3.6)

where f0 defines the DAF, an important f-wave parameter discussed in further detail
in Sec. 3.3.1. The number of included harmonics is denotedK and the variables ∆F
and Fm define maximum frequency deviation, and the DAF modulation frequency,
respectively. The amplitude of the k:th harmonic is defined by ak(n),

ak(n) =
2

kπ
(a+∆a sin(2πFan)) , k = 1, . . . ,K, (3.7)

where a is the mean f-wave amplitude while ∆a and Fa define the maximum am-
plitude deviation, and the amplitude modulation frequency, respectively. To create a
more challenging f-wave signal for extraction purposes, a stochastic component can
be added. In [84], this was performed by adding colored noise consisting of frequen-
cies close to f0. An example of simulated f-waves from the f-wave sawtooth model is
presented in Fig. 3.2.

While the purpose of the f-wave sawtooth model is to simulate f-waves, it may not
perform well in the context of parameter estimation due to its relatively large number
of variables. A simpler harmonic f-wave model, designed for estimation purposes, is
introduced in Paper II. The model f-wave signal xh(n), now assumed to be complex-
valued, is defined as

xh(n) =

K∑
k=1

Ake
j(2πkf0n+ϕk), (3.8)
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Figure 3.2: Example of simulated f-waves from the f-wave sawtooth model, in-
cluding the stochastic component proposed in [84].
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Figure 3.3: (a) Extracted f-waves x(n) and (b) the corresponding model f-
waves xh(n).

where the amplitude and phase of the k:th harmonic is defined by Ak and ϕk, re-
spectively. An example of extracted f-waves x(n) obtained using spatiotemporal
QRST cancellation and the corresponding xh(n) is presented in Fig. 3.3. Originally
used for DAF estimation, the harmonic f-wave model has also been used to estimate
parameters related to amplitude and phase [91]. In [92], an similar approach, also us-
ing the sum of a sinusoid and its harmonics, was taken to reconstruct an f-wave signal
from f(n). Band-pass filters centred around the estimated DAF and its harmonics
were applied to decompose x(n) into narrowband components and the information
obtained from each component was used to define the amplitude, frequency and phase
of the sinusoid and its harmonics in the reconstructed signal. The phase information
was used to quantify morphological properties.
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3.3 Characterization of atrial activity

Once f-waves are extracted or simulated, the atrial activity can be characterized using
various f-wave parameters. While atrial activity analysis based on f-waves lacks the
spatial precision of invasive methods and has not yet found its way to clinical practice,
it opens up new possibilities for diagnostics and monitoring due to its accessibility and
potential long-term use.

Studies have linked f-wave parameters to the spontaneous termination of parox-
ysmal AF [93, 94, 95], AF type (paroxysmal/persistent) [96, 97], and the outcome of
catheter ablation [98, 99, 100, 101, 102, 103, 104]. Other studies have used f-wave
parameters to evaluate the effect of antiarrhythmic drugs [105, 106, 107].

Although f-wave parameters may be computed from any lead, V1 is most fre-
quently used when 12-lead recordings are available. This is due to its relative prox-
imity to the right atrium, which provides f-waves of greater magnitude than other
leads [108]. The extracted f-wave signal is denoted x(n) in the following.

3.3.1 Dominant atrial frequency

The DAF f0 constitutes one of the most widely used parameters characterizing f-
waves. It is equivalent to the atrial fibrillatory rate used in some studies, and the
inverse of dominant atrial cycle length (DACL), commonly used in clinical studies.
Historically, the DACL was obtained by measuring the distance in time between atrial
activations in invasive electrogram recordings from the left or right atrium [109, 110].
However, it has been shown that similar information is available non-invasively from
the ECG by localizing the dominant spectral peak in the frequency spectrum of the
f-waves [111]. An example of DAF estimation from the frequency spectrum is illus-
trated in Fig. 3.4. Another DAF estimation approach, which is based on the harmonic
f-wave model in (3.8) and MLE, is introduced in Paper II.

Sample-by-sample DAF estimates f̂0(n) can be provided using an adaptive line
enhancer [112]. The narrowband signal y(n) is obtained by bandpass filtering x(n)
around the previous DAF estimate f̂0(n− 1). The DAF estimate is then updated by
minimizing the squared error of the one-step predictor on y(n− 1),

f̂0(n) = arg min
f0(n)

∥∥∥y(n)− ej2πf0(n)y(n− 1)
∥∥∥2 . (3.9)

The frequency tracker can be extended to also include harmonic components. Sev-
eral narrowband signals are then created, one centered around each harmonic, and
frequency estimates from each signal are combined to provide a DAF estimate. The
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Figure 3.4: Example of (a) f-waves and (b) the corresponding power spectra ob-
tained using Welch’s method. The estimated DAF at 4.9 Hz is marked with a
star.

DAF trend can also been post-processed using a hidden Markov model to remove
outliers [113].

The DAF is expected to exist within a certain frequency band, and thus only spec-
tral peaks within this band are of interest when determining the DAF. Many studies
consider the range of the DAF to be 3–12 Hz, but other studies have suggested that
the extremes are very rare and that the search may be limited to, e.g., 4–9 Hz [108]. In
a study of paroxysmal AF patient, all DAF estimates were in the range 4–7 Hz [114].

3.3.2 Amplitude

Other than the DAF, the f-wave amplitude is the most widely used f-wave parameter
and has a long history in clinical AF analysis [115, 116, 117]. Initially, the analysis
was confined to manually classifying the f-waves as “coarse” or “fine” depending on
whether the amplitude was found to be greater or less than 50 µV. The relationship
between f-wave amplitude and specific clinical properties have been the subject of
conflicting results, with some studies finding a correlation between, e.g., amplitude
and left atrial size [118], while others do not [119]. It has been suggested that this
could be due to interpatient variations in chest wall thickness [108].

One challenge with estimating the f-wave amplitude is the obvious sensitivity
to QRS-related residuals, which, if present, may severely distort the estimate. One
approach to f-wave amplitude estimation is therefore to exclude segments containing
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Figure 3.5: Example of amplitude estimation using envelope detection. The local
maxima and minima are marked with circles.

QRS complexes and only use the remainder of the f-wave signal. The amplitude has
been defined as the mean of four largest f-wave peaks in 10 s segment [120, 121].
Another option is to obtain an amplitude estimate â fromNx samples of x(n) using
envelope detection based on local extrema,

â =
1

Nx

Nx−1∑
n=0

|xmax(n)− xmin(n)| , (3.10)

where xmax(n) and xmin(n) are obtained using piecewise cubic Hermite interpolating
polynomials on successsive local maxima and minima, respectively, of x(n) [99]. An
example of xmax(n) and xmin(n) is presented in Fig. 3.5.

An alternative f-wave magnitude measure is to compute the root-mean-square
(RMS) of x(n) [122]. The energy has also been computed from the main atrial wave,
obtained by filtering x(n) with a bandpass filter centered around the DAF [123].

3.3.3 Complexity and regularity

In addition to the DAF and f-wave amplitude, a large number of other parameters
quantifying the complexity, morphology, and regularity of f-waves have been pre-
sented [124, 125, 126, 127, 128, 129]. This subsection does not intend to provide a
complete overview of this extensive field, but rather present some metrics applied in
the included papers.

The f-wave organization may be quantified in the spectral domain by the spectral
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organization index SOI, computed from the power spectral density of x(n), Px(f),

SOI =

K∑
k=1

∫ ∆f/2

−∆f/2
Px(fk + f)df∫ fmax

fmin

Px(f)df
, (3.11)

where fk is the position of the k:th harmonic,K is the number of harmonics, and∆f
is the spectral width [130]. The integration limits fmin and fmax have been set to 2.5 Hz
and the beginning of the (K + 1) harmonic peak, respectively [131].

Contrary to other f-wave parameters described in this thesis, the PCA-based spa-
tiotemporal variability ϵ makes use of multiple ECG leads [104]. The f-wave signal
is partitioned into four subsegments of equal length and one-dimensional principal
subspaces are computed for each subsegment. The s:th subsegment of x(n), de-
noted x(s)(n), is projected to the r:th subspace and the normalized mean square
error ϵ(r, s) is computed,

ϵ(r, s) =

Nx/4∑
n=1

(
x(s)(n)− x̂(r,s)(n)

)2

Nx/4∑
n=1

(x(s)(n))2

r, s = 1, . . . , 4, (3.12)

where x̂(r,s)(n) denotes the projection and ϵ is obtained by averaging ϵ(r, s) over all
possible s and r, s ̸= r.

Paper IV introduces the phase dispersion γ, an f-wave parameter which describes
the stability of the atrial waveform. The harmonic f-wave model in (3.8) is used to
estimate the phase parameters ϕ̂1(n) and ϕ̂2(n), and γ is defined as

γ =

∣∣∣∣∣ 1

Nx

Nx−1∑
n=0

ej(ϕ̂2(n)−2ϕ̂1(n))

∣∣∣∣∣ , (3.13)

where 0 < γ ≤ 1. A stable f-wave morphology corresponds to a constant phase
difference between the harmonics and γ ≈ 1, while morphological variation lowers γ.
The reproducibility of the DAF, f-wave amplitude, SOI, ϵ and γ is the topic of Paper V.
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3.3.4 Detection of atrial fibrillation using atrial information

The rhythm-based AF detectors described in Sec. 2.1.3 can perform very well, in par-
ticular when evaluated on a dataset consisting only of AF and SR. However, in many
real applications, false AF detections frequently occur due to non-AF arrhythmias dis-
playing rhythm patterns similar to those of AF. Including atrial information in the
detector can improve its specificity, but adds extra levels of complexity; both in terms
of computational demand, but also due to increased susceptibility to noise. Another
benefit of including atrial information is the possibility to detect very brief episodes of
AF, too short to manifest an irregular rhythm. A general scheme for an AF detector
which may involve both rhythm-based analysis and atrial information is illustrated in
Fig. 3.6.

The presence of P-waves have been determined by comparing the length and mor-
phology of consecutive PR intervals, defined as the time between P-wave onset and
QRS onset [132]. Extending a rhythm-based detector with these metrics improved
its performance, in particular its specificity and positive predictive value.

In [133], a detector exclusively based on detection of P-wave absence was pro-
posed. A beat detection algorithm is used to identify segments where P-waves are
expected to appear and nine features related to P-wave presence are computed from
each segment. The method was capable of detecting AF in as few as seven beats, using
only one lead. However, the method was found to be ineffective in noisy environ-
ments.

Another approach, using wavelet entropy, was presented in [134]. Wavelet func-
tionsψu,v(n) are defined by scaling and translating a predefined mother waveletψ(n),

ψu,v(n) = 2−
u
2ψ

(
2−un− v

)
, u = 1, . . . , Nu, v = 1, . . . , Nv, (3.14)

where Nu is the number of wavelet decomposition levels and Nv is the maximum
translation. Wavelet coefficientsC(u, v) are computed from the correlations between
the median of TQ intervals, mTQ(n), and ψu,v(n),

C(u, v) =

NTQ∑
n=1

mTQ(n)ψu,v(n), (3.15)

whereNTQ is the length ofmTQ(n). The coefficients C(u, v) are then used to com-
pute the relative energies for each wavelet decomposition level Eu,

Eu =

∑Nv
v=1C

2(u, v)∑Nu
u=1

∑Nv
v=1C

2(u, v)
. (3.16)

The wavelet entropy IW, defined as the Shannon entropy of Eu, cf. (2.5), is used as
the detection metric. Signals containing P-waves are associated with a significantly
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Figure 3.6: Schematic overview over an AF detection algorithm [86]. The prepro-
cessing step typically involves beat detection and, for some methods, atrial activity
extraction. Rhythm-based analysis constitutes the by far most common approach
to AF detection.

lower IW than those containing f-waves. Limiting the analysis to TQ intervals re-
moves the need for atrial activity extraction, however, it also complicates analysis
during fast heart rates, where the TQ interval is shortened. Detection approaches
completely based on atrial information have displayed performance inferior to the
best-performing rhythm-based AF detectors [135]. Therefore, it is suggested that
rhythm-based analysis should be included.

An AF detector which combines rhythm-based analysis with atrial information
was presented in [86]. The absence of P-waves is quantified by P , the mean squared
error between PR intervals. The value of P is expected to be close to zero when
P-waves are present because of their regularity compared to f-waves. Additionally,
the method also uses a measure of f-wave presence, F , computed by the normalized
spectral concentration of x(n),

F =
1

Ex

∫
Ω
Px(f)df, (3.17)

where Px is the power spectrum of x(n) and Ex is the energy of x(n). The in-
tegration interval Ω is centered around the dominant spectral peak (Note that this
makes F identical to SOI for K = 1 in (3.11). The value of P and F are combined
with measures of rhythm irregularity and noise level (See Sec. 3.4) into the detection
output O. In Fig. 3.7, the detection performance of O is demonstrated for the same
example which was subjected to rhythm-based AF detection in Fig. 2.3. The inclu-
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Figure 3.7: The output of the rhythm- and morphology-based AF detector O
(solid line), and the rhythm-based AF detector R (dashed line). The example is
the same as in Fig. 2.3.

sion of atrial information further attenuates the detection output during the non-AF
arrhythmic episode, thereby reducing the risk of a false alarm.

Recent approaches to AF detection include machine learning methods such as the
use of deep convolution neural networks, which uses the short-term Fourier transform
or the stationary wavelet transform of the ECG signal, i.e. with both ventricular and
atrial information, as input [136]. While the presented detection performance is very
good, the method was evaluated on a random subset of AFDB and the results can
therefore not be directly compared to those of other detectors [137]. In [138], the
band-pass filtered ECG signal is subjected to a wavelet transform for extraction of AF
detection features. The extracted features are subsequently used to classify the signal as
AF, or non-AF, using a machine learning approach. The method performed well when
comparing with methods dependent upon beat detection. However, the inability to
detect short AF episodes was mentioned as a potential limitation.
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3.4 Quality assessment of atrial activity

One aspect of atrial activity analysis, which has received remarkably little research at-
tention, is that of signal quality assessment. The relatively low amplitude of P-waves
and f-waves make them considerably more likely to be corrupted by noise, while, at
the same time, the computed parameters may attempt to include detailed morpho-
logical information. One study showed that the sample entropy of the atrial activity
signal increased with noise, which seriously impairs the discriminatory power of that
parameter in noisy environments [95]. It is very likely that other f-wave parameters
exhibit similar behaviour. While the methods described in Sec. 2.2 may perform very
well for rhythm-based analysis, they are of little help when atrial activity is studied.

The AF detectors described in Sec. 3.3.4 rely on analysis of morphology and can
therefore be very sensitive to noise. The wavelet entropy detector handles this issue
by discarding individual TQ intervals where the wavelet entropy exceeds a predefined
threshold prior to computing the median TQ intervalmTQ(n) [134], turning wavelet
entropy to both a quality and a detection metric.

In [86], a noise level estimator was included in the AF detector. The noise pa-
rameter N is defined as

N = Rx

∫ fn,1

fn,0
Px(f) log2 Px(f)df∫ fa,1

fa,0
Px(f) log2 Px(f)df

(3.18)

where Rx is the RMS of x(n). The parameters fa,0 and fa,1 define the frequency
range expected to contain the f-waves while fn,0 and fn,1 define the frequency range
of the noise. The parameter N was shown to be proportional to the noise level, while
essentially independent of f-wave amplitude.

The inability of N to detect noise contained within the same frequency band as
the f-waves is the main motivation for Paper II in this thesis, which introduces a novel
f-wave SQI defined by the error between the harmonic f-wave model xh(n) in (3.8)
and the extracted f-wave signal x(n).



Chapter 4

Summary of the Included Papers

This chapter present summaries of the five included papers on ECG analysis of AF.
Significant research contributions include a statistical approach to estimation of AV
nodal properties (Paper I), a novel f-wave SQI (Paper II), a demonstration of the
influence of f-wave signal quality in DAF estimation (Paper III), a study of ablation-
induced changes in f-wave characteristics (Paper IV), and an investigation of the dif-
ference in reproducibility among f-wave parameters (Paper V).

The estimation approach in Paper I is shown to be more robust than that of a
reference method and the f-wave SQI of Paper II is applied to select which signals to
use in Papers III–V. In conclusion, the studies introduce novel methods while demon-
strating the significance of robustness and quality assessment.

33
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4.1 Paper I - A Statistical Atrioventricular NodeModel
Accounting for Pathway SwitchingDuringAtrial Fib-
rillation

This paper presents a novel statistical dual pathway AV node model which allows
atrial impulses to switch between AV nodal pathways although the previous impulse
was blocked.

A major drawback of the AV node model presented in [64, 65], referred to as
the reference model in the following, was the substantial variation in parameters esti-
mates, a property commonly associated with too many degrees of freedom. Reducing
the number of model parameters is therefore assumed to decrease the variance and
improve the reliability of the estimates. Similar to the models in [64, 65], atrial im-
pulses are assumed to arrive at the AV node according to a Poisson process with an
intensity related to the DAF. However, unlike the previous model, the ratio of con-
ducted impulses through either pathway is not a model parameter but instead, equal
probability for attempted conduction through either pathway is assumed. This re-
duces the number of model parameters subjected to MLE from five to four, with two
parameters describing each pathway.

The ratio of all atrial impulses conducted through the slow pathway α, previously
a model parameter, is now computed from the estimated parameters and used as a
reliability metric. A small α implies a smaller share of the conducted impulses passing
through the slow pathway, and, therefore, reduces the reliability of the two parameters
defining the slow pathway. Conversely, a large α reduces the reliability of the two
parameters defining the slow pathway. Individual α-thresholds are defined for each
of the parameters and used to determine whether the estimate is included in further
analysis.

The model is evaluated using RR interval histograms from the RATe control in
Atrial Fibrillation (RATAF) database, involving 24-h recordings from 60 permanent
AF patients [27]. The parameter reduction does not impair the modelling ability
as similar results are obtained for both the present and the reference model, with
a median fit of 86%. The model is still capable of modelling bimodal RR interval
histograms, as illustrated in Fig. 4.1.

Comparison with the reference model reveals significantly less variation in three
of the four parameters in the new model. In particular, the parameters describing the
longest refractory period prolongation of each pathway are considerably more robust
and may be included in further research.
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Figure 4.1: Examples of simulated RR interval histograms and probability density
functions obtained with the AV node model from Paper I.
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4.2 Paper II - Model-based Assessment of f-wave Sig-
nal Quality in Patients with Atrial Fibrillation

This paper introduces a novel f-wave SQI S, and relates the value of S to the accuracy
of DAF estimation, and how it can be indicative of f-wave presence and therefore used
in AF detection. As described in Secs. 2.2 and 3.4, most of the SQIs found in the
literature are designed to determine the reliability of beat detection and therefore not
suitable for signal quality assessment of f-waves.

The computation of S consists of four steps and is based on the harmonic f-
wave model xh(n) defined in (3.8). First, the DAF is estimated from x(n) using
MLE. Second, constrained estimation of the local DAF, allowing for minor deviations
from the global estimate, is performed in overlapping subsegments of 0.5 s length.
The complex phases of all subsegments are aligned and averaged to obtain a signal
containing all frequency and phase information of xh(n). Third, the amplitudes
ofxh(n) are obtained minimizing the squared error betweenxh(n) andx(n). Finally,
S is obtained from the ratio of the RMS of (xh(n)−x(n)) to the RMS of x(n). The
value of S allows for the identification and removal of noisy segments, as illustrated
in Fig. 4.2.

The SQI is evaluated using simulated signals, 378 12-lead ECGs, and 1875 single-
lead ECGs. Contrary to N defined in (3.18), S decreases with increasing noise levels
even when the noise overlaps spectrally with f-waves. Moreover, the relationship be-
tween S and DAF estimation accuracy is established, with S > 0.3 found to imply
accurate estimation. The SQI S is substantially higher when computed from f-waves
than from P-waves, suggesting that the SQI may be used in AF detection. This is in-
vestigated by replacing the f-wave presence measureF with S in the AF detector [86].
The detection performance improves with sensitivity increasing from 97.0% to 98.1%
and the specificity increasing from 97.4% to 97.8%. It is concluded that S is well-
suited to determine the quality of f-waves.
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Figure 4.2: (a) ECG signal with noisy episode, (b) x(n), (c) the f-wave SQI S
with a threshold defining acceptable quality, and (d) x(n), with the noisy episode
removed according to S.
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4.3 Paper III - Atrial Fibrillation Frequency Tracking in
Ambulatory ECG Signals: The Significance of Sig-
nal Quality Assessment

This paper revolves around tracking of the DAF in ambulatory 24h recordings. It
includes 38 patients, all with permanent AF, and with ECG signals recorded from
lead I, II, and V1. The influence of signal quality and physical exercise is evaluated,
as well as day- and night-time frequency variations.

The f-waves are obtained from the ECG using the echo state network extraction
method on lead V1 with lead I as the reference [84], and DAF estimates are obtained
using the adaptive frequency tracker [112]. The f-wave SQI proposed in Paper II is
slightly modified so that it is based on the output of the frequency tracker rather than
the MLE of the DAF. Both the DAF and the SQI are computed from 5s segments,
and segments not fulfilling the SQI-threshold of S ≥ 0.2 are excluded, see Fig. 4.3.
Five patients are completely removed from the study after having more than 75%
of their segments excluded, leaving 33 patients. Out of these 33 patients, 21 take
part in physical activity during the recording, either by performing veloergometry
(11 patients) or walking (10 patients).

Using the f-wave SQI to remove segments reduces the standard deviation of the
DAF trend during both day- and night-time, from 0.46±0.08Hz to 0.36±0.08Hz,
and from 0.38± 0.06 Hz to 0.30± 0.03 Hz, respectively. In both cases, the change
is found to be statistically significant (p ≤ 0.001 and p ≤ 0.01, respectively). For
the veloergometry subjects, a statistically significant (p ≤ 0.01) decrease in SQI was
observed during exercise, with the quality restored immediately afterwards. No sig-
nificant SQI changes were observed during walking.

This study clearly demonstrates the importance of taking f-wave signal quality into
consideration when tracking the DAF in ambulatory ECG signals. Visual inspection
concluded that several recordings clearly were not feasible for this analysis, and in
total, 40% of all segments were removed with the aid of the f-wave SQI.
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Figure 4.3: DAF tracking in a 24-h ambulatory ECG, with gray dots represent-
ing 5s estimates and the black solid line representing a smoothed series. (a) DAF
series, (b) SQI series, (c) SQI-processed DAF series, and (d) three examples of f-
waves: 1. f-waves corrupted by QRST residuals, 2. good quality f-waves, 3. f-waves
corrupted by electrode movement artifacts.
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4.4 Paper IV - Changes in f-wave Characteristics dur-
ing Cryoballoon Catheter Ablation

This paper investigates the behaviour of three f-wave parameters computed in record-
ings obtained from AF patients undergoing pulmonary vein isolation using cryobal-
loon catheter ablation. The parameters are the DAF, the f-wave amplitude and the
phase dispersion γ.

Numerous earlier studies have investigated the relationship between f-wave pa-
rameters and catheter ablation outcome. However, the results are inconsistent, with
different studies suggesting that the same parameter is indicative of both success and
failure. This could be due to different ablation protocols, or data sets not account-
ing for enough inter-patient variability. Another possible reason is extracardiac noise
sources which may corrupt the parameter estimates. This study therefore includes the
f-wave SQI from Paper II to eliminate low signal quality as a factor causing variation.
Also, while most previous studies have limited the analysis to signals recorded prior
to ablation, this study investigates ablation-induced changes. This is motivated by in-
vasive studies which have observed changes in DACL during catheter ablation [139].

This study defines two datasets; dataset A, consisting of 12-lead ECG recordings
from 77 AF patients (49/28 paroxysmal/persistent) obtained prior to the ablation,
and dataset B, a subset of dataset A consisting of 31 AF patients (16/15 paroxys-
mal/persistent) where f-waves are available during the complete procedure. In both
datasets, the f-wave SQI from Paper II is used to select which signal segment to ana-
lyze. Dataset A is used to assess the relationship between the parameters and clinical
data. All parameters suggest clinical relevance as the DAF and γ were found to be
related to AF type and the f-wave amplitude obtains significantly larger values in pa-
tients with increasing left atrial size.

The 31 patients in dataset B all underwent isolation of all four pulmonary veins
and a total of five segments are thus obtained from each patient (prior ablation, in-
between two isolations, and after ablation). The f-wave amplitude and γ did not
exhibit any significant ablation-induced changes. However, the DAF displayed a sig-
nificant decrease during the procedure (p = 0.001). This is illustrated in Fig. 4.4. No
significant relation was found between the magnitude of the parameter change and
the catheter ablation outcome.
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Figure 4.4: Example of a DAF decrease during ablation, with each subplot illus-
trating the f-waves after one additional pulmonary vein isolation. The DAF is: (a)
5.7 Hz, (b) 5.4 Hz, (c) 5.1 Hz, (d) 5.2 Hz and (e) 4.7 Hz.
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4.5 Paper V - Reproducibility of parameters character-
izing atrial fibrillatory waves

The paper investigates the reproducibility of five f-wave parameters by comparing
their inter- and intrapatient variation. The considered parameters are the DAF, the
f-wave amplitude, the phase dispersion γ, the spectral organization index SOI and the
spatiotemporal variability ϵ.

The dataset consists of a subset of the patients studied in Paper IV, consisting of
12-lead ECGs of 20 AF patients (11/9 paroxysmal/persistent). The recordings are of
consistently high quality, assured using the f-wave SQI of Paper II. Spatiotemporal
QRST cancellation is used to obtain the atrial activity signals and f-waves are present
during the whole recording. The recording length varies between 20–200 min (92±
55 min, mean ± std).

The study is motivated by the considerable variation sometimes observed by re-
peated measurements of an f-wave parameter. By considering the variation of a 2 min
window of a high-quality signal, changes caused by the treatment or noise are thought
to be excluded as potential factors causing the variation, leaving only methodologi-
cal reasons. The short-term variation is therefore quantified by the intrapatient vari-
ance σ2 of a 2 min window while the interpatient variance τ2 is computed from
parameter estimates of different patients. The variance ratio R, defined as the ratio
of σ2 to τ2, is used to quantify the reproducibility of each parameter, a larger R
corresponding to better parameter stability and reproducibility.

The DAF is estimated using two different methods, namely the frequency tracker
described in (3.9) and the MLE presented in Paper II, where the former results in a
larger R (R = 9.7 and R = 6.3, respectively). The range of R-values of the DAF is
presented in Fig. 4.5. The f-wave amplitude obtains R = 21.0 and R = 25.4 when
estimated using the harmonic f-model in (3.8) and using envelope detection in (3.10),
respectively. The remaining f-wave parameters all obtain considerably lower values
ofR, withR = 2.4, 2.4, and 2.7, for γ, SOI, and ϵ, respectively. This study therefore
demonstrates that there is a great difference in inter- and intrapatient variation among
f-wave parameters, and that best reproducibility is to be found in the most established
parameters of DAF and f-wave amplitude.
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Figure 4.5: Comparison of DAF estimates obtained using (a) frequency tracking
and (b) maximum likelihood estimation. The bars represent the standard devia-
tion.
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