
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Establishing Timing Requirements and Control Attributes for Control Loops in Real-
Time Systems

Bate, Iain; Nightingale, Peter; Cervin, Anton

Published in:
Proceedings 15th Euromicro Conference on Real-Time Systems, 2003.

2003

Link to publication

Citation for published version (APA):
Bate, I., Nightingale, P., & Cervin, A. (2003). Establishing Timing Requirements and Control Attributes for
Control Loops in Real-Time Systems. In Proceedings 15th Euromicro Conference on Real-Time Systems, 2003.
(pp. 121-128). IEEE - Institute of Electrical and Electronics Engineers Inc..
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212735

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e423bc8b-c065-4424-aae7-8f552bb20dc2
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1212735

Establishing Timing Requirements and Control Attributes for
Control Loops in Real-Time Systems

Iain Bate
1
, Peter Nightingale

1
, Anton Cervin

2

1 Department of Computer Science,

University of York, York, YO10 5DD, UK

{ijb, pwn101}@cs.york.ac.uk

2 Department of Automatic Control

Lund Institute of Technology, Lund, Sweden.

anton@control.lth.se

Abstract

Advances in scheduling theory have given designers

of control systems greater flexibility over their choice of

timing requirements. This could lead to systems

becoming more responsive, more flexible and more

maintainable. However, experience has shown that

engineers find it difficult to exploit these advantages due

to the difficulty in determining the “real” timing

requirements of systems and therefore the techniques

have delivered less benefit than expected. Part of the

reason for this is that the models used by engineers

when developing systems do not allow for emergent

properties such as timing. This paper presents an

approach and framework for addressing the problem of

identifying an appropriate and valid set of timing

requirements and their corresponding control

parameters based on a combination of static analysis

and simulation.

1 Introduction

This paper addresses the perennial problem of how to
identify an appropriate and valid set of timing
requirements for a hard real-time system. Over the
years, research on real-time systems has evolved
techniques which provide greater flexibility in
scheduling whilst still providing a means for
guaranteeing that timing requirements are met [1, 6].
The increased flexibility was expected to give many
benefits, including more efficient use of resources and
simpler maintenance of schedules when changes to the
control software are made. In addition, maintaining
schedules is often a costly and error prone manual
process, so these techniques have the potential to offer
significant economic as well as engineering benefit.

However, experience has shown that engineers find it
difficult to exploit this increased flexibility, and the
techniques have delivered less benefit than expected.
Based on our own experience and that of others in
industry [2, 6, 10], a key reason is an absence of
information about the true timing requirements which
are needed to make best use of the approaches. In many
cases current systems are developed with simple timing
requirements, such as a timing margin to be achieved.
(A timing margin is the amount of usable spare capacity
available.) In other cases the timing requirements are
largely historic, and are simply expressed in terms of
iteration rates which have been proven effective in
previous designs. Despite the changing contexts between
systems, this strategy is normally successful because the
requirements are over conservative, e.g. update rates
specified are much faster than needed. Even where more
modern control law design environments are used (e.g.

Matlab/Simulink [3]), the control models are often
produced assuming a particular computational model.
For example a 50 ms cycle/20Hz bandwidth is chosen
because there is a regular clock tick in the system with a
period of 25 ms (i.e. 40 Hz) and therefore it is easier to
release tasks at a harmonic of this frequency.

Other techniques such as Shannon’s sampling theroem
[5] place an upper bound on the sampling period. When
the sampling theorem is used, an actual sampling period
still needs to be selected as well as other timing
attributes such as the deadline of the sampling task,
period and deadline of the actuator task, and the
maximum separation time between data capture and
sensor actuation.

A major contributor to the situation that has arisen is
because both the research and practical use of control
theory and scheduling theory have largely been carried
out in isolation [4]. Thus for example, work on how
advanced control regimes, such as H [5], might ease
the integration issues between control and software,
have received little attention. Other pressures include the
move towards model-based development that places
greater onus on capturing evidence within the actual
models and including low-level implementation details
within the models, i.e. emergent properties such as
timing.

This paper presents an approach and framework for
addressing the problem of identifying an appropriate and
valid set of timing requirements in order that the best
use can be made of the advances in scheduling theory.
The paper is an extension to previous work [15] that
adds greater traceability back to the system’s objectives
using an argumentation technique to target the
evaluation used in the framework, and for evaluation
purposes using Jitterbug to perform static analysis [11]
and the use of scenario-based assessment to determine
the extent to which the system copes with other
situations - e.g. changes to the system, errors in models
and measurements, and random failures.

The approach taken is to first establish the objectives
of importance (based on argumentation techniques used
in the critical systems domain) and then use component-
based models that allow for emergent properties of
systems (in this case timing) so that the models are more
representative of how an actual system would actually
behave. Then, a genetic algorithm is used to explore the
design space in-order to identify timing requirements
and corresponding control parameters which enable
objectives such as control stability to be achieved, thus
deriving and validating the requirements against more
realistic properties of the control system. When valid
combinations of parameters are found, the framework

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

produces evidence that the solution is appropriate in a
traceable manner via static analysis and test.

The advantage of using genetic algorithms instead of
traditional model-based design approaches, such as
frequency domain loop shaping [5], include it allows
many properties and effects to be considered at the same
time and their demands on the system to be traded-off
against one another [9].

The work presented here is intended for use in a range
of control problems, but is illustrated with the PID
(Proportional Integral Differential) control approach [5].

The rest of the paper is structured as follows. Section 2
gives further background on the control techniques to be
used in the context of this work. It also provides a
technical motivation (as opposed to the “economic”
motivation outlined above) for seeking a systematic
approach to deriving timing requirements. Section 3
gives an overview of an argument that assesses the
desirable properties of a control system scheduled on a
computer and evolves an experimental method to show
the properties are met. Section 4 presents the
framework, and the costs of evaluating the requirements.
Section 5 contains a case study which have been used to
evaluate the approach, as well as presenting a discussion
of how the resulting timing requirements may be used.
Finally, section 6 gives a summary and suggests possible
future developments for the work.

2 Background and Motivation

All scheduling approaches require a minimum set of
information about timing requirements so that an
appropriate scheduler can be produced. For most
scheduling approaches the minimum set of information
is the deadline and period of tasks [6, 7]. This section
explains why these requirements are important in the
context of PID loops and how they can be generated by
considering basic control properties.
2.1 PID Loop

The main purpose of a PID loop is to ensure the
response to inputs is sufficiently fast whilst maintaining
the stability, accuracy and limits on data. Figure 1
depicts a typical PID loop used to control the operation
of a plant as part of a control system. The Figure shows
the key aspects and components of the controller – e.g.
there is only one input and one output.

In its simplest form, a continuous ideal domain
representation, the output of the PID loop is the plant
input. The control system input is the difference between
the input demand (denoted by I), which is the desired
plant state, and the plant’s actual output (denoted by O)
and it is referred to as the error, (denoted by E). The
continuous and discrete forms of the PID loop are given
in Equation 2 and Equation 4 (current sample denoted
by k) respectively.

)()()(tItOtE Equation 1

dt

tdE
KdttEKtEKtO DIP

)(
)()()(Equation 2

)()()(kIkOkE Equation 3

)1()()()()(
1

kEkEKjEKkEKkO D

k

j

IP Equation 4

In the computer-based approach, the Input Demand

(e.g. pilot stick position) and the Actual Plant Output

(e.g. aircraft’s flap position) are usually analogue
signals. The computer performs the rest of the
processing in the digital domain. Converters are used to
sample the analogue signals, e.g. to produce the Error

input, and then converted back to analogue values at the
output. Converting back to an analogue signal is often
referred to as digital to analogue conversion, de-
sampling or actuation. In order to give better control
over jitter, the functionality that needs to be performed
in software is normally split into three separate tasks –
sampling, calculation and actuation [4, 6, 7].

Controller

Plant

T(s)

Integration
Gain

(K
I
)

Gain

(K
p
)

Differentiation
Gain

(K
D
)

+

Plant

Input

Error

(E)

Input

Demand

(I)
+_

Actual

Plant

Output

(O)

+

Load

Disturbance

Sensor

D(s)

Sampling

Signal

+

Measurement

Disturbance

A/D D/A

De-sampling

Signal

Figure 1 – Typical PID Loop

In industrial practice it is common for a controller to be
developed as a continuous system based on the system’s
response in the frequency domain. Often modelling
packages or special purpose plant simulations are used
to validate the requirements. If a computer-based
implementation is to be used, then once the requirements
have been established in the continuous domain they are
converted to the discrete domain. Typically the
conversion involves calculating the PID loop gains (KP,
KI, KD) based on the assumption that a constant
sampling period is used. This means the conversion is
performed based on an idealised model of the computer
system. The conversions for the PID loop gains are give
in Table 1. In other words the conversion uses
unrealistic assumptions, e.g. infinite processing
bandwidth and zero jitter in sampling the inputs (jitter is
the variation in time when an action occurs between one
cycle of the controller and the next). In addition, “real”
systems have errors through effects such as
measurement disturbance, load disturbance and plant
error. These are also represented in Figure 1.

Parameter in

Continuous Domain

Discretisation Formula for a

Sampling Period of T

KP KP

KI T.KI

KD
T

KD

Table 1 – Conversion from Continuous to Discrete

The approach presented in this paper addresses this
shortcoming by taking into account the constraints of
real computer systems, and thus enables valid and
realistic requirements to be produced. To explain how
this is done the rest of this section explains in more
detail the relationship between computational properties
such as jitter and control properties such as stability.
2.2 Scheduling Properties

It is, of course, essential that the sampling, core
functions and de-sampling tasks are executed in that

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

order. Other work, e.g. [6], has shown how to specify
and control the precedence of functionality for a PID
loop to ensure that these requirements are met. More
importantly for our discussions in this paper, sampling
and de-sampling will be subject to jitter due to limits on
the accuracy of clocks, and the interference of other
software running on the processor. Thus the true
sampling times will vary, and the simple assumptions of
fixed and precise iteration rates used in validating the
control model will not be representative of the
computations which occur in practice. Jitter can be
calculated using the results of response time analysis
that gives best-case [14] and worst-case response times
[6].

Figure 2 presents properties for a typical transaction of
a control loop that can be controlled by the scheduler.
The three tasks are sensor capture, calculation and
actuation output. The Figure shows:

how each task has jitter comprising both release and
execution jitter as well as an invariant in its
execution time,
there is jitter on both sensor capture (referred to as
sampling jitter) and actuation (referred to as de-
sampling jitter),
a task must be completed before the next task in the
transaction starts its execution so that the next task
can use fresh data,
the response time of a transaction is equal to the
time between the release of the first task and the
completion of the last task (the worst-case response
time for a transaction must be less than its
deadline), and
the period of a task is the time between two
consecutive earliest releases.

release jitter

of sensor

task

execution

jitter of

sensor task

release jitter

of calculation

task

execution jitter

of calculation

task

release jitter

of actuator

task

execution jitter

of actuator

taskdata data

transaction's response time

sensor task's periodsensor task's deadline

Earliest

release of

sensor task

Earliest start of

calculation

task's execution

Earliest

release of

sensor task

Completion

time of actuator

task

Invariant in

tasks'

execution

Figure 2 - Scheduling Properties for a Transaction

2.3 Control and Scheduling Interactions

The previous section defined our scheduling model and
its associated terms. The only events that are important
for control are sampling and actuation. When assessing
the system’s control performance, it is assumed the three
tasks shown in Figure 2 meet their timing requirements.
For both sampling and actuation we assume the event
occurs at the end of the execution of the relevant task.
We define a number of parameters, which specify the
timing requirements over the sampling and actuation.
These are defined in Equation 5 - Equation 10, where
SENS and ACT refer to the sensor task and actuation
task, J refers to jitter, D to deadline, BCRT to best-case
response time, WCRT to worst-case response time,
BCET to best-case execution time and S to separation
between actuation and sampling. It should be noted that
for idealised cases where JS and/or JA are zero stability
analysis is significantly simplified. For all other cases,

Jitterbug can be used where the distributions for JS and
JA are known.

Requirements derived purely from the control model
without allowing for computational effects caused by
scheduling and execution are invalid. More seriously,
they are also inappropriate as they can lead to instability,
and other undesirable properties, e.g. lack of
responsiveness.

The classic definition of stability in general terms is
that a system is stable if bounded inputs return outputs
that remain bounded for all time [5]. The stability of the
system is related to the frequency response of the control
system (and hence the calibration settings for the control
loop) as well as the other properties discussed. From a
scheduling perspective, only the responsiveness and size
of the errors can be controlled since the gain is a
functional property of the control software.
Sampling
jitter (JS) SENSS JJ Equation 5

Separation
(S) SENSACT RTRTS Equation 6

Actuation
jitter (JA) ACTA JJ Equation 7

Minimum
Separation SENSACTMIN WCRTBCRTS Equation 8

Maximum
Separation

SENSACTMAX BCRTWCRTS
Equation 9

Deadline
)()(MAXJMAXJ

BCETBCETSD

SA

SAMIN Equation 10

3 Linking Requirements to an Argument

When a control system is being developed as part of a
critical application, the traditional approach is to design
the system and then thoroughly evaluate it to provide
evidence for its safety argument. By following this
technique, it is intended that the results obtained from
the framework become more focussed.

An objective of our work is to collect evidence at the
model level that is valid with respect to the final system,
i.e. allowing for emergent properties within the model.
The remaining evidence must then be collected from the
final system. This strategy means that any evidence
collected about the behaviour of the system using the
model is directly related to the evidence needed to
justify the integrity of the final system. This is a
significant departure from current practice where most
of the evidence is gathered about the final system. The
benefits of achieving this strategy are considered
enormous, these include; more systematic reuse, lower
cost of verification facilities and a later commitment to
target hardware. It is recognised that some information
(e.g. execution times) can only be found on the target
but the impact of this should be kept to a minimum.

The argument presented here has been produced using
Goal Structuring Notation (refer to section 3.1 for an
overview) to establish and justify an appropriate
methodology.
3.1 Overview of the Goal Structuring Notation

The Goal Structuring Notation (GSN) [13] - a
graphical argumentation notation - explicitly represents
the individual elements of any safety argument

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

(requirements, claims, evidence and context) and
(perhaps more significantly) the relationships that exist
between these elements (i.e. how individual
requirements are supported by specific claims, how
claims are supported by evidence and the assumed
context that is defined for the argument). The principal
symbols of the notation are shown in Figure 3 (with
example instances of each concept).

The principal purpose of a goal structure is to show
how goals (claims about or objectives of the system) are
successively broken down into sub-goals until a point is
reached where claims can be supported by direct
reference to available evidence (solutions). As part of
this decomposition, using the GSN it is also possible to
make clear the argument strategies adopted (e.g.
adopting a quantitative or qualitative approach), the
rationale for the approach (assumptions, justifications)
and the context in which goals are stated (e.g. the system
scope or the assumed operational role). For further
details on GSN see [13].

System can
tolerate single

component
failures

Sub-systems
are independent

Argument by
elimination of all

hazards

Fault Tree
for Hazard

H1
A/J

Goal Solution Strategy
Assumption /

Justification

All Identified
System Hazards

Context
Undeveloped Goal

(to be developed)
Developed Goal

ChildGoal

Child Goal

ParentGoal

Figure 3 – Principal Elements of GSN

3.2 Top-Level Argument that the System Meets its

Objectives

For reasons of space, only the top-level argument is
given in this paper. The top-level argument is presented
in Figure 4. The assumption A0001 in the argument
identifies the following primary objectives to be met by
the system as a minimum are:

stability margin – the stability margin is specified in
invariant systems in terms of the minimum return
difference [5]. A margin is chosen to ensure the
system is not at risk of being unstable. More
generally, it is the distance from the instability point
on a Nyquist plot [5].
actuator limits – the maximum allowable output.
This limit is often chosen to prevent damage to
components or give rise to system hazards.
settling time – given a step response as an input, the
time taken for the output to reach and stay within
X% of the final value. Both X and the time taken
are specified to ensure the system is suitably
responsive to stimuli.
maximum error – the maximum allowable error at a
given time between the intended output and the
actual output is specified to ensure the output is
always within a bounded range. This objective
covers effects due to both slew rate and overshoot.

The strategy for satisfying these goals is to split the
evidence gathering into two parts; obtaining evidence
that is gathered at the model level (goal G0002), and
obtaining evidence that the model is then transformed
correctly into a final system (goal G0003). This strategy
is justified by drawing on an analogy with current

practice whereby requirements are validated and then it
is verified the implementation meets the requirements –
J0001. The proposed strategy is a significant departure
from current practice where most of the evidence is
gathered about the final system. The key challenges are
capturing assumptions of the model and ensuring these
are representative of the final system – assumption
A0004. In particular most models do not account for the
non-functional properties of the system.

The goal that the model is correctly transformed into
an implementation (goal G0003) is left undeveloped
here since other work has addressed this problem [12]. It
is recognized that whilst implementing what is contained
in the models some new properties may emerge (e.g.
timing requirements related to interaction with specific
hardware) and changes to requirements may be
necessary. Any changes should be incorporated back
into the model so that it can be checked whether the
previously gathered evidence is invalidated. This
approach is preferred so that evidence gathered while
implementing the system can be used purely to reinforce
the evidence gathered at the model level.

Finally, goal G0002 is decomposed into three parts;
capturing evidence a particular design meets the
system’s objectives, searching for an appropriate design
and that a suitable framework is used. The results of the
decomposition of these objectives is discussed in the
following sections.

G0001

Control system

meets its

objectives

A0001

Objectives of stability

margin, actuator limits,

settling time and

maximum error defined

A

G0003

Show that model is

correctly transformed

into an

implementation

G0002

Show that model

meets its

objectives

A0003

Tools and techniques

used shown to be

suitable for integrity

level of the system

A

J0001

Analogous to validating

requirements and then

verifying implementation

meets requirements

J

St0001

Split into model and

generation of final

product from the

model

A0002

As much evidence as

possible is gathered at

the model level

J

A0004

Model is representative

of the final system

including its emergent

and non-functional

properties
J

G0004

Capture evidence

that objectives are

met

G0005

Optimise the

system's

behaviour

G0006

Create environment

to evaluate system

with

Figure 4 – Top Level Argument that the Control

System Meets its Objectives

3.3 Gathering Evidence that the System’s Objectives

are Met

In the rest of the arguments, it is determined that the
evidence is captured in two phases, simulation and static
analysis. Simulation can provide detailed evaluation
over a range of scenarios (e.g. changes and failures),
while the main area in which static analysis provides
conclusive results for control systems is in showing that
the system is stable across all scenarios. The majority of
evidence is to be gathered by simulation with static
analysis used to provide independent confirmation of the
results obtained. In many situations it is the results from
the static analysis that is considered to be of paramount
importance. Jitterbug is used to provide static analysis
that incorporates the effects of jitter and latency [11].

Jitterbug is a MATLAB toolbox that allows the user to
compute a quadratic performance index for a linear

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

control system with timing variations [11]. It can also be
used to analyze frequency-domain properties of the
closed-loop system. In this paper, Jitterbug is used to
compute the stability margin of a controller with
sampling jitter and actuation jitter.

The simulation evidence to be gathered is split across
the objectives taken from the arguments with timing
behaviour added to recognise the system is to be
executed on a computer which introduces time
variations. The evidence for the objectives is collected
as follows.
1. evaluate measurement disturbance rejection – over

the range of scenarios identified, add noise at the
sensor and check that the system meets all other
requirements.

2. evaluate steady state response – over the range of
scenarios identified, measure the difference (i.e.
error) between the actual response and the ideal
response and ensure any error is less than the
maximum specified.

3. evaluate transient response – using step responses,
measure the settling time and maximum error to
check whether the requirements are met.

4. evaluate plant sensitivity – over the range of
scenarios identified, vary the plant model to the
maximum that the system is intended to tolerate,
and check whether the requirements are met. Plant
variation is discussed further in section 4.2.

5. evaluate temporal sensitivity – over a range of
periods, determine valid timing requirements which
lead to the system meeting its objectives.

The simulation evidence to be gathered is to be
collected in the following input scenarios. Based on
experience, these scenarios are considered
comprehensive especially when it is considered static
analysis is also performed.
1. input step response – provides a constant amplitude

across the entire bandwidth of the system.
2. load step response – ensures plant disturbances are

rejected by the system.
3. ramp response – ensures that the system can cope

with the specified rate of change without the
maximum allowable error being exceeded.

4. parabolic response – allows the response of the
system to be evaluated at a range of frequencies.

5. random response – allows the system to be
evaluated with little effort and still provides useful
data.

6. representative response – allows the system to be
evaluated using scenarios taken, and maybe
modified, from similar systems or from predictions
of how the system may be used.

7. noise – for the other options, it is relevant that
sensor noise of a specified level can be added to
simulate real world effects.

8. plant variations – for the other options, it is relevant
that variations in the plant model are examined to
show the sensitivity of the system to component
tolerances, design changes and mechanical wear.

3.4 Exploring the Design Space

Heuristic search techniques were chosen to explore the
design space to find the best combination of variables to
satisfy the previously stated objectives. These methods
can be broadly split into two areas: Partial Assignment
Search and Total Assignment Search.

Partial assignment search requires evaluation of the
system when not all variables have a value, which is
unsuitable in our case since we cannot simulate or
perform static analysis with an incomplete parameter
set. This leaves total assignment search (also called local
search). There are many suitable approaches in this area,
but simulated annealing and genetic algorithms have
been successfully applied to engineering problems in
control.

Simulated annealing requires only a fitness function,
whereas a genetic algorithm requires a representation of
the data in a suitable form, and genetic operators such as
crossover and mutation in addition to the fitness
function. However, genetic algorithms are less sensitive
to changes in the evaluation function, since the
individuals are ranked according to their fitness, and the
set of fitness values are discarded. In our case, defining
a suitable representation, and mutation and crossover is
trivial. Simulated annealing sometimes determines the
probability of performing moves from the magnitude of
the fitness, and hence finding a suitable fitness function
becomes more difficult. For this reason, we chose to use
a genetic algorithm.

When performing the optimisation, it is assumed the
period is constant across the tasks in a particular control
loop but the maximum jitter may be different for sensor
and actuator tasks.

4 Modelling Approach and Framework for

Evaluating Timing Requirements

For the purpose of this work, no specific scheduling
approach is assumed. Instead, it is assumed that the
“scheduling problem” can be divided into two parts:
devising a set of timing requirements and verifying that
a chosen schedule meets those requirements. There are
several solutions to the latter problem, e.g. [1, 6], so for
the purposes of this paper, we consider this to be a
solved problem, and focus on the issue of generating
requirements. Our approach seeks to build on the
capability of existing tools for developing control laws,
and to exploit the power of genetic algorithms to explore
the “design space” produced by the interplay of task
periods, deadlines and jitter as well as the loop gains
(KP, KI, KD).

There are four significant parts to the framework that
has been developed in MATLAB [3]:
1. Evaluating the PID Operation
2. Searching the design space
3. Determining a valid set of timing requirements by

stepping through a range of periods and tuning the
other timing parameters alongside those of the PID
loop.

4. Generating a detailed log (with figures) by
documenting the analysis of the solution at each
period.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

The following subsections discuss each of these parts
in more depth.
4.1 Evaluating the PID Operation

The MATLAB model for simulating a discrete PID
control loop is shown in Figure 1. The key elements here
are that the gains of the PID loop are programmable, and
that the timing of the sensor and actuation is controlled
by the representative sampling signal. The purpose of
the signal is to simulate the jitter on when actions
(sampling and actuation) occur as shown in Figure 2.
That is, the signal is used to control when signals are
converted from the continuous to the discrete domain
and vice versa. The signal is generated such that one
sampling event and one actuation event occur within
each period, and in the correct order. If time 0 is the
beginning of the period, the sampling event occurs at
time , where is a random value in the range (0, JS]
and JS is the maximum possible sampling jitter
according to Equation 10. The falling edge occurs at
time +S+ , where S is the minimum separation, and
is a random value in the range [0, JA). The distribution of
 and is uniform. The sampling signal is fed into

Jitterbug since Jitterbug needs stochastic knowledge of
timing behaviour in-order to evaluate stability via static
analysis. As discussed in section 3.3, simulation is also
employed to evaluate the performance.

Figure 1 shows three inputs to the system. Input and
load disturbance are used to simulate various scenarios
(refer to Table 4 for details), and the measurement
disturbance is used to test the effects of noise on the
system. The level of noise is a parameter of the
framework. Varying degrees of noise can be added to
the simulations. This simulation model is used to
explore the performance of the control system with a
given set of parameters, e.g. values for KP, KI, KD, JS, JA,
SMIN, etc.
4.2 Allowing for Plant Variations

The framework uses a transfer function to model the
plant, and if required a second transfer function to model
the sensor (otherwise the signal is passed through the
simulated sensor block unchanged). The transfer
function represents a linear model of the plant. A plant
model is never 100% accurate because modelling
introduces inaccuracies and the plant may have non-
linear characteristics that can’t be accurately represented
in a linear model. Internal factors such as component
tolerances and mechanical wear also alter the behaviour
of the system. It is also common for plants to change
their behaviour based on external factors such as
temperature and altitude. To account for these
inaccuracies and online variations, the system is
evaluated with variations of the transfer function.
 Plant model Sensor model
Nominal

model

50

1
)(

s
sD

Model

with other

variables 50
)(

s

c
sD

Table 2 – Example Models with Additional Variables

In order to vary the transfer function, the framework
allows variables to be added to it. Each of these
additional variables has a nominal value, which form the
nominal model if substituted into the transfer function.
Table 2 shows an example of plant and sensor models
with and without additional variables, and Table 3
shows the nominal, minimum and maximum values for
the variables a, b and c. Normally the sensor model is
incorporated within the plant model in which case c

would be zero.
To account for plant variation requires one additional

parameter - the number of steps to be taken between the
minimum and maximum of each variable. For example,
a variable with minimum of 3 and a maximum of 7,
where the number of steps is set to 5, would iterate
through values {3,4,5,6,7}. The number of plant
variations considered is NSteps, where N is the number of
variables, so the framework evaluates every
permutation. The nominal model is also evaluated, so it
need not be one of the variations. Each of the variations
is subjected to the same tests, as summarised in , as the
nominal model.

Variable Nominal value Minimum Maximum

a 1 0.95 1.05

b 0 5 5

c 1 0.9 1.1

Table 3 – Example Values for Additional Variables

Simulation input

scenario

Parameters

Load step disturbance Size of step
Input demand step
disturbance

Size of step (equal to above)

Ramp response Gradient of the input demand
Parabolic response Frequency of sine input demand
Random response Variance of the random signal

which forms the input demand
User-specified Time series data which forms the

input demand of the simulation

Table 4 – List of Simulation Scenarios

4.3 Searching the design space

It is possible to use PID loop gains in the discrete
domain that were originally established in the
continuous domain but first they must be transformed
using relationships based on the sampling period in the
continuous domain and the discretisation formula. In the
context of our approach, the relationships are as shown
in Table 1. However in the framework produced, an
option is to tune the actual gains for any given period
and/or deadline. In section 4.3, a genetic algorithm was
chosen for the purpose of optimising performance. The
fitness function used in conjunction with the genetic
algorithm allows many properties and effects to be
considered at the same time and their demands on the
system to be traded-off against one another.

If the search is successful in meeting the requirements,
a valid set of timing parameters will be evolved
alongside the controller parameters. The search is not
considered to be successful if the timing requirements
are invalid compared to the assumptions selected, e.g. if
the deadline is greater than the period. To reduce the

50)1000(
)(

sb

a
sT

501000

1
)(

s
sT

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

number of variables in the search, JA is determined from
JS using an expression provided by the user, for example
JA= 2J +1, and the best-case execution times of the
actuator and sensor tasks are assumed to be zero which
is the worst-case scenario. Hence based on Equation 5
through Equation 10, the variables involved in the
search are JS, SMIN, KP, KI and KD.

The fitness function evaluates the system as described
in section 4.1 and returns a score dependent on the
success in the various tests described there.

The inputs of the fitness function are:
1. The individual to be evaluated – values of JS, SMIN,

KP, KI and KD.
2. The range of the actuator – i.e. the largest range of

output allowed from the controller.
3. The settling time following a load step or input

demand step, along with the maximum allowed
error after the settling time has expired.

4. The maximum allowed error during the whole
simulation, under all the scenarios in Table 4.

5. The period of the sensor capture task – i.e. the
sampling period. It is assumed that other tasks in the
transaction have a rate that is equal to the sensor
capture task’s rate.

6. The timing requirements SMIN, JS and JA as defined
in Equation 5 to Equation 10.

7. The length of the simulation – this should be
appropriate for the system.

8. The level of measurement disturbance noise applied
under all the scenarios in Table 4.

9. Target value for the stability margin (distance from
the instability point on a Nyquist plot [5]) as
computed by Jitterbug [11].

10. Plant and sensor models, and the appropriate
information about their variables, described in
section 4.2.

11. Those related to the input scenarios in Table 4.
Score

range

Description

[1, 2) Testing actuator limits without jitter (with set-
point and load step simulations)

[2, 3) Testing settling time without jitter (with set-point
and load step simulations)

[3, 4) Testing maximum error without jitter (with set-
point and load step simulations)

[4, 5) Computing stability margin with jitter [11]
[5, 6) Simulating whole range of scenarios (Table 4)

without jitter and checking maximum error and
settling time

[6, 11) Repeating the above tests with random jitter
[11, 12) Repeating all the tests for score range [1, 11) for

each of the system variants specified by the user
[12,) Additional score, higher for longer deadlines

Table 5 - Scoring in the fitness function

The fitness function determines a score as illustrated in
Table 5. Each score indicates complete success in the
lower categories, hence a score above twelve indicates
that the solution meets all the requirements. All
simulations are performed with measurement noise
added. For a solution to be considered it must pass all
the individual tests. During the evaluation, if no design
solution can be found that passes all tests then the
designer should evaluate whether the system’s

requirements can be relaxed or whether a change can be
made to the search limits (e.g. range of periods).

For space reasons, full details of the genetic algorithm
used are not provided – e.g. cost function, mutations.
4.4 Determining Valid Timing Parameters

Before the evaluation, the user, via a provided
interface, defines the limits for the period of individual
activities within the system (e.g. sampling of signals)
and the size of steps taken between the limits (e.g.
periods between zero and ten might be evaluated in steps
of one, resulting in search and evaluation being
performed at 0, 1, 2, ·· , 9, 10). For each of these periods
the set of deadlines, and hence the maximum deadline,
are determined for which the control system meets its
objectives, e.g. stability.

The results of the searches can be displayed in various
forms, to aid the user in picking the most appropriate.
When selecting the most appropriate of the valid
solutions, the user may prefer the longest period for
which a solution was found, in order to reduce the
utilization of the processor. Alternatively, the user may
prefer the solution with the longest deadline to give a
lower priority in order to improve schedulability when
using a deadline monotonic priority ordering.

Once the search has found individuals that satisfy the
other requirements described in section 1.1, it attempts
to maximise the transaction deadline
4.5 Generating a log of safety evidence

Upon finishing the search, the system repeats the
evaluation of the best solution, recording details of
scenarios evaluated, responses to stimuli, static analysis
results and graphs in a log. The log contains evidence
such the extensive simulations of the scenarios described
in Table 4 under the effects of noise, jitter, latency and
periodic execution, and results of stability analysis. Both
static analysis and test via simulation are performed for
many variations of the plant, to account for plant
variation and/or uncertainty.

5 Evaluation

In this paper, a ball and beam example [8] is used to
demonstrate the technique because it normally operates
in an unstable fashion with stability only being possible
with external control assistance. Therefore it represents
an important, albeit rather smaller, class of systems, e.g.
military fast jet flight control systems.

theta

r

Figure 5 – Ball and Beam

The plant (i.e. the ball and beam [8]) is illustrated in
Figure 5, where the variable to be controlled is the
position of a free-rolling ball on a beam. It can be
mathematically represented by a second-order system
using Equation 11. The controller output represents the
angle of the gear, (s), and the variable under control is
the position of the ball, r(s). The ball and beam is

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

unstable without control and as such is more difficult
than examples where the control system is inherently
stable.

2

21.0

)(

)(

ss

sr Equation 11

The system has been simplified so that it can be
represented as a linear equation. It was linearized around
the point where the angle of the beam is zero with
respect to the horizontal, and also a linear approximation
was made in the transmission from the gear to the beam.

The evaluation was performed on a PC running Linux
with an Athlon 700 MHz processor. The evaluation time
for each period was approximately four hours. The
results for the experiment are given in Figure 6. The
results showed that the maximum deadline at a
particular period increases until a period of 0.12 is
reached. Beyond this period, the maximum deadline at a
particular period falls until a period of 0.16 seconds after
which no valid solutions could be found.

Figure 6 - Deadline vs Period for the Ball and Beam

5.1 Use of the Results

The paper has presented a means by which timing
requirements can be determined. The results obtained
can be used in many ways. For instance on some
projects, a decision may be made not to operate the
system at the limits of its ability. For example, if at
period T the maximum deadline shown to meet the
criteria is D, then a deadline of 0.8D could be chosen in-
order to give a “safety” margin. Another way of
ensuring the system is not operating at its limits is to
input objectives into the framework objectives beyond
that actually needed. This would mean the valid
solutions that emerge would be on the safe side.

Based on the assumption that a shorter period means
we can have a longer deadline and vice versa, the results
can be used to help make the system schedulable or
scaleable. For instance dependent on the timing
requirements associated with the rest of the system, then
a larger period may be beneficial in helping reduce
processor utilisation. On the other hand for systems with
many tasks having short deadlines (making scheduling
difficult unless the tasks are phased), it may be better to
have a shorter period so that the deadline is longer.

6 Summary and Future Work

In this paper, a framework for deriving and evaluating
the timing requirements for control systems has been
presented. For a given control system, the framework
automatically evaluates the effect of jitter, latency and

period on control properties such as settling time and
maximum error in order to derive the set of requirements
that meet our criteria, including stability. In other words,
it addresses in an integrated way the issue of evaluating
the effectiveness of the control system, and the possible
realisation of the controller on a computer system. The
use of the approach has been illustrated for a ball and
beam system that is unstable without external control.

Future work could look at applying genetic algorithms
across a number of control loop(s) and other tasks at the
same time to find the optimum balance of timing
requirements for scheduling and scalability.

References

[1] G. Butazzo, Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and Applications,
Kluwer Academic Publisher, 1997

[2] S. Hutchesson and N. Hayes, Technology Transfer and

Certification Issues in Safety Critical Real-Time Systems,
Digest of the IEE Colloquium on Real-Time Systems,
98/306, 1998.

[3] http://www.mathworks.com
[4] K. Årzén, A. Cervin, J. Eker and L. Sha, An Introduction

to Control and Real-time Scheduling Co-design, In
Proceedings of the 39th Conference on Decision &
Control, 2000.

[5] R. Harbor and C Phillips, Feedback Control Systems, 4th
Edition, Prentice Hall, 2000.

[6] I. Bate, Scheduling and Timing Analysis for Safety-

Critical Systems, Department of Computer Science,
University of York, YCST-1998-04, 1998.

[7] M. Torngren, Fundamentals of Implementing Real-Time

Control Applications in Distributed Computer Systems,
Real-Time Systems, 14(3), pp. 219-250, 1997.

[8] http://www.engin.umich.edu/group/ctm/examples/ball/bb
PID.html

[9] I. Bate and T. Kelly, Architectural Considerations in the

Certification of Modular Systems, Proceedings of
Computer Safety, Reliability and Security - 21st
International Conference, SAFECOMP 2002, LNCS
2434, pp. 321-333, 2002.

[10] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja
and N.-E. Bånkestad, Experiences from Introducing

State-of-the-Art Real-Time Techniques in the Automotive

Industry, Proc. of the 8th IEEE International Conference
on Engineering of Computer-Based Systems, 2001.

[11] B. Lincoln and A. Cervin, Jitterbug: A Tool for Analysis

of Real-Time Control Performance, IEEE Conference on
Decision and Control, 2002.

[12] M. Whalen, M. Heimdhal, On the Requirements of High-

Integrity Code Generation, Proceedings of the 4th High
Assurance in Systems Engineering Workshop, 1999.

[13] T.P. Kelly, Arguing Safety - A Systematic Approach to

Safety Case Management, Department of Computer
Science, University of York, YCST-1999-05, 1998.

[14] O. Redell and M. Sanfridson, Exact Best-Case Response

Time Analysis of Fixed Priority Scheduled Tasks,
Proceedings of the 14th Euromicro Conference on Real-
Time Systems, 2002.

[15] I. Bate, J. McDermid and P. Nightingale, Establishing
Timing Requirements for Control Loops in Real-Time

Systems, To Appear in the Journal of Microprocessor and
Microsystems, 2003.

[16] K. Sandström, C. Norström and G. Fohler, Handling

Interrupts with Static Scheduling in an Automotive

Vehicle Control System, Proceedings of the 5th RTCSA
Conference, 1998.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

