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Abstract A stability criterion for nonlinear systems, recently derived by the 
first author, can be viewed as a dual to Lyapunov's second theorem. The 
criterion is stated in terms of a function which can be interpreted as the 
stationary density of a substance that is generated all over the state space 
and flows along the system trajectories towards the equilibrium. 

The new criterion has a remarkable convexity property, which in this paper 
is used for controller synthesis via convex optimization. Recent numerical 
methods for verification of positivity of multivariate polynomials are used. 
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1. INTRODUCTION 

Lyapunov functions have long been recognized 
as one of the most fundamental analytical tools 
for analysis and synthesis of nonlinear con- 
trol systems. See for example (Artstein, 1983; 
Brockett, 1983; Hahn, 1963; Isidori, 1995; Krstic 
et al., 1995; Ledyaev and Sontag, 1999). 

There has also been a strong development of 
computational tools based on Lyapunov func- 
tions. Many such methods are based on convex 
optimization and solution of matrix inequalities, 
exploiting the fact that the set of Lyapunov func- 
tions for a given system is convex. 

A serious obstacle in the problem of controller 
synthesis is however that the joint search for a 
controller U(.) and a Lyapunov function V ( x )  
satisfying the condition 

is not convex. In fact, for some systems the set 
of U and V satisfylng the inequality is not even 
connected. 

Given the difficulties with Lyapunov based con- 
troller synthesis, it is most striking to find 
that the new convergence criterion presented 
in (Rantzer, 2000b; Rantzer, 2000a) has much 
better convexity properties. Indeed, the set of 
(p, up)  satisfying 

is convex. In this paper, we will exploit this 
fact in the computation of stabilizing controllers 
for some example systems. For the case of 
polynomial (or rational) systems, the search for 
a candidate pair (p, up) verifying the inequality 
(1) can be done using the methods introduced in 
(Parrilo, 2000). 
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2. THE CONVERGENCE CRITERION 

The main result of (Rantzer, 2000a) can be 
stated as follows: d 

THEOREM 1 
Given the equation i ( t )  = f ( x ( t ) ) ,  where f E 

a non-negative p E C1(R" \ {O},R) such that 
p(x ) f  ( x ) / l x l  is integrable on {x E R" : 1x1 2 1) 
and 

and with the notation pt(z) = p(@t(z)) I$$(z)l 

-@t(z)J,=o = V P .  f + A V .  f )  = [v . ( fP ) ]  (2) 

- d - 2 {ph(mr(z)) ~ ~ ( Z I I }  1 dtPt(')It=r 7 ah 

= [v. ( f p ) ] ( @ r ( z ) )  l$(z)l 

C1(Rn,Rn) and f ( 0 )  = 0, suppose there exists h=O 

Let x( . )  be the characteristic function of 2. 
Then [D. (p f ) ] (x )  > 0 for almost all x (2) 

p(x)dx - J P(Z)dZ Then, for almost all initial states x(0) the 

to zero as t + 03. Moreover, if the equilibrium 

z 
trajectory x ( t )  exists for t E [O,CQ) and tends 

3c = 0 is stable, then the conclusion remains 
= s, P(4x(@,1(4 )dx  - s, P(Z)dZ 

= J, [ P t ( Z )  - & ) I  dz 

valid even if p takes negative values. U = s, d @ t ( z ) ) x ( z )  171 dz-  1 P ( Z W  
2 

The proof is based on the following lemma, 
which can be viewed as a version of Liouville's 
theorem (Arnold, 1989; Mane, 1987). 

= / J' P * W ) I  ( $ r ( z ) )  i g ( z ) I  drdz 
2 0  

LEMMA 1 
Let f E C1(D,Rn) where D C Rn is open and 
let p E C1(D,R) be integrable. For xo E Rn, let 
@t(xo) for t 1 0 be the solution x ( t )  of i = f ( x ) ,  
x(0) = xo. For a measurable subset Z of D, let 
@t(Z) = {h ( r )  I %'E Z}. Then 

U 

Proof: Note that for every C1 matrix function 
M ( t )  with M ( 0 )  = I 

Proof of Theorem 1, second statement. Here it 
is assumed that x = 0 is a stable equilibrium, 
while p may take negative values. The proof for 
the other case is omitted from this conference 
manuscript. 

Rather than exploiting that f E C1(Rn,Rn), we 
will actually prove the result under the weaker 
condition that f E C1(Rn\ {O},R") and f ( x ) / l x l  
is bounded near x = 0. Given any xo E R", 
let &(xo) for t 2 0 be the solution x ( t )  of 
i ( t )  = f ( x ( t ) ) ,  x ( 0 )  = xo. Assume first that p is 
integrable on {x E R" : 1x1 1 1) and I f  (x)l/lxl is 
bounded. Then is well defined for all t. Given 
r > 0, define 

2 = flEl {xo : I@t(x~)l > r for some t > I }  (3) 

This follows by direct expansion of the determi- 
nant, since the first order terms in t correspond 
to the diagonal elements of M ( t ) .  

Let M ( t )  = %(z)  and use 1 . 1 to  denote 
determinant. The differentiability of f gives 
that &(z) is of class c1 in z and c2 in t 
(Lefschetz, 1977)page 40. Hence 

Notice that 2 contains all trajectories with 
limsup,,, Ix(t) l  > r. The set 2, being the in- 
tersection of a countable number of open sets, is 
measurable. Moreover, &(Z)  = {$,(x) 1 x E Z} 
is equal t o  for every t. By stability of the equi- 
librium = 0, there is a positive lower bound & 
on the norm of the elements in 2, SO Lemma 1 
with D = {x : 1x1 > E }  gives 
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By the assumption ( 2 ) ,  this implies that 2 has 
measure zero. Consequently, lim  SUP^,^ I x ( t ) (  5 
r for almost all trajectories. As r was chosen 
arbitrarily, this proves that limt,m ( x ( t ) l  = 0 for 
almost all' trajectories. 

When I f  (x$l/ lxl  is unbounded, there may not 
exist any nonzero t such that & ( z )  is well 
defined forall z. We then introduce 

Then I fo(x) I / lx l  is bounded and po is integrable 
on { x  E Rn.: 1x1 2 l}, so the argument above can 
be applied t o  f o  together with po to  prove that 
limr+m ly(z)(  = 0 for almost all trajectories of 
the system.dy/dz = fo(y(z)). However, modulo 
a transformation of the time axis 

. 

the trajectories are identical: x ( t )  = y(z). This, 
together with the boundedness off (x ) / l x l  near 
x = 0, also shows that x ( t )  exists for t E [0,00) 
and tends. to zero as t -+ 00 provided that 
limr+.oo ly(z)l= 0. Hence the proof of the second 
statement in Theorem 1 is complete. 

3. A COMPUTATIONAL APPROACH 

In order to understand the possibilities and lim- 
itations of computational approaches to  nonlin- 
ear stability, an issue that has t o  be addressed 
is how to deal numerically with functional in- 
equalities such as the standard Lyapunov one, 
or the divergence inequality (1). 

Even in the.restricted case of polynomial func- 
tions, it is well-known that the problem of 
checking global nonnegativity of a polynomial 
of quartic (or higher) degree is computation- 
ally hard. For this reason, we need tractable 
sufficient conditions that guarantee nonnegativ- 
ity, and that are not significantly conservative. 
A particularly interesting sufficient condition is 
given by the existence of a sum of squares de- 
composition: can the polynomial P ( x )  be writ- 
ten as P(x) = C i p : ( x ) ,  for some polynomials 
pi(x)? Obviously, if this is the case, then P ( x )  
takes only nonnegative values. Notice that in 
the case of quadratic forms, for instance, the 
two conditions (positivity and sum of squares) 
are equivalent. 

In this respect, it is interesting to  notice 
that many methods used in control theory for 
constructing. Lvapunov functions (for example, 

backstepping) use either implicitly of explicitly 
a sum of squares approach. 

As shown in (Parrilo, ZOOO), the problem of 
checking if a given polynomial can be written as 
a sum of squares can be solved using semidefi- 
nite programming. We refer the reader to that 
work for a discussion of the specific algorithms. 
For our purposes, however, it will enough to 
know that while the standard LMI machin- 
ery can be interpreted as searching for a pos- 
itive definite element over an affine family of 
quadratic forms, the new tools provide a way of 
finding a sum of squares, over an afline family 
of polynomials. The former problem is clearly a 
special case of the latter (in fact, they are equiv- 
alent). 

To apply these tools to  the stabilization problem 
analyzed in the paper, consider the parameter- 
ized representation for p and up: 

where a, b, c are polynomials, b ( x )  is positive, 
and a is chosen to satisfy the integrability 
constraint. In this case, the condition (1) can 
be written as: 

Since b is positive, we only need to  satisfy the 
inequality : 

bV . ( f a  + g c )  - a V b .  (af + gc)  > 0.  (6) 

For fixed b, a,- the inequality is linear in a, c .  
If instead of checking positivity, we check that 
the left-hand side is a sum of squares, for the 
case of polynomial (or rational) vector fields, the 
problem can be solved using LMI methods. 

4. AN EXAMPLE 

A simple numerical example 'is the following: 

i = y - x3 + x2  

j = U  

The function b ( x )  is chosen based on the lin- 
earization of the system. We picked b ( x )  := 
3x2 + 2xy + 2y2,  which is a control Lyapunov 
function for the linearized system, and there- 
fore, b(x ) -p  (for some p) will be a good choice 
for a p-function near the origin. Since we will be 
using cubic polynomials in x ,  y for c [a is taken 
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Fig. 1 Phase plot of the closed&op system for the Exam- 
ple. 

to be a constant), we choose a = 4 to satisfy the 
integrability condition. 

In this case, after solving the LMIs correspond- 
ing to the condition that the left-hand side of 
(6) is a sum of squares, we obtain an explicit 
expression for the controller, as a third order 
polynomial in x and y. The optimization crite- 
rion chosen is the C1 norm of the coefficients. 
This way, we approximately try to minimize the 
number of nonzero terms. The expression for the 
final controller is: 

A phase plot of the closed-loop system in pre- 
sented in Figure 4. 

This example has been chosen for its relative 
simplicity: in this particular case, it is possible 
to solve it directly using other methodologies. 
For instance, it can be noted that in this par- 
ticular case b ( x )  is actually a control Lyapunov 
function for the system, and from that obtain a 
controller (e.g., using Sontag‘s formula). There 
is no requirement in the present framework that 
forces b ( x )  to be a clf. The main difference would 
be in terms of the computational difficulty of ap- 
proximating the controller when the choice of 
the denominator b ( x )  is not optimal. Further 
research is needed in order to  fully understand 
the practical implications. 

5. CONCLUDING REMARKS 

A new computational approach to  nonlinear 
control synthesis has been introduced. The basis 
is a recent convergence criterion introduced 
by the first author. The new criterion makes 
it possible to  state the synthesis problem in 
terms of convex optimization and has earlier 
been exploited for optimal control problems 
in (Young, 1969; Vinter, 1993). Polynomials 

are used for parameterization and positivity is 
verified using the ideas in (Parrilo, 2000). 

The numerical example should be viewed as 
a first attempt to demonstrate the power of 
the approach. However, many modifications are 
possible and much research in the area remains 
to be done. 
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