LUND UNIVERSITY

DYMOLA - A Structured Model Language for Large Continuous Systems

Elmqvist, Hilding

1979
Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):

Elmqvist, H. (1979). DYMOLA - A Structured Model Language for Large Continuous Systems. Paper presented

at Summer Computer Simulation Conference, Toronto, Canada.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/aefb82f0-4974-4b40-b108-beb4f18e0ad2

Summer Computer Simulation Conference,
Toronto, Canada, July 1979,

DYMOLA - A STRUCTURED MODEL LANGUAGE
FOR LARGE CONTINUOUS SYSTEMS

Hilding Elmqvist

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

ABSTRACT

A model language, called DYMOLA, for continuous dynamical systems is
presented. Large models are conveniently described hierarchically using a sub-
model concept.- The ordinary differential equations and algebraic cquations of
the model need not be converted to assignment statements, There is a concept,
cut, which corresponds to connection mechanisms of complex type, and there are
facilities to conveniently describe the connection structure of a model. A model
can be manipulated for different purposes such as simulation or static design cal-
culations. The model equations are sorted and they are converted to assignment
statements using formula manipulation.

INTRODUCTION

A common principle for solving large problems is decomposition of the
problem into a set of smaller subproblems which are either solved directly or
decomposed further. The original problem is then solved by combining the sub-
problem solutions.

This principle is used when modelling large systems. The system is considered
as a sct of subsystems. This decomposition is often inherent in the physical system.
An industrial plant, for example, is in fact designed according to the decomposition
principle. The language to describe the model should reflect this and cncourage
the usc of submodels. The languages of CSSL-type have a MACRO-concept which
corresponds to submodels.

A modecl must also contain a description of how submodels interact with each
other. The introduction of submodels are often done in a way that the interactions
between submodels are rather limited. The interaction is often restricted to a
set of conncction mechanisms. Such connection mechanisms often correspond to
some physical devices such as shalts, pipes,electrical wires etc.

In the languages of CSSL-type there are no constructs corresponding to such
connection mechanisms. The connections are done by means of variables. Each

1

macro has formal input and output variables. The connection of two submodels
is done by having the same variable appear as actual variable in both of the cor-
responding macro calls. This way of describing the connections between submodels
tends to hide the connection structure of the model. One reason is that the details
of the connection mechanisms, such as the variables involved, are considered at
the same time. A model language ought to have a means of defining abstract
connection mechanisms and a means of describing the connection structure in a
natural way.

The fundamental way of describing submodels is by equations. Physical laws
are formulated as for example mass and energy balances and phenomenological
equations. In CSSL such equations must be entered as assignment statements
which, after automatic sorting, give an algorithm for assignment of derivatives
and auxiliary variables,

This paper describes a model language called DYMOLA (Dynamic-Modelling
Language). It is designed to overcome some of the drawbacks with languages of
CSSL-type. ‘

Dymola has a hierarchical submodel concept. Abstract connection mechanisms
are introduced by means of the concept cut which defines the variables associated
with each connection. The connection structure of the model is described by a
connection statement. The model equations are entered in their original form.
They need not be converted to assigment statements.

The compiler translates the connection statements to equations. The equa-
tions obtaincd can then be used for different calculations such as simulation or
static design calculations. The user specifies which variables are considered known.
The equations arc automatically sorted and transformed to assignment statements
to get an algorithm that assigns the unknown variables. Systems of equations that
have to be solved simultaneously are then detected. The assignment statements
are obtained by automatic formula manipulation.

The complete definition of the Dymola language can be found in Elmqvist

(1.

SUBMODELS

A model can be defined hierarchically according to the following pattern.

model <model ident)
dcclaration of submodels
declaration of variables and connection mechanisms
equations and connection statements

end

If several subsystems have the same model, their descriptions do not have
to be duplicated. It is possible to define a model type with the same structure as
model . Such a model type can then be duplicated with a submode] -statement.

VARIABLES AND EQUATIONS

The following types of variables can be declared in a model: parameter,
constant, local, terminal, input and output (see the syntax in the appendix).

The terminal variables decribe the interdependence between a submodel and
its environment. The input and output variables are special cases of terminal
variables. They are introduced to make it possible to indicate causalities in the
model.

Some types of variables can be referenced from the outside of a submodel
using a dot-notation.

The equations of the submodels have the form
<expressiond> = <expressiond

where <expression> is defined as for Algol-60. An equation can thus contain the if-
then-else construction. It is also possible to call functions and procedures written
in some algorithmic language. Derivatives are denoted by x’, x" or der(x), der2(x)
etc.

CUTS AND CONNECTIONS

When a subsystem is considered, its boundaries are first determined. Such
boundarics are in fact inherent when defining the basic physical laws. A typical
cxample is the use of "control surfaces” in continuum mechanics. To describe
the interaction of the subsystem with its environment it is necessary to introduce
variables which describe what happens at the boundaries. Such variables are
called cut variables or terminal variables. An example from rigid body mechanics
is the necessity of introducing reaction forces as cut variables when a part of the
rigid body is considered.

When connecting submodels, it is natural to view a submodel in the same
way as the corresponding subsystem. One then wants to work with, for example,
the physical mechanisms that connect the subsystems. Certain variables are as-
sociated with each mechanism, Examples of such mechanisms and their associated
variables are:

shaft: angle, torque
pipe: flow-rate, pressure, temperature
electrical wire: voltage, current

For the reasons given above there should be a way to name groups of variables
in order to simplify the connections. Such groups of variables are composed when
defining the boundaries of subsystems by introducing cuts between them. Cuts are
declared in the following way: '

cut <cut ident> ([<var1abla>]. / [<varlable>]‘)

The notation []"means that what are inside the brackets may be repeated
none or more times. See the appendix for the complete syntax notation used.

Submodels can be connected by using the cuts and an at -operator in a
connection statement.

connect <model identd:<cut identd>
L
{1‘9, <model identd>:<cut 1dent>}

All connection statements are translated to equations. The two lists of vari-
ables in the cut declaration is then treated in different ways. The variables in
the first list are called across variables. When two cuts are connected by the
at-opcrator, equations are generated with equality between corresponding across
variables in the two cuts. The variables in the second list in the cut declaration
are called through variables. When a set of cuts are connected by at-operators,
cquations which sums corresponding through variables in all cuts to zero are
generated. '

The introduction of through variables is motivated by the fact that the
connection of a set of submodels often implies balance equations of the type:

Vit wta =

This is for example the case with electrical currents, flows, forces and torqucs.
These equations are often mass or energy balances for an artificial model sur-
rounding the connection joint. The introduction of through variables actually
eliminates the need for describing such an artificial submodel. However, if there
are more complex relations than equalities and sums equal to zero, such relations
can be introduced in a submodel surrounding the connection joint.

Example

Consider the connection of three capacitors as shown in fig 1.

Fig 1. Part of electrical network
A modcl typc capacitor can be described as follows.

model type capacitor
cut wirei(vi / I) wire2(v2 / =I)
local V
parameter C

V = Va - Vb
Ceder(v) = 1I
end

The duplication of the model type capacitor and the connection can then be
done as shown below,

model network
submodel (capacitor) CiL C2 C3

connect Cl:wireli at C2:wire2 at C3:wirel

end

The relerence direction for currents has, in this example, been chosen as
flowing into the components. If a through variable has the opposite direction it
is preceeded by a minus sign in the cut declaration. This has been done in the
cut wire2,

The lollowing equations are generated from the connect statement:
Ci.vi = C2.v2
€2.V2 = C3.v1

Ci.I + C3.I =C2.1
&

The points where several connection mechanisms are joined are usually called
nodcs. It is somctimes convenient to use nodes in the connection statements. They

can be declared as follows.
npode <node identd [(<variable cut))]

It is possible to build hierarchical cuts consisting of other cuts as shown below.

cut <cut tdent> [{<cut>}"]

All at-operators on cuts and nodes are translated to equations involving the
variables in the cuts, An at-operation on two hicrarchical cuts are defined as at-
operations on the corresponding subcuts. The following example illustrates the
rules that govern the generation of equations.

Example

Consider the model structurein fig 2.

Fig 2. A hierarchical model structure.

The corresponding cut declarations and connection statements are shown
below.

model type M
cut A (vi / 11) B [(v2 / -12) (v3 / -13)]

end

model MO
submodel (M) Mi M2

cut A (vi / 41) B [(v2 / -12) (v3a / -13)]
node N (v / {)

N at Mi:A at M2:A
Mi:B at M2:B

connect A
connect B

e

end

The following equations are generated.

v=vi

Mi.vi = v

M2.,vl = Mi.v}

Mi.11 + M2.41 = 41 + 1§
M1.v2 = v2

M2.v2 = Mi.v2

12 = M1,12 + M2.12
Mi.v3 = va

M2.v3 = M1.v3

13 = M1.13 + M2.13

MODEL STRUCTURE

The previous sections have shown how the relations between variables in
different submodecls can be given either by equations using the dot-notation or by
using cuts and the at-operator. The at-operator allows models to be connected
in arbitrary structures. However, the connection statements do not contain the
structure of the model themselves. This section gives an alternative way todescribe
the structure of a model.

The description of the connections can be made according to different prin-
ciples. One possibility is to concentrate the description around each connection
mechanism and indicate which submodels that are connected by it. This principle
corresponds to the use of the at-operator. '

Another possible method is to concentrate the description around submodels.
A set of nodes are introduced and for each submodel it is indicated to which
nodes it is connected. This is the standard method used in analysis programs
for clectrical networks. In Dymola this kind of description is done by defining a
hierarchical cut containing all the cuts of the submodel. Such a hierarchical cut
is then connected, using the at-operator, to a corresponding hierarchical node in
a surrounding model.

A third philosophy for description of the connections will now be given. It
is based on the fact that the connections introduce a natural grouping of the
submodels. It is for cxample often natural to say that a set of submodels are
connected in series or in paralell in some respect. It is then assumed that the
submodels can be considered as having two sides, between which there exists a
direction.

Directions are often inherent in systems. They can e.g. originate from
physical observations such as flows through the subsystems and the connection
mechanisms. A direction can also be defined in accordance with the perception
of causalities in a system. When a system has no inherent directions, they will
be imposed by the choice of reference directions for variables.

As directions are defined in a model it is natural to introduce the concept
path. A path cxists between two cuts and is declared in the following way.

path <path ident> < <cutd = <cutd >

The direction is defined from the first cut to the second. Several paths can be
declared in a submodel corresponding to different kinds of connection mechanisms.

A natural way of describing the connections of a set of submodels is to state
how the paths of the submodels are joined by connection mechanisms. This is done
with the conncction statement using a set of connection operators: at, to, from,
par, loop, branch, join and reversed. The complete syntax for the connection
statement can be found in the appendix. An example of a connection statement
is:

connect G to E to Ri to (C par (R2 to R3)) to @

The interpretation of a connection statement is defined using the elementary
at-opcrator. Each operator is translated to a set of at-operations. It also gives a
value which is either a cut or a path. The evaluation is done from left to right
if not otherwise stated by parentheses. The only exception is the unary operator
reversed which has higher priority than the others.

Table 1 gives the evaluation rules for the operators. The notation C1, C2, ...
has been used for cuts and nodes and the notation <c1i - €2>, ... has been used
for paths.

In order to shorten the connection statements, a reference to a cut or a path
can be made by using only the model identifier. If the connection statement con-
tains an identifier within parentheses after connect this identifier is used to specify
the cuts and paths. It is also possible to complete the reference by declaring one
path and one cut as main in each submodel.

Table 1. Evaluation rules for connection operators

Operation Result Effect
1. C1 at C2 c2 Ci at C2
2., reversed <Ci - C2> <C2 - Ci1> none

3. <C1 - C2> to <C3 -~ C&
Ci to <C2 - €3>
<Ci - C2> to C3
Ci to C2

4. <C1 = C2> from <C3 - C4>
Cli1 from <C2 - C3>»
<Ci ~ C2>» from C3

Ci from C2
B. <CiL - C2> par <C3 - C4>

0. <Ci - C2> loop <C3 - C4>
T. <C1 - C2> branch <[C3 C4 ...] - Ci>
8. <C1 - [C2 €3 ...]> Jjoin <C4 - CB>
8. (c1)

(<CL - Cc2>»)

(c1 ¢c2 ...

(KC1 = C2> <C3 - C4> ...)

Example

<Ci - C4>
c3

c1

none

<c3 - 2>
c2

c2

none

<c1 - c2>
<Ci - C2>
<C1i - c5>
<ci - co>
c1

<Ci - c2>
fc1 c2 ...]

c2
Ci
c2
C1

o v ¥
& & &

C4
c3
C3
c2

o o & &

Ci
c2

e [

Cci
c2

e+ [

c2
c2

ﬁ{g

c2
Cc3

e &

none
none
none

Cc3
c2
Cc3
c2

Ci
Ci
C1
C1

c3
C4

C4
c3

Cc3

C4

C4
C4

<[ci C3 oo-] - [C: C4 0-']>

Consider the electrical network in fig 3.

R‘ RZ
o—cs }hq:m
c2 v
1
EQT e== &
<1 c2
G [co

Fig 3. Electrical network

C1

ce

none

The system can for example be described with the following connection state-
ment.

connect G to E to R1 to (C par (R2 to R3)) to G

In order to explain how this statement is evaluated, assume that the submodel
G has the cut declaration
main cut €o0(...)
and the other submodels have the path declaration
main path P<CL - C2>

The connection statement could then be represented as

G:CO to <E:C1 -~ E:C2> to <R1:C1 - R1:C2> to (<C:C1 ~ C:C2> par
(<R2:C1i - R2:C2> to <R3:Ci - R3I:C2>)) to G:CO

The sieps performed when evaluating this expression are given below.
1. Effect G:CO at E:Ci
Result E:c2 to <ri:ci - R1:C2> to (<CiCi - C:C2> par
(<R2:C1 - R2:C2> to <R3:Ci - R3:C2»)) to G:CO
2. Eflcct E:C2 at Ri:Ci
Result R1:c2 to (<Cict - €:€2> par (<R2:C1 - R2:C2> to

<R3:Ci - R3:C2>)) to G:CO

3. Effect R2:C2 at R3:C1
Result Ri:c2 to (<CiC1 - C:C2> par <R2:C1 - R3:C2>) to G:CO

4. Effect C:C1 at R2:Ci, C:C2 at R3:C2
Result R1:C2 to <C:Ci - C:C2> to G:CO

5. Effect R1:C2 at C:Ci
Result C:C2 to G:CO

6. Effect C:C2 at G:CO
Result none

MANIPULATION OF EQUATIONS

The manipulation of the equations is described in Elmqvist [1], [2]. Only a
bricf survey is given here.

The connection statements arc translated to equations by the compiler. This
means that the model then consists of only equations. They can formally be

10

written as
f(t: “."»xrzrp) =0

where ¢ is time, z is a vector of state variables, z is a vector of auxiliary variables
and p is a vector of parameters.

In order to use an explicit integration algorithm, # and z should be solved
for. The model equations often have special characteristics. All variables are
not present in each equation. The Jacobian of f with respect to # and z thus
contains many zcro elements, i.e. it is sparse. This means that the solution could
be obtained more efficiently by partitioning the system of equations into a set of
smaller systems of equations. In fact, many of the systems of equations will be
scalar,

The algorithm for partitioning uses only structural information, i.e. whether
a variable is present in an equation or not. The first problem is to determine which
variable to solve for in each equation. It is called finding an assignment. The next
step is to find a partitioning of the equations into minimal systems of equations
that must be solved simultancously and to sort them for correct computational
order. This is called finding the strong components of the associated bipartite
graph. ‘

The total effect of these two algorithms is finding two permutation matrices
opcrating on the columns and the rows of the Jacobian and making it block
triangular.

When this procedure has becn performed it is thus known in which order the
equations should be solved and which variables to solve for. The blocks correspond
to systems of equations that must be solved simultaneously.

The equations are then converted to assignment statements for the unknown
variable. This is done only for equations which are linear in this variable. An
important observation for model equations is that there is often such a linear
dependence in the simulation case. ‘

One important advantage with automatic manipulation of the equations is
that the same basic equations could be used for different calculations such as
simulation and static design calculations. The algorithms only have to know which
variables are known and which are unknown.

The structural analysis is very useful for the modeller. It gives information

about causalities and algebraic loops in the model. This can then be compared
with the modeller's perception of these properties in the real system,

IMPLEMENTATION

A compiler for the language and the algorithms for the manipulation of the

11

cquations have been implemented using the programming language Simula. The
complete program listing can be found in Elmqvist [1]). The input to the program is
a model in Dymola and the output is the sorted and grouped equations in symbolic
format. The equations which arc not included in a system of equations and which
arc linear in the unknown variable are output as assignment statements. If it
is not possible to find an assignment, the program gives guidance about what is
incorrect. A list of variables for which no equations could be associated is given as
well as a list of equations for which no variables could be associated (redundant
equations).

EXAMPLE

The Dymola language is suitable for description of large dynamical models. It
has been used for several nontrivial modcls such as electrical network, mechanical
system, electrical power distribution and thermal power plant. These models are
listed in [1] together with the output from the program.

Some parts of a thermal power plant are described here. The original model
was developed by Lindahl [3]. The structure of the system is shown in fig 4.
Scveral of the submodels are further decomposed. The drum system consists
of drum, risers and down-comers. The intermediate and low pressure turbines
(IPturb, LPturb) have 4 and 3 turbine sections respectivly. The two prcheaters for
feed water (prehl, preh2) are built up by preheater sections. Many of the subsys-
tems have identical models with different parameters, There are three submodels
of model type superhcater (superhl, superh2, superh3) and two attemperators
(attempl, attemp2). There are totally 8 turbine sections and 7 preheater sections.

There are six dillerent kinds of flows in the system (heat transfer, steam,
extract steam, fced water, condensate and mechanical power). Each of these
corresponds to path declarations and a connection statement. The flows through
pipcs are characterized by three variables (mass flow, enthalphy and pressure).

The model uscs a sct of functions (Thp, 18EN, ...) to obtain thermodynamical
relations by interpolation in the Moliere diagram.

Bcelow is given the model for a turbine section. Comments are given within

{}

model type turbsection
{ Variable prefixes:
¥ — maps flow, H - entalphy, P - pressure

N - mechanical power, T - temperature }

cut ineteam (Wi Hi P1) outsteam (W2 H2 P2)
path steam < insteam - outeteam >

12

ro e

heater

high 4| inter low

contr =

N
-

preas press press
turbdb turb turb

Y,

valve

N
super

—p— heater

w
Prac)
=

combug 7\

tion super

—»— heater
cham 2

conden
sor

ber A LA

L,
I
fdd

attemp . pre
arator heater
1

[
v

split
steam

fr
\\

7l
L%
'r

~
Cd
AR

\\3

deaar
ator

)

b\
17

{c
A\

feod pro Teed
—— {{— water heater -{—{ water
valve 2 pump

heat

sateam
extract steam
fTeed water
condansate
power

L

Fig 4. A thermal power plant
13

cut extract (¥p H2 Pp)

cut inpower (N1) outpower (N2)
path power < inpower - outpower >
input 8 {to valve for extractateam}
local H T2 ap

parameter f fp Eh

{preaaure equatlona}

PL = TwWi

P2+%2 — Pp#+2 = fps (¥p/ap)as2
ap = 8

{masa balance}
Wi = W2 + wp

{energy balance}
N2 = Ni + Wis (Hi-H2)

H2 = H + (1-Eh)« (Hi-H)
H = IBEN(H1,P1,P2)
T2 = THP(H2,P2)

end

The intcrmediate pressure turbine is built up by four turbine sections as
shown in fig 5.

IPturd
SN NS SN N e
/‘[I\I "‘7 I\I ,]"
3 IPL s IP2 r's IP3 r IP4 =
'_ N ‘, - I 1's
rd ‘] [e
extract 1 extract 2

Fig 5. Intermediate pressure turbine.
The description of the IPturb is shown below.
model type IPturb
submodel (turbsection) IP1 IP2 IP3 IP4
path steam <IPi:insteam - IP4:outsteamd

cut extracti [IPi:extract IP2:extract IP3:extract]
cut extract2 [IP4:extract]

14

path power <IPi:inpower - IP4:outpower)

connect. (steam) IP: to IP2 to IP3 to IP4
connect (power) IPi to IP2 to IP3 %o IP4

end

The overall description of the power station in accordance with fig 4 is shown
" below.

model powerstation

submodael (superheater) superhi superh2 guperh3
submodel (attemperator) attempi attemp2
Bubmodel (turbsecton) HPturb

submodel drumeyst reheater controlvalve
submodel IPturb LPturb

sBubmodel condensor spliteteam dearator
submodel prehi preh2

submodel feedwaterpump feedwatervalve
Bubmodel combchamber economizer

connect (heat) combchamber to (economizer ->
drumeyset::risers superhi superh2 superhd reheater)

connect (pteam) drumsyet::drum to superhi %o attempi to ->
superh2 to attemp2 to superh3 to controlvalve to ->
HPturb to reheater to IPturb to LPturb to condensor

connect (extract) (HPturb IPturb:extracti) to preh2 ->
IP!extract2 to splitsteam to (dearator prehiiextract2) ->
LP to prehi:extracti

connect (foedwater) condensor to prehi to dearator to -
Teedwaterpump to preh2 to feedwatervalve to ->
(economizer to drumsyet::drum attempi attemp2)

connect (condenmate) preh2 to dearator -=>
prehi to condensor

connect (power) HPturb to IPturb to LPturb

end

The total number of equations for this model is about 400, The equations
was sorted for the simulation case. Eleven systems of equations was discovered.
The largest contained 17 nontrivial equations.

15

CONCLUSIONS

The Dymola language contains several new constructs that correspond to the
way large dynamical models are developed.

A model can be decomposed into a set of submodels. The interaction of a
submodel with its environment is often naturally considered as a set of interac-
tions from different other submodels through distinct connection mechanisms.
This corresponds to cut declarations. Interactions might be further decomposed
by introducing hierarchical cuts. The basic level of defining an interaction is by
associating a set of terminal variables with it. :

The connection of submodels is often viewed as a block diagram or a graph.
The connection statement makes it possible to conveniently describe such diagrams
as text. Since directions are often associated with this kind of diagrams, it is
natural to introduce the concept of a path.

Because the basic means of describing models is equations, the models can
be written in a form that is independent of what calculations they are used for,

ACKNOWLEDGEMENTS

The author wants to thank Professor Karl Johan Astrom for his support and
guidance during this work.

This research was supported by the Swedish Institute of Applied Mathematics
(ITM).

REFERENCES

(1] Elmgqvist, H., A Structured Model Language for Large Continuous Systems,
Ph.D. Thesis, TFRT-1015, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden (May 1978).

[2] Elmgqvist, H., Manipulation of Continuous Models Based on Equations to
Assignment Statements, Proc. IMACS Congress 1979 / Simulation of Systems,
Sorrento, Italy (September 1979).

[3] Lindahl, S., A Nonlinear Drum Boiler - Turbine Model, Report TFRT-3132,

Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden (1976).

16

PPENDIX

Syntax Notation

The following syntax notation is used: | means or, { } groups terms together,
[] means that a group of terms is optional, { }" means repetition one or more
times, []* means repetition none or more times.

To make the syntax smaller, it has purposly been left incomplete in some
respects. It does not contain the definitions of basic items such as <identifier>
and <number>. Trivial productions such as <model 1dent>::=<identifier> are
omitted. New line is treatcd as ;. Continuation of a statement on the next line is
indicated by -> at the end of the line.

Syntax For The Dymola Language

<model spec)::=[<modol type>;].<model>

<model>::=model <model identd>; <model body> end
<model type>::=model type <model type ident>; <model body> end
<model body>::=<aubmodel partd> <declaration part>
<statement part>

<gubmodel part)::=[<model>; | <model typed>; |
<submodel 1ncorp>;]"I
<gubmodel incorp>::=pgubmodel [(<model type identd>)]
{<model 1dent> [(<parameter 11It>)]}.
<parameter 119t>::={<number>}.l
{<parameter>=<number>}.

<declaration part>::=[<varlable declarationd; |
<cut declaration>; | <node declaration); |
L]
<path declaration);}

<variable declarationd::= .
parameter {<variable> [=<numbor>]} i

conatant {<var1ab19>=<numbor>}.l
local {<var1able>}.|

terminal {<var1able>}‘|

input {<variable>}‘|

output {<var1able>}‘l

default {<variable>=<number>}’|
external {<var1abla>}.l

internal {<var1able>}‘

17

<variabled>::=<identifier)>

<cut declaration>::=[main] cut {<cut tdent> [<ccut>]}"
<cut>::=<cut claused | <cut spec)
<cut claused::=(<variable cutd>) |
[<hierarchical cutd]
<variable cut)::=[<cut elemant)].
[/ [<cut element>]1
<cut elementd>::=<variable)|—variabled|.
<hierarchical cut)::={<cut>l.}.
<cut apecd::=<model apec)[:(cut 1dent>]|
<cut ident)
<model spec)::=<model 1dent>[::<model 1dent>]'

<node declaration)::=pode {<nodn ident)

[<node clause>]}‘
<node claused>::=(<variable cutd) |

[<hierarchical noded>]
<hlerarchical noda>::={<node clause) |

™
<node ident) | -}

<path declaration)::= ma1n| path {<path identd>

{<path claused | <path spec)} }.
<path clause>::=<C {<cut>|.} - {<cut>}.} >
<path spec)::=<model spec)[..<path 1dent>]|
" <path identd>

<ntatement‘part>::=[<aquat10n>; | <procedurs calld; |

]
<connection statement);]

<equation>::=<expressiond = <expressiond
<vartable spec):::[(model spec).](varlnble)

L]
{procedure call)::={<var1ablo spec)} =

]
<procedure ident> ({<axpraaslon>})
<connection statement)::=connect [(<1dent>)]

L]
{<connoction expression)}
<connection expreseion>:i=<connection secondary>

{ {a&l=|§gl-lfromlgg£|//l looglpragchlgoin}

|]
<connection secondaryd> }

<connection secondary>::=
[reversed]<connection primary>

<connection primary>::=<{connection operand) |
({<connection axpremslon)l.}'I)

<connection operand>::=<cut specd> | <path epecd> |
<node ident)>

18

