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Abstract—Spatially-coupled regular LDPC code ensembles
have outstanding performance with belief propagation decoding
and can perform arbitrarily close to the Shannon limit without
requiring irregular graph structures. In this paper, we are con-
cerned with the performance and complexity of spatially-coupled
ensembles with a rate-compatibility constraint. Spatially-coupled
regular ensembles that support rate-compatibility through ex-
tension have been proposed before and show very good perfor-
mance if the node degrees and the coupling width are chosen
appropriately. But due to the strict constraint of maintaining a
regular degree, there exist certain unfavorable rates that exhibit
bad performance and high decoding complexity. We introduce an
altered LDPC ensemble construction that changes the evolution
of degrees over subsequent incremental redundancy steps in such
a way, that the degrees can be kept low to achieve outstanding
performance close to Shannon limit for all rates. These ensembles
always outperform their regular counterparts at small coupling
width.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are well-known
for their good performance with the use of a belief-propagation
(BP) decoder. Although the BP decoder is sub-optimal, its
advantage over the optimal MAP decoder lies in the great
reduction of decoding complexity. Asymptotically, in terms
of iterative decoding thresholds, the sub-optimaliy of the
BP decoder was overcome by LDPC convolutional codes
[1] and the remarkable phenomenon of threshold saturation.
Due to the introduced coupling of regular LDPC ensembles,
the BP threshold of the coupled ensemble converges to the
MAP threshold of the underlying uncoupled ensemble. This
threshold improvement was observed first in [2], [3]. Proofs for
this behavior on the binary erasure channel (BEC) [4] and the
additive white Gaussian noise (AWGN) channel [5] emphasize
the universality of this underlying performance improvement
through coupling.

Rate-compatible spatially-coupled regular ensembles were
first introduced in [6]. The proposed ensemble construction can
in principle achieve every rational rate. Because of threshold
saturation, the iterative decoding performance can be pushed
arbitrarily close to the Shannon limit when the node degrees
and the coupling width are chosen sufficiently large.

On the other hand, due to the regularity constraints on
the overall node degrees, certain rates are only achievable
with high degrees. While this is unproblematic in the in-
finite coupling width regime, at finite and small coupling
width the performance is significantly reduced. Additionally,

the complexity of ensembles with high variable node degree
is higher. The performance loss can only be overcome by
increasing the coupling width. This circumstance was already
pointed out in [7] for regular spatially-coupled LDPC codes
and an ensemble with slight irregularity was proposed that
yielded performance closer to the Shannon limit together with
low complexity. Although not proven for irregular spatially-
coupled LDPC codes, the threshold saturation phenomenon
is also observed in this case. It is worth to point out that
the irregularity in this construction was not introduced for
improving the iterative decoding thresholds but for increasing
the flexibility in achieving different rates while maintaining
low variable node degrees.

In this paper, we relax the degree regularity constraints
of a rate-compatible spatially-coupled LDPC code ensemble
as introduced in [6] to counteract the severe variable node
degree increase of the regular construction. We use multi-
edge type (MET) LDPC code ensembles to model regular rate-
compatible LDPC code ensembles as well as a new proposed
rate-compatible LDPC code ensemble with an altered degree
evolution. In our ensemble construction the check node degree
is not kept constant but decreased with every incremental
redundancy (IR) step to allow for a sub-linear increase of
variable node degrees. With this change, the decoding com-
plexity can be reduced and a smaller coupling width for similar
performance can also be achieved.

While the regular construction in [6] is based on graph ex-
tension, some rate-compatible regular spatially-coupled LDPC
codes by means of puncturing were investigated in [8]. An
asymptotic analysis of the effect of random puncturing is given
in [9]. Rateless spatially-coupled ensembles, on the other hand,
were introduced and analyzed in [10].

The paper is structured as follows. Section II introduces the
MET model for rate-compatible spatially-coupled LDPC code
ensembles. Section III focuses on the problem of increasing
variable node degrees for regular rate-compatible code ensem-
bles and discusses the complexity. The focus of Section IV
is on the construction of ensembles with relaxed regularity
constraints. The complexity of these ensembles is analyzed.
In Section V, the iterative decoding thresholds for the newly
constructed ensembles on the BEC as well as the AWGN
channel are discussed and compared against their regular
counterparts. Finally, Section VI concludes the paper.



II. RATE-COMPATIBLE MULTI-EDGE TYPE LDPC CODE
ENSEMBLES

In this paper we consider MET ensembles as introduced in
[11] which consist of me different edge types. A degree type
of a check node is a vector of integers of length me. The i-th
entry of this vector represents the number of sockets that are
connected to edge type i. The degree type of a variable node
consists of two parts. A length me vector fulfills the same
purpose as on the check degree side. Additionally, variable
nodes are related to the respective channel on which the
codeword is transmitted. As a slight simplification we assume
the transmission of all variable nodes over the same channel.
Therefore, we define only one received edge-type contrary to
[11]. The representation of the graph structure is done via a
multinomial representation. We assume d = (d1, . . . , dme

) to
be a MET degree and let x = (x1, . . . , xme

). We use xd to
denote

∏me

i=1 x
di
i . The received edge-type is represented by

r. With these definitions a MET ensemble is defined by the
multinomial ν(r, x) for the variable node side and µ(x) for
the check node side as

ν(r, x) =
∑

νdrx
d (1)

µ(x) =
∑

µdx
d (2)

with νd and µd being nonnegative reals. Assuming a block
length n, the quantity nνd represents the number of variable
nodes of degree type d. Similarly, nµd is the number of
check nodes of degree type d. Every variable (check) node
is therefore member of a specific variable (check) node degree
type that we with slight abuse of notation also refer to as
dV (dC). We additionally define νxi(r, x) = dν(r,x)

dxi
and

µxi(x) = dµ(x)
dxi

and with this the multinomial representation
from an edge perspective as

λ(r, x) =

(
νx1

(r, x)

νx1(1, 1)
,
νx2

(r, x)

νx2(1, 1)
, . . . ,

νxme
(r, x)

νxme
(1, 1)

)
(3)

ρ(x) =

(
µx1(x)

µx1
(1)

,
µx2(x)

µx2
(1)

, . . . ,
µxme

(x)

µxme
(1)

)
. (4)

The design rate of a MET ensemble is defined as

R = ν(1, 1)− µ(1). (5)

In our considerations of rate-compatible LDPC code en-
sembles we focus on rate-compatibility produced by extension
as it was considered in [6]. A precode is subsequently extended
by adding variable and check nodes to produce new IR bits
and therefore lower the rate. The MET LDPC ensemble that
models this structure is constructed as follows. The IR chain
is started by a base code of given degree profile that is the
code with the highest rate in the IR family. We therefore set
a variable node and a check node type that are connected by
an edge type x1,p which can be referred to as the parity edge-
type. At each IR step a, we now add an additional variable and
check node type that will be connected with an additional edge
type xa,p. To add the connectivity between different IR steps,
at every IR step a = 2, . . . , α we add an additional edge type
xa,b that connects the check node type at IR step a with all
variable node types at previous IR steps and can be referred to
as the back-connection edge type. Important to note is that to
ensure rate-compatibility, back-connections from variable node
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. . .
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Fig. 1: Graphical representation of a rate-compatible MET
LDPC code ensemble with edge type variables (denoted by
circles) and check and variable node type degrees attached to
the edge types.

types at IR step a to previous check node types are not allowed.
The graphical representation of this subsequently constructed
IR chain is shown in Fig. 1. The corresponding multinomials
for a rate-compatible MET LDPC code ensemble are given in
the following definition.
Definition II.1 ((ν(a)(r, x), µ(a)(x)) Rate-compatible MET en-
semble). A rate-compatible MET ensemble with rate Ra at IR
step a is defined by the variable node degree multinomial

ν(a)(r, x) =ν1rx
J1,p
1,p

a∏
i=2

x
J1,i
i,b +

+ r

a−1∑
j=2

νjx
Jj,p
j,p

a∏
k=j+1

x
Jj,b
k,b + νarx

Ja,p
a,p

(6)

and the check degree multinomial

µ(a)(x) = µ1x
K1,p
1,p +

a∑
i=2

µix
Ki,b
i,b x

Ki,p
i,p (7)

with x = {x1,p, . . . , xa,p, x1,b, . . . , xa,b} and rate Ra =
ν(a)(1, 1)− µ(a)(1).

The average variable and check node degrees are denoted
by J̄ and K̄.

So far, we considered an uncoupled rate-compatible MET
LDPC code ensemble. A spatially-coupled (ν(x), µ(x), L, w)
rate-compatible MET LDPC code ensemble can be described
as follows. We assume a sequence of L time instants indexed
by a time index t ∈ [0, L−1] with L as the coupling length. At
each time instant t, a (ν(a)(r, x), µ(a)(x)) LDPC code ensem-
ble with nt variable nodes (code bits) and (1 − Ra)nt = mt

check nodes is located. For the remainder of the paper, we
assume nt to be constant for t ∈ [0, L−1] as well as mt being
constant for the complete sequence. Currently, the sequence
of codes (or codewords) is a sequence of (ν(a)(r, x), µ(a)(x))
block codes that do not interact with each other. As the idea
of spatial coupling is to interconnect block codes over differ-
ent time instants, it remains to define how interconnections
between code ensembles at different time instants are chosen,
i.e., how edges are distributed over time instants. Edges that
connect variable node type dV with check node type dC in the



uncoupled setting will independently and uniformly distribute
the connections of variable node type dV at time instant t to
the check node types dC in the range {t, . . . , t+w−1}, were
w denotes the coupling width and is a measure of the strength
of coupling.

The iterative decoding thresholds of
(ν(a)(r, x), µ(a)(x), L, w) LDPC code ensembles can be
numerically calculated using density evolution (DE) as given
in the following definition.
Definition II.2 (DE of a (ν(r, x), µ(x), L, w) spatially-coupled
LDPC code ensemble). Given a (ν(r, x), µ(x), L, w) spatially-
coupled LDPC code ensemble with coupling width w, coupling
length L and associated multinomials λ(r, x) and ρ(x) from
an edge perspective, the vector x

(l)
t = (x

(l)
t,1, x

(l)
t,2, . . . , x

(l)
t,me

)
represents the densities emitted from variable nodes at time
instant t where x

(l)
t,i denotes the density emitted from variable

nodes of edge type i at time instant t in iteration l. The
recursion for x(l)

t,i is then given as

x
(l+1)
t,i = λ

c,
1

w

w−1∑
j=0

ρ

(
1

w

w−1∑
k=0

x
(l)
t−k+j,i

) . (8)

where c is the density emitted by the respective channel and
computations with densities on variable and check node side
are carried out according to [11].

III. REGULAR SPATIALLY-COUPLED RATE-COMPATIBLE
LDPC CODE ENSEMBLES

To construct a rate-compatible (ν(a)(r, x), µ(a)(x), L, w)
LDPC code ensemble with overall regular degree distribution,
the variable and check node degrees have to be chosen
appropriately. Due to the rate-compatible structure a single
check node type of the precode exists that does not change its
degree throughout subsequent IR steps as no back-connections
are allowed to previous check node types. The degree of this
check node type dictates the check degree of the complete
regular (ν(a)(r, x), µ(a)(x), L, w) LDPC code ensemble to be
K. To lower the rate for subsequent IR steps, the variable node
degree J has to be increased linearly with every IR step. The
choice of K is crucial for the granularity of the rates that can be
achieved with the ensemble as well as the variable node degree,
needed to produce these rates. We exemplarily construct two
regular rate-compatible LDPC code ensemble families with
different check degree to emphasize this behavior. We choose
K = 10 and K = 25 as the constant check node degree for
the ensembles. The former one with K = 10 resembles the
ensemble from [6]. The according degrees for the ensemble
with K = 10 are shown in Table I. Note that in the regular
case, J (K) is equal to the average variable (check) degree J̄
(K̄). As the decoding of LDPC codes is predominantly done
with BP decoders, we seek for a simple decoding complexity
metric. The decoding complexity is determined by the number
of edges in the graph which stems from the fact that BP update
operations have to be done per edge. The complexity in terms
of average operations per bit is then given as follows.
Definition III.1 (Decoding complexity of an LDPC code en-
semble). The complexity C of an LDPC code ensemble with

a Ja,p Jk,a J̄ Ka,b Ka,p K̄ Ra

1 3 - 3 - 10 10 0.7
2 4 1 4 6 4 10 0.6
3 5 1,1 5 5 5 10 0.5
4 6 1,1,1 6 4 6 10 0.4
5 7 1,1,1,1 7 3 7 10 0.3
6 8 1,1,1,1,1 8 2 8 10 0.2
7 9 1,1,1,1,1,1 9 1 9 10 0.1

TABLE I: Degree evolution of a regular
(ν(a)(r, x), µ(a)(x), L, w) LDPC code with K = 10
and L → ∞. Note that for Jk,a always all degrees for the
back-connections k = 1, . . . , a are shown. The corresponding
graph is shown in Fig. 1.

a Ja,p Jk,a J̄ Ka,b Ka,p K̄ Ra

1 3 - 3 - 25 25 0.88
2 3 1 3.955 21 3 24.719 0.84
3 3 1, 1 4.862 20 3 20.258 0.76
4 3 1, 1, 1 5.718 19 3 20.421 0.72
...

...
...

...
...

...
...

...
21 3 1, . . . , 1 7.382 2 3 8.024 0.08
22 3 1, . . . , 1 5.691 1 3 5.928 0.04

TABLE II: Degree evolution of a relaxed
(ν(a)(r, x), µ(a)(x), L, w) LDPC code with L → ∞.
Note that for Jk,a always all degrees for the back-connections
k = 1, . . . , a are shown.

average variable node degree J̄ and rate R is defined as

C =
J̄

R
(9)

The complexity of the regular (ν(a)(r, x), µ(a)(x), L, w)
LDPC code ensembles with K = 10 and K = 25 is shown
in Fig. 2. The complexity of the ensemble with K = 10
is smaller than for K = 25. This can be explained by the
fact that, to achieve a similar rate, the variable node degree
J has to be higher when K is higher. This produces higher
complexity. For lower K, the complexity stays small but the
rates that can be achieved are restricted. An increased check
node degree increases the complexity but the granularity of
rates is also increased. The iterative decoding thresholds for
these ensembles are shown in Fig. 3.
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Fig. 2: Decoding complexity of regular
(ν(a)(r, x), µ(a)(x), L, w) LDPC code ensembles with
K = 10 and K = 25.
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Fig. 3: Iterative decoding thresholds of regular
(ν(a)(r, x), µ(a)(x), L, w) LDPC code ensembles with
L → ∞ and w = {1, 3, 10} on the BEC. Note that w = 1
refers to the uncoupled case.

In the uncoupled case (w = 1), the performance is far
away from the Shannon limit although the ensemble with
K = 10 is closer to the limit. When coupling is introduced
(w = 3), the performance gets pushed closer to the Shannon
limit for both ensembles due to the threshold improvement of
spatial coupling. The ensemble with K = 10 is already very
close to the Shannon limit for all rates while the ensemble
with K = 25 still shows a significant gap that can only
be compensated when the coupling width is increased even
more (w = 10). Ensembles with higher K generally perform
worse because to achieve lower rates, the variable node degree
has to be increased accordingly. The performance harm of
high J can only be overcome by increased coupling width.
We therefore seek for a construction that allows to keep the
variable node degree small over all IR steps in the family
of (ν(a)(r, x), µ(a)(x), L, w) LDPC code ensembles. With the
generic ensemble definition from Definition II.1 the remaining
question is how to find suitable values for Ji,p, Ji,k, Ki,p and
Ki,r to get the desired rates. Such a construction in form of
altered degree evolutions will be introduced in the next section.

IV. ENSEMBLES WITH RELAXED DEGREE EVOLUTION

The performance gap of regular (ν(a)(r, x), µ(a)(x), L, w)
LDPC code ensembles stems from the fact that the variable
node degree has to be increased to lower the rate with subse-
quent IR steps. In the following we relax the condition of over-
all regularity to adjust the degree evolutions on check and vari-
able node side. To lower the rate of (ν(a)(r, x), µ(a)(x), L, w)
LDPC code ensembles, the ratio of average degrees J̄/K̄ has
to be increased. In the regular setting this was accomplished
by the increase of J = J̄ while K = K̄ remains constant.
For our construction we change the degree evolution to lower
the rate by decreasing K̄ while trying to hold J̄ small. In
the regular setting, the check degrees of extension nodes had
to be chosen to add up to the check degree of the precode
(Ka,p + Ka,b = K1,p, ∀a). This constraint formerly also
dictated the choice of the newly appended variable node
degrees Ja,p to be Ja,p = Ka,p for all a > 1. We change
the assignment of degrees in the following way. The precode
remains an arbitrarily chosen regular LDPC code of variable

node degree J1,p and check node degree K1,p. The variable
node degree Ja,p of extension nodes is set arbitrarily small
to achieve a minimized growth of average variable node
degree. To hold the condition to only produce IR, we restrict
Ja,p = Ka,p for all a > 1 similar to the regular case. Then we
can choose K1,b in such a way to reduce the rate with every
IR step. Practically, this means to subsequently lower K1,b at
each IR step a. An exemplary assignment of degrees to form
a relaxed (ν(a)(r, x), µ(a)(x), L, w) LDPC code ensemble is
shown in Table II and we refer to this ensemble as Relaxed
Ensemble A. Additionally to this ensemble, we construct
a second relaxed ensemble which inherits the same degree
assignment except for an even further reduced variable node
degree Ja,p = 1 at the extension variable nodes which we refer
to as Relaxed Ensemble B. The complexities of the relaxed
ensembles are additionally shown in Fig. 2. Clearly for the
precode and high rates, the complexity is almost the same for
regular as well as relaxed ensemble A and B but already at a
rate around 0.7, the relaxed ensembles show lower complexity
compared to the regular ones. For lower rates, the significant
complexity drop is more severe. The regular ensemble with
K̄ = 10 is also shown and exhibits the smallest complexity
for rates down to R = 0.2. The relaxed ensemble B shows
always slightly lower complexity compared to ensemble A as
a smaller extension variable node degree of Ja,p = 1 keeps J̄
even smaller. The reduction of average variable node degree
overall IR steps showed lower complexity but how this change
affects the iterative decoding performance will be discussed in
the next section.

V. NUMERICAL RESULTS

The iterative decoding thresholds for the BEC as well as the
AWGN channel for relaxed Ensemble A and B are shown in
Fig. 4. For the uncoupled case with w = 1, the performance is
far away from the Shannon limit for all ensembles at lower
rates, although the relaxed ensembles perform significantly
better for these rates. This is due to the decreased average
variable node degree for lower rates. Even Ensemble B is
performing better as Ensemble A due to the further decreased
variable node degrees of the parity bits at each IR step. Results
for the AWGN channel reflect the same behavior as for the
BEC. For increased coupling width w = 3 the performance
generally gets closer to the Shannon limit for all ensembles
but the gaps are significantly different. While Ensemble B is
showing a gap of ∆Eb/N0 ≈ 2.2dB at a rate R = 0.2, the
regular case has a gap of ∆Eb/N0 ≈ 5.5dB. For an increased
coupling of w = 10 the performance starts to saturate very
close to the Shannon limit for all considered ensembles. On
the BEC, the performance is hardly distinguishable from the
ultimate limit. On the AWGN channel only minor variations
at very low rates can be determined. The relaxed ensembles
do outperform the original regular rate-compatible ensembles
for all considered coupling width at all rates. Additionally,
the decoder complexity is significantly reduced especially for
lower rates. A remaining gap to Shannon limit for the relaxed
ensembles at w = 3 is still visible and it remains to push
the performance closer to the limit at small coupling widths.
Raptor-like code ensembles [12] are a promising approach
in this direction and we consider trade-offs between these
constructions as an interesting topic for further research.
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Fig. 4: BP thresholds for the relaxed rate-compatible LDPCC code ensembles for L→∞ on BEC and BIAWGN channel. Note
that w = 1 refers to the uncoupled case.

VI. CONCLUSION

In this paper we investigate the performance and com-
plexity of spatially-coupled rate-compatible MET LDPC code
ensembles. Code ensembles with an overall regular degree
distribution are considered as starting point. Due to threshold
saturation, these code ensembles have been shown to achieve
the capacity if coupling width and variable node degree are
chosen sufficiently large. Our observation is that, if the cou-
pling width is restricted to be finite and small, the situation
changes such that smaller degrees are favorable for decoding
thresholds close to the Shannon limit. In the construction
of regular rate-compatible code ensembles the high variable
node degrees inevitable occur at unfavorable rates due to
the constraint of an overall degree regularity. In order to
circumvent this problem, we introduce a new code ensemble
with a relaxed degree evolution that is only slightly irregular.
With this approach, variable node degrees can be kept lower to
push performance closer to the Shannon limit at small coupling
width. Additionally, due to minimized variable node degree the
decoding complexity is decreased as well.
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