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ABSTRACT

Estimation of high-resolution multidimensional spectra from un-
evenly sampled limited sized data sets plays an important role in
a large variety of signal processing applications. In this work, we
develop a high-resolution non-parametric estimator for unevenly
sampled N-dimensional data based on a recently introduced it-
erative method, the so-called iterative adaptive approach (IAA).
The proposed estimator uses the definition of the multidimensional
Fourier transform to obtain a frequency domain representation of
the unevenly sampled signal. Using tensor algebra, the multidimen-
sional frequency domain representation is then recast into matrix
format and used in a weighted least squares (WLS) fitting criterion
to iteratively obtain estimates of the spectral amplitudes and the
covariance matrix. The proposed estimator is numerically shown to
provide superior performance as compared to the commonly used
least squares Fourier transform (LSFT) estimator.

Index Terms— Multidimensional spectra, estimation, weighted
least squares.

1. INTRODUCTION

Estimation of high-resolution multidimensional spectra plays an
important role in a large variety of signal processing applications,
covering fields such as geophysics, biomedicine, image processing,
sonar and radar systems, nuclear resonance, telecommunications
and economics (see, e.g., [1] and references therein). In many of
these applications, the multidimensional signal may be unevenly
sampled or may suffer from lost samples in one or more dimensions
(see, e.g., [2-6]). Due to their inherent robustness to model assump-
tions, non-parametric estimators of multidimensional spectra are of
particular importance. However, the commonly used non-parametric
methods for missing data cases are generally based on the multidi-
mensional least squares Fourier transform (LSFT) [3]. The LSFT
has been shown to be a modified version of the periodogram and
to have the same statistical properties as the periodogram for the
evenly-sampled case [3]. Due to this, the multidimensional LSFT
estimator inherits the performance limitations of the periodogram,
and fails to provide high-resolution estimates for small sized data
sets. On the other hand, the well known high-resolution estimators,
such as Capon and APES [7], are applicable only for uniform sam-
pling. There is, therefore, a pressing need to develop non-parametric
estimators for multidimensional spectra that provide accurate es-
timates for unevenly sampled data. In this work, we develop a
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non-parametric estimator for unevenly sampled N-dimensional data
based on the recently introduced iterative method, the so-called
iterative adaptive approach (IAA), that has been shown to provide
high-resolution estimates of the power spectrum [8] and the mag-
nitude squared coherence (MSC) [9] for both uniformly sampled
and non-uniformly sampled one-dimensional data. The proposed
estimator, here termed the N-dimensional IAA (ND-IAA), uses
the definition of the multidimensional Fourier transform to obtain
a frequency domain representation of the unevenly sampled signal.
Using tensor algebra, the multidimensional frequency domain rep-
resentation is then recast into matrix format and used in a weighted
least squares (WLS) fitting criterion to iteratively obtain estimates
of the spectral amplitudes and the covariance matrix. The proposed
estimator is numerically shown to provide superior performance as
compared to the commonly used LSFT estimator.

This paper is organized as follows; in the next section, we
present the generalized N-dimensional data model covering the un-
even sampling case. In Section 3, we develop the proposed ND-IAA
estimator. The performance of the proposed estimator is evaluated
numerically in Section 4.

Notational notes: We represent scalars with small letters in light-
face, e.g., x, vectors with small letters in bold-face, e.g., x, matrices
with capital letters in bold-face, e.g., X, and tensors with capital
letters in bold Euler script, e.g., X. The transpose and the complex
conjugate transpose are represented as (-)7 and (-)*, respectively.

2. N-DIMENSIONAL DATA MODEL

A given, N-dimensional, unevenly measured, data set may be rep-
resented by an N-way tensor X € CT1X72X*IN 'whose element

(i1,12,...,in) is denoted as
T,(1) (2 (N, (1
i1 oty ot
where i, = 1,...,I,; n = 1,..., N. Here, to allow for an un-

even sampling along one or more dimensions, the sampling times
along any of the dimensions, {t§:> }I" are not required to be uni-

formly spaced. We note that this arzfélnglgement also covers the case
of uniformly sampled data, as well as if such a set include missing
samples. Furthermore, selecting a K1 X K2 X --- X Ky frequency
grid whose corresponding frequencies along any dimension, say di-

mension r, are given as
(W r=1,...,N ®)
kyr Jkp=1> — Lyeeey )

and using the definition of the /N-dimensional Fourier transform
[10], a grid-dependent frequency-domain representation of (1)



Fig. 1. Spectral estimate using ND-IAA for SNR =4 dB, M = 10.

may be formed as (3), shown on the top of the next page, where
in=1...,I,;n=1,...,N, and a(w,(cll),w,g), o ,w,(c?) rep-
resents the (unknown) complex-valued spectral amplitude at the
(k1, ke, ..., Ekn)-th frequency grid point, including any corrupting
noise elements. It should be stressed that no signal model has been
assumed in forming the representation in (3); rather the signal is
seen as the contribution corresponding to each (multidimensional)
frequency grid point. There is thus no corrupting noise terms as is
typical in model-based methods describing the data as a signal and
a noise part. Instead the contribution of any noise component, or

any other interference, is implicitly described via its contribution to

(1 (2) (N)
a(wy, Wiy Wy )

3. THE PROPOSED ND-IAA ALGORITHM

A compact representation of (3) may be obtained by defining an N-
way tensor, G € CK1*K2x-XEN whoge element (k1, ko, ..., kn)

is the spectral amplitude a(w,(cll) , w,i), . ,w,i];,’) ). Further, defining

n n . n n T
a® (™) = [ e e ] )

A = [ a™ (w™) a™ (W) } Q)
where a(™ (w,(cz)) represents the Fourier vector corresponding to the
sampling times along the n-th dimension (or parameter) at the fre-
quency w,(cz), and A™ e CI»*Kn the corresponding Fourier ma-
trix, leads to the tensor representation of (3) being formed as (see
[11] for details)

X = Gx1 AW x3 AP oy AW, (©6)

where the operator x,, represents the n-mode product of a tensor
with a matrix. The data tensor, X, may now be matricized using the
Kronecker product as (see, e.g., [11], [12]),

T
X =AYG (AN e AN Ve g A®) @)

where ® represents the Kronecker product, and the matrix X ;) €

=2 ) 5 obtained by horizontally stacking all the mode-1

Fig. 2. Spectral estimate using LSFT for SNR =4 dB, M = 10.

slices of X.! The matrix G € ck x(ITn=2 Kn) is defined simi-
larly. Finally, using the property that for any conformable matrices
Z,D,E,F (see,e.g., [13]),

Z =DEF" & vec(Z)= (F® D)vec(E), ®)

where vec(-) represents the vectorization operator , one may express
the vector form of (7)

vec (X(l)) = <A(N) R &Q A(2) (039 A(1)> vec (G(l)) . ()]

For notational convenience, rewrite (9) as

y = Bg, (10)

where
y 2 vec(Xq) € € 11
g 2 vec(Ggy) e CEX (12)
B £ (AW 2A®eAl) ccf 3
where [ = Hf:;l I, and K = Hf:;l K,,. Using (10), one may

form the covariance matrix of y as

K
R £ 3 |glbebi, (14)
=1

where g, and by represent the ¢-th element of g and the ¢-th col-
umn of B, respectively. Furthermore, following the weighted-least

I The matricization may be easiest understood with an example. Consider
a tensor X € R3X4X2 whose mode-1 slices are

1 2 3 4 13 14 15 16
X;=| 5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24

) Xg =

Then the mode-1 matricization of X is

1 2 3 4 13 14 15 16
Xa = 5 6 7 8 17 18 19 20 |.
9 10 11 12 21 22 23 24
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Fig. 3. Top: MSE of the peak at (0.2,0.2) as a function of the SNR,
for M = 8. Bottom: Power ratio as a function of the SNR, for
M =8.

squares approach of [8], one may then form the estimates of g, and
R iteratively, as

R b;R!

G = =Y (15)
b;R-b,

. K

R = D [3*bebi, (16)
=1

with R being initialized to the identity matrix. The converged es-
timates of the spectral amplitudes in (15) may be used to form the
estimate g, which upon reshuffling, leads to the estimate of the spec-
tral amplitude tensor G. Finally, using G, the N-dimensional power
spectrum of X is estimated as

P = conj(§) 08, (a7
where conj(+) represents complex conjugation, and ©® the Hadamard
element-wise product.

4. NUMERICAL EXAMPLES

In this section, we examine the performance of the proposed ND-
TAA estimator using simulated 2-D and 3-D data. For the first set of
simulations, we generate 2-D complex data representing four sinu-
soids in noise

4

(1) (1> (2) (2)

2 2

T oy (2) _ Za 2™V 273 (f +£; ) +w LD @
'll =1 'Ll 12

Fig. 4. Top: MSE of the peak at (0.2,0.2) as a function of M, for
SNR = 4. Bottom: Power ratio as a function of M, for SNR =4 dB.

where fl(l) and fz(2) denote the two frequencies of the [th 2-D
sinusoid, while «; represents its complex amplitude; v; is a uni-
formly distributed random variable between 0 and 2, representing

the phase; and the noise term,w LD ) is a zero-mean circularly
‘Ll ’ 1.2
symmetric Gaussian random process. In the simulations, we set

a; = 1,Vl, and the true peaks at (0.2,0.2), (0.5,0.1),(0.9,0.5)
and (0.92,0.48). To simulate a scenario of uniform sampling along

t™) and uneven sampling along t?), we set {tgl), tél), e ,tg?} =

{1,2,..., 11}, while {t(2) t(2) . ,tgLM} are picked randomly
for each simulation from {1,2,...,I>}, where M < I,. The total
number of available samples is, therefore, I1 x (I — M). For
this study, we set Iy = I = 16, while M is increased from O to
14 in steps of 2. A frequency grid of 50x50 points is used. It is
worth stressing that as the examined approaches are non-parametric,
no assumptions of model order or noise color or distribution are
needed. The results of the numerical study are shown in Figures 1-4.
Figures 1 and 2 show typical 3-D plots of the spectral estimate using
the proposed ND-IAA method and the commonly used least squares
Fourier transform (LSFT) method, respectively, for M = 6 and a
signal-to-noise ratio (SNR) of 4 dB. As is clear from the figures,
the ND-IAA estimator substantially outperforms the LSFT estima-
tor which fails to resolve the closely-spaced peaks at (0.9,0.5) and
(0.92,0.48). The LSFT estimator is also seen to suffer from several
spurious peaks. For further analysis, we compare two performance
measures for the estimators, namely, the mean squared error (MSE)
of the first peak, and the power ratio of the estimated spectra. Here,
we define the power ratio as the ratio of the power of the four peaks
to the power of the off-peak spectrum. Thus, the power ratio pro-
vides a good measure for the amount of spurious peaks or off-peak
noise that is known to appear in LSFT estimators. Both the MSE and
the power ratio are estimated from 300 independent Monte Carlo



Fig. 5. Power spectrum estimates for 3-D data at SNR = 6 dB. (a)
ND-IAA, f3 = 0.1, (b) ND-IAA, f3 = 0.5, (c) LSFT, f3 = 0.1, (d)
LSFT, f3 = 0.5. True peaks at (0.3,0.2,0.1) and (0.5,0.5,0.5).

simulations for different selections of SNR and M. In each run, the
noise and the pattern of uneven sampling along t® vary indepen-
dently. Figure 3 shows the MSE and the power ratio as a function of
SNR for M = 6. As is clear from the two plots in Figure 3, the pro-
posed estimator gives quite a high gain in the power ratio for all SNR
levels, while its MSE performance improves with increasing SNR.
Finally, Figure 4 shows the MSE and the power ratio as a function of
M for SNR = 4 dB. Recall that the number of available samples is
16 x (16 — M), which decreases significantly as M increases from
0 to 14. As before, the ND-IAA estimator outperforms the LSFT
estimator, making it highly suitable for high-resolution estimation
of multidimensional spectra from possibly unevenly sampled data.

The proposed algorithm was also tested on 3-D data, similar to
the 2-D data, having two complex sinusoids in white Gaussian noise.
The true peaks were set at (0.3,0.2,0.1) and (0.5, 0.5, 0.5). Figure
5 shows typical power spectrum estimates obtained through ND-IAA
(subplots (a),(b)) and LSFT (subplots (c),(d)) algorithms for the two
planes containing the true peaks (a "plane’ here represents a 2-D slice
of the three dimensional frequency axis taken along the frequency
in the third dimension, e.g., Figure 5(a) shows the frequency plane
(f1, f2,0.1)). The results show clearly that the ND-IAA estimates
provide much sharper peaks as compared to LSFT, at the expected
locations. Since LSFT is known to suffer from spurious peaks, we
also studied the power distribution in the off-peak planes. Plots (a)
and (b) in Figure 6 show the spectral estimates in a typical off-peak
plane (i.e., a plane at frequency f3 not containing any spectral peak)
for ND-IAA and LSFT algorithms, respectively. It is evident from
the plots that ND-IAA algorithm allows very little off-peak power as
compared to LSFT. Finally, Figure 6 (c) shows that the low off-peak
noise allowed by ND-IAA results in a significant gain in the power
ratio as compared to LSFT.
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