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Abstract

With the ever-growing traffic demands, the transportation networks are getting more
and more congested. While expanding these networks with more roads is both costly
and in many cities not even feasible, the rapid development of new sensing and
communication techniques has made it possible to perform control of transportation
networks in real-time. With the right usage of such technologies, existing trans-
portation networks’ capacities can be utilized better in order to lower the congestion
levels. However, the control has to be done robustly, since real-time control and close
to maximal utilization also make the networks more fragile and if not, even a small
perturbation can have a tremendous impact on the traffic network. In this thesis,
a few solutions that lead to better transportation network utilization are presented,
designed with said robustness requirements in mind.

In the first part of the thesis, a decentralized control strategy for traffic signals
is presented. The proposed policy, which we call Generalized Proportional Alloca-
tion (GPA), is inspired by the proportional fairness allocation for communication
networks. The original proportional fairness controller does not explicitly take the
overhead time needed to shift between different activation phases into account. We,
therefore, enhance the proportional fairness so that it adapts its cycle length to the
current demand. When the demand is higher, one wants longer signal cycles not to
waste too much of the time overhead, while for lower demands, the cycle lengths
should be shorter, so that the drivers do not have to wait for a long time. Stability
for an averaged version of this control strategy is proved together with throughput-
optimality of the controller. This means that no other control strategy can handle
larger exogenous inflows to the network than the GPA-controller. Since the traffic
signal controllers such as the GPA may allocate service to an empty line, due to the
fact that several lanes can receive green light simultaneously, a model that handles
this issue is proposed. For this model, the well-posedness of the dynamical system
is shown when the traffic signal controller is Lipschitz continuous.

The GPA controller’s performance is also evaluated in a microscopic traffic
simulator. In the microsimulations, it is shown how the proposed feedback controller
outperforms the standard fixed-time controller for a scenario based on all traffic over
the duration of one full day in Luxembourg. The controller’s performance is also
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compared to another decentralized controller for traffic signals, the MaxPressure
controller, for an artificial Manhattan-like network. From these simulations, it can
be concluded that the GPA performs better than MaxPressure during low demands,
but theMaxPressure performs better when the demand is high. The fact that the GPA
does not require any information about the network, apart from the current queue
lengths, makes it robust to perturbations. In other words, the control strategy does
not have to be updated when the demand or topology of the network changes.

The second part of the thesis is devoted to routing problems. First, the problem
of routing a fleet of vehicles in an optimal way for the whole fleet is considered.
The objective is then to achieve a minimum delay in average for the entire fleet. The
routing algorithm takes into account the presence of regular drivers that are trying
to optimize their own traveling time in the network. Conditions are posted for when
such a routing assignment exists, and two algorithms to compute it are shown.

At last, a type of dynamic routing policies for multicommodity flows is studied.
The routing policies are designed with the objective to avoid congested routes. It
has previously been shown that if only one class of vehicles are present, the network
is robust to perturbations with these routing policies. A model for multicommodity
flows is proposed, and it is shown that the robustness properties for the single-
commodity case do not necessarily hold in the multicommodity case.
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1
Introduction

1.1 Why Control of Transportation Networks?

While transportation networks have been around in our society for a while, they are
now becoming more and more congested and are often not dimensioned to handle
today’s traffic demands. Increasing the capacity of the traffic networks to match
the growing demands may be difficult. In many cities, there is no more space to
build more roads. Even if autonomous vehicles and the shared economy will be
more present in the future, it does not mean that the traffic demand will necessarily
decrease. Simulation studies have shown that if people use transportation-on-demand
services instead of their cars, the total number of vehicles needed will decrease, but
the entire load in the traffic network will increase due to the need of re-balancing
the vehicles [Spieser et al., 2014].

The ultimate goal of controlling traffic networks is to reduce congestions. Con-
gestions in the US is today estimated to have a cost of about 300 billion USD [Cook-
son, 2018], which is about 1.5 % of the country’s GDP [Organisation for Economic
Co-operation and Development, 2018] when taking both the additional fuel con-
sumption and hours lost in congestions into account. The increased fuel consumption
has of course negative impact on the environment regarding pollution. By reducing
congestion, transportation networks can also become more reliable. Reliability is
important since predicable transportations are becoming more critical to our soci-
ety. One example of this is factories that instead of storing material in the factories
use just-in-time deliveries.

Luckily, the recent development in sensing and communication technology pro-
vides tools that can, when correctly used, help to improve the reliability and per-
formance of transportation networks. Even if not each car is connected yet, most
cars have one or several connected devices within it, such as a cell phone or a GPS
routing device. Those kinds of connections are now used both to obtain traffic state
information and to provide route guidance to drivers. But it is not just information
from each car that is easier to obtain nowadays. Development of cheap cameras and
computer vision have now made it easy to get real-time traffic information. While
this traffic information was before obtained by loop-detectors, that had to be installed
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Chapter 1. Introduction

Figure 1.1 Example of a smart phone application that gives the driver a recom-
mended route to follow.

in the ground and only gave an estimate of the queue lengths, cameras which are
easier to install can now provide accurate information about the queue lengths in
real-time [Citilog, 2018].

However, utilizing the traffic networks close to capacity can alsomake themmore
fragile to perturbations. For instance, if everyone is using the same route guidance
services, and it for some reason provides wrong information, the consequences
can be much worse compared to when every driver made her own path decision.
However, this is just one way new technologies put higher requirements on robust
solutions. While traffic signals before were tuned based on a nominal behavior of
drivers, this nominal behavior can now change rapidly when the drivers get new
routing directions in real-time. Hence the traffic signals need to adapt to the new
traffic pattern quickly.

There are several methods to incorporate feedback control into traffic networks.
While some of the controllers in every single vehicle, such as adaptive cruise control,
may have some impact on the macroscopic traffic flow in the network, we will in this
thesis focus on control actions that have a more direct and more significant effect
on the overall network state. The three most significant actuators in transportations
networks are:

Traffic Signal Control The control of traffic signals has a significant impact on the
urban and arterial traffic networks. Well-tuned traffic signal controllers can
improve both the maximum throughput a traffic network can handle, and the
smoothness of the traffic flows, in the sense of how many times the drivers
have to stop for red signals during their journeys.

Routing Withmore real-time traffic data available,many drivers nowadays are using
route guidance applications, such as shown in Figure 1.1 to avoid congestions
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1.2 Related Work

(a) Ramp-metering. Photo by Benpaul12
at English Wikipedia (Public domain), via
Wikimedia Commons.

(b) Variable Speed Limit. Photo by Oregon
Department of Transportation (CC BY 2.0).

Figure 1.2 Examples of ramp-metering, where a traffic light limits the inflow of
vehicles to a highway, and variable speed limit signs. In this example, the variable
speed limit is used to improve the safety, but it can be utilized to improve the traffic
conditions as well.

and minimize their traveling time. Also, the introduction of tolls or route
recommendations through road signs can affect the drivers’ route choices.

Ramp-metering and Variable Speed Limits By limiting the inflow to a highway
or reducing the speed on the highway, as shown examples of in Figure 1.2, one
can avoid congestion effects. Fundamentals of traffic flow theory state that the
traffic flows better when it is not too congested, so by limiting the upstream
flow on a highway strip by ramp-metering and variable speed limit signs, one
can achieve shorter travel time by avoiding the traffic entering into a congested
state.

1.2 Related Work

In this section, we make a review of previous work. We start by looking at different
models for traffic flows in networks, then discuss the three main control problems
in traffic networks: traffic signal control, routing, and ramp-metering and variable
speed limits.

Modeling
One of the most classical models for traffic flow on a highway is the LWR (Lighthill-
Whitham-Richards) model [Lighthill and Whitham, 1955; Richards, 1956]. It is a
macroscopic model, i.e., describes the vehicles as a continuous quantity and models
the aggregate traffic flow and not each vehicle’s movement.

In [Daganzo, 1994], the author proposes a discrete time model for traffic flows,
where the highway is split into cells, where the flow between two succeeding cells is
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Chapter 1. Introduction

determined as the minimum between the upstream cells demand and the downstream
cell’s supply. This model is referred to as the cell transmission model (CTM) is a
discretization of the LWR-model. In [Daganzo, 1995] the cell transmission model is
extended from a highway segment to a network, where several cells can merge into
one cell, and one cell can split into several.

In the model presented in [Daganzo, 1994; Daganzo, 1995], the demand, and
supply functions are both affine, which implies that the whole system dynamics is a
switched linear system. In [Munoz et al., 2003] the authors present this fact, together
with observability and controllability results, when the actuators are ramp meters.
A formal stability analysis of this switched linear system is done in [Pisarski and
Canudas-de-Wit, 2012].

While the previous references study the CTMwhen the demand and supply func-
tions are affine, extensions to non-linear functions can be made as well. In [Lovisari
et al., 2014] the stability of systems with general demand and supply functions are
analyzed under the assumption that the vehicles can overtake each other, i.e., the
flows progress in a non-first-in-first-out (non-FIFO) manner. The stability analysis
utilizes monotonicity properties of the dynamical system, which is further explained
in [Como, 2017]. In [Coogan and Arcak, 2015; Coogan and Arcak, 2016] the au-
thors show that the monotonicity may be lost when the flows split up according
to the FIFO-rule, i.e., when vehicles can not pass by each other, and the loss of
monotonicity is beneficial for some control actions.

While the cell transmission model is a first-order model, second-order models
exist as well, such as the METANET model [Messmer and Papageorgiou, 1990;
Kotsialos et al., 2002]. Since these models are of higher order, they can capture
more phenomena observed in traffic flows. However, more complex models are also
more challenging to analyze, and often first-order dynamical models are considered
good enough.

Traffic Signal Control
The first traffic lights in the early 20th century were controlled manually by a police
officer in every junction [McShane, 1999] . Technological development made it soon
possible to both control the traffic lights automatically and centralized.

With a centralized approach to traffic signal control, it is possible to coordinate
the cycles in the traffic signals, so that they allow traffic on themain corridors in a city
to progress smoothly, sometimes referred to as “green-waves”. One early computer
implementation of an algorithm that computes an optimal traffic signal control is
TRANSYT [Robertson, 1969], which compute a static signal program. Later, other
approaches to compute the optimal offset in signal timing has been developed, for
instance, [Gomes, 2015; Coogan et al., 2017b; Mehr et al., 2018].

By using magnetic loop detectors to measure the traffic flow, several solutions
have been proposed on how to retune the signal programs, for example, SCAT [Sims
and Dobinson, 1980], SCOOT [Robertson and Bretherton, 1991], UTOPIA [Mauro
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1.2 Related Work

and Di Taranto, 1990]. While those retuning strategies take several practical aspects
into account, they do not have any formal performance guarantees, such as stability
of the dynamical system or that they will achieve throughput optimality.

One feedback solution for traffic signal control is the MaxPressure con-
troller [Varaiya, 2013b; Varaiya, 2013a]. It determines how the traffic light should
be controlled in real-time, and it has formal guarantees about the stability of the
traffic network and throughput optimality. The MaxPressure controller is utilizing
ideas from the BackPressure controller, a controller developed for communication
networks. The BackPressure controller was originally proposed in [Tassiulas and
Ephremides, 1992] and has then been further developed in, e.g., [Neely, 2003]. The
idea of adapting the BackPressure controller to traffic signal control has also inde-
pendently been proposed in [Wongpiromsarn et al., 2012]. While the BackPressure
controller both controls which queue that should be served and how the packets
should be routed, only service control can usually be done in traffic networks. This
because the drivers themselves do the routing. For the traffic setting, the controller
then needs information on how the drivers propagate through the network. A variant
of the MaxPressure controller when the controller does not have the right informa-
tion about how the vehicles turn has been proposed in [Gregoire et al., 2014]. In that
paper, the authors show that if the routing information to the controller is not cor-
rect, the maximum throughput in the traffic network will be less. Due to the need for
accurate routing information in the MaxPressure controller, approaches have been
taking to estimate this information from loop detector information [Coogan et al.,
2017a]. Also, the idea of utilizing the routing suggestions from the BackPressure
controller and variants thereof has been proposed in [Zaidi et al., 2016; Gregoire
et al., 2016; Le et al., 2017]. While the original MaxPressure controller does not
take into account the practical limitation on finite storage capacities on the lanes,
approaches to solving this without full guarantees about staying below capacity have
been taken in [Gregoire et al., 2015].

If the routing information is known to the controller, Model Predictive Control-
like (MPC) solutions for signal control is possible as well, as proposed in
[Grandinetti et al., 2018], [Bianchin and Pasqualetti, 2018] and [Hao et al., 2018a;
Hao et al., 2018b].

Another feedback scheduling policy for communication networks is the pro-
portional fairness policy, proposed in [Kelly, 1997]. Its stability properties have
been analyzed for stochastic networks in [Massoulié, 2007] and [Walton, 2014]. The
feedback controller for traffic signal control in this thesis is developed based on the
ideas of proportional fairness. The idea of using proportional fairness for signal
control has also been proposed in [Kovacs et al., 2016]. While the implementation
in [Kovacs et al., 2016] adjusts the cycle lengths on a longer time scale compared
to the phase activation times, the solution in this thesis adjust the cycle length for
every cycle by computing the phase activation and cycle length simultaneously.

Signalized intersections can also be utilized to balance the traffic load among
different regions in a city, commonly referred to as perimeter control. In [Geroliminis

15



Chapter 1. Introduction

et al., 2013] the authors propose an MPC-approach for doing this balancing and
in [Mehr et al., 2017] the authors show a solution that does perimeter and signal
control jointly inside the region.

Routing
The basic principles of traffic equilibria with respect to route choices were stated
in [Wardrop, 1952]. Wardrop introduced two different equilibria, the user optimal
and the system optimal. The user optimal equilibrium is the one when each driver
tries to take their time-optimal path, i.e., at equilibrium the driver cannot change her
route choice to shorten her total travel time. On the other hand, in the system optimal
equilibrium, the average journey time is optimal. Since the equilibria usually do
not coincide, one usually refers the loss of efficiency in a user optimal equilibria
as the price of anarchy and bounds on this price has been presented [Roughgarden
and Tardos, 2002]. For a comprehensive overview of the static traffic assignment
problem, see [Patriksson, 2015].

The dynamic traffic assignment (DTA) problem was introduced in [Merchant
and Nemhauser, 1978a; Merchant and Nemhauser, 1978b]. At this time, on-line
guidance was certainly not available to the drivers, so the main interest of this was
for planning purposes. Later a linear programming solution to compute the system
optimal routing assignment was proposed in [Ziliaskopoulos, 2000]. In [Como et al.,
2016] the authors show that the dynamic traffic assignment can be computed through
convex relaxation, and in [Ba and Savla, 2016; Rosdahl et al., 2018] it is shown how
this convex relaxation could be solved in a distributed way.

While many of the DTA solutions assume that it is possible to control all drivers’
route choices, [Samaranayake et al., 2018] proposes a solution when only a fraction
of vehicles’ route choices can be controlled.

In [Como et al., 2013a; Como et al., 2013b] the authors study a locally responsive
routing policy, where each driver adjusts her route depending on the traffic volume
in the cells. Under the assumption that the drivers are avoiding congestion, i.e.,
when the traffic volume increases in one cell, it is not more likely that the driver will
choose that cell, the authors show both stability of the system. They also show that
under this kind of routing policies, cascade effects will not occur in the network.
This means that the network is resilient to perturbations. While the results in [Como
et al., 2013a; Como et al., 2013b] only focus on local behaviors in the network, the
work in [Como et al., 2013c] investigates local responsive routing policies together
with a global routing dynamics, where the drivers converge towards a Wardrop
equilibrium. In [Yazicioglu et al., 2018] the authors combines the locally responsive
routing policies with a variable speed limit control to improve the transportation
network’s resilience. Another model for how drivers update their route choices
dynamically is presented in [Shah and Shin, 2010], where the drivers’ probability to
reevaluate their route choices depends on the current congestion level.
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1.3 Outline of the Thesis and Related Papers

Ramp-Metering and Variable Speed Limits
The fact that limiting the inflow to a highway with ramp-metering will reduce
the overall total traveling time has been shown in [Gomes et al., 2008], although
the idea of ramp-metering has existed long before this observation. One of the
earliest feedback control strategies for ramp-metering is ALINEA [Papageorgiou
et al., 1991], which is a linear proportional control strategy. Later on, the ALINEA
controller was extended with integral action [Wang et al., 2010]. Proportional-
integral control has also been proposed for variable speed limit control [Carlson
et al., 2011].

Model-predictive-control solutions have also been proposed for ramp-metering
and variable speed limit control, for example, in [Hegyi et al., 2005; Gomes and
Horowitz, 2006;Muralidharan andHorowitz, 2012]. As the traffic flowmodel is non-
linear, those control strategies are computationally heavy, and approaches have been
taken to decrease the number of computations needed, for instance by event-trigged
approaches [Ferrara et al., 2015b], or make the computations distributed [Ferrara
et al., 2015a]. Also, withMPC-techniques it is fairly easy to extend the models, in the
hope to achieve better accuracy. For an example of a MPC-solution, see [Pasquale
et al., 2015]. While the MPC-techniques are tractable, it is in [Schmitt et al., 2017]
shown that in some cases, a non-predictive control will achieve as good performance,
due to the monotonicity properties of traffic dynamics.

In [Pisarski and Canudas-de-Wit, 2016] the authors take a game-theoretic ap-
proach to ramp metering control, which results in a distributed solution.

1.3 Outline of the Thesis and Related Papers

This thesis consists of 8 chapters. Chapter 2 serves as an introduction to the models
for traffic networks used in the thesis. Also an overview of the control problems in
transportation networks is given in this chapter. In Chapters 3–5 different aspects of
feedback based traffic signal control are discussed, while Chapters 6 and 7 discuss
a few routing problems. The thesis is concluded in Chapter 8 together with some
suggestions for further research.

Chapter 2 - Preliminaries on Dynamical Flow Networks
The goal of chapter 2 is to introduce concepts and notation that will be used in the
following chapters. Hence, this chapter serves as survey and no original material
is presented. We present the model for dynamical flow networks that we will use
throughout the thesis. The model is a generalization of existent dynamical models
for networks flows. Therefore, the chapter also shows how a couple of models used
in the literature fit into the presented modeling framework. Those models are the
cell transmission model, which is a well-used model to capture traffic flows on a
macroscopic level with congestion effects, and a fluid model for point queues, i.e., a
queuing model where spacial distribution of vehicles in a queue is disregarded. The
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chapter also includes a description of how the control action from different physical
actuators in traffic networks enters the model.

Chapter 3 - On the Well-Posedness of a Feedback Controlled Point
Queue Model
In this chapter, we discuss the technical issue of existence and uniqueness of solutions
to the dynamic model for point queues presented in Chapter 2. In short, this issue
arises when an empty lane receives a green light in a signalized junction. While
previous work only studied this problem when a predefined controller controls the
traffic signal, we show that a unique solution to the dynamical point queue model
exists when the control action is determined by a feedback controller.

This chapter is based on the following article:
Nilsson, G. and G. Como (2019). “On well-posedness of feedback-controlled out-

flows in dynamical flow networks”. In preparation.
Authors’ contributions: GN developed the theory together with GC. GC also gave
valuable suggestion in how to improve the presentation. GN and GC wrote the
manuscript together.

Chapter 4 - Decentralized Throughput Optimal Traffic Signal Control
This chapter, presents a fully decentralized feedback-based traffic signal controller.
To avoid collisions, constraints are often present that limit which lanes that can
receive green light simultaneously, commonly referred to as phases. The controller
determines how to split the activation between different phases. To do this, the
controller only needs information about the queue lengths on the incoming lanes
to the signalized junction. We also present a fundamental bound on the maximal
throughput that any traffic signal controller can achieve for a given set of phases. We
show that the proposed controller achieves this bound, despite the little information
the controller requires.
This chapter is based on the following article:
Nilsson, G. and G. Como (2019). “Generalized proportional allocation policies for

robust control of dynamical flow networks”. In preparation.
Authors’ contributions: GN developed most of the results, with feedback from GC.
GC also contributed with ideas how to improve some of the proofs. GN wrote most
of the manuscript, with valuable comments and suggestions how to improve the
clarity of the presentation from GC.

The paper above is a journal version where results from the following paper are
included:
Nilsson, G. and G. Como (2017). “On generalized proportional allocation policies

for traffic signal control”. IFAC-PapersOnLine 50:1. 20th IFACWorld Congress,
pp. 9643–9648. doi: 10.1016/j.ifacol.2017.08.1728.
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1.3 Outline of the Thesis and Related Papers

Authors’ contributions: GN developed most of the results, in discussion with GC.
GN wrote most of the paper, with valuable comments from GC on the manuscript.

A result for a simplified setting where only one lane in each junction can receive
green-light simultaneously was presented in:

Nilsson, G., P. Hosseini, G. Como, and K. Savla (2015). “Entropy-like Lyapunov
functions for the stability analysis of adaptive traffic signal controls”. In: 2015
54th IEEE Conference on Decision and Control (CDC), pp. 2193–2198. doi:
10.1109/CDC.2015.7402532.

Authors’ contributions: The idea of using proportional fairness to control traffic
signals was proposed byGC andKS.GN and PHdeveloped the results independently
in discussions with GC and KS respectively. GN and PH wrote the paper together,
with input from GC and KS.

Chapter 5 - Evaluation of GPA Control in a Microscopic Traffic
Simulator
In this chapter, we present a discretized version of the traffic light controller intro-
duced in Chapter 4. The discretized version is implemented in a microscopic traffic
simulator, and its performance is evaluated against both a fixed-time controller and
another well-known feedback controller for traffic signals, the MaxPressure con-
troller. The performance evaluation is done in an artificial Manhattan-like grid, to
make the setting as ideal as possible. To both illustrate how easy it is to implement
the controller and how the controller can improve a realistic traffic situation, the
controller is also implemented in a realistic traffic scenario. The scenario models all
traffic in the city of Luxembourg during a full day.
This chapter is based on the following article:

Nilsson, G. and G. Como (2018). “A micro-simulation study of the generalized
proportional allocation traffic signal control”. Submitted.

Authors’ contributions: GN developed the experiments in discussions with GC. GN
implemented the simulations and wrote most of the manuscript with feedback from
GC.
The article above is partly based on theory presented in:

Nilsson, G. and G. Como (2018). “Evaluation of decentralized feedback traffic
light control with dynamic cycle length”. IFAC-PapersOnLine 51:9. 15th IFAC
Symposium on Control in Transportation Systems CTS 2018, pp. 464–469. doi:
10.1016/j.ifacol.2018.07.076.

Authors’ contributions: GN developed the experiments in discussions with GC. GN
implemented the simulations and wrote most of the manuscript with feedback from
GC.
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Chapter 1. Introduction

Chapter 6 - Two-Tier Traffic Assignment
In this chapter, we consider the problem when drivers who are taking their user-
optimal path have to share the traffic network with a fleet of (possibly autonomous)
vehicles trying to select optimal paths for the whole fleet. We present results about
existence and uniqueness of such an equilibrium, together with algorithms to com-
pute it.
This chapter is based on the paper:
Nilsson, G., P. Grover, andU. Kalabic (2018). “Assignment and control of two-tiered

vehicle traffic”. In: 57th IEEE Conference on Decision and Control, pp. 1023–
1028.

Authors’ contributions: GN developed the idea under discussions with UK and PG.
GN developed most of the results, with input from UK. GN and UK wrote the
manuscript together, with feedback from PG.

Chapter 7 - Resilience of Dynamically Routed Multicommodity Flows
In this chapter, we study the problem when several flows are routed through the
network. At each node in the network, the flows can make a routing decision about
which of the outgoing links to follow. The decision is based upon the current
congestion state on the outgoing links, and in a way such that the flows are trying
to avoid congested links. Situations like this can occur when, e.g., commuters that
know the best route choices well and do not use a routing device, one day have to
avoid an accident or a roadwork. We show that a flow equilibrium exists for this kind
of routing behaviors, and we also show that introducing a heterogeneous routing
behavior may make the network less resilient to perturbations compared to previous
results on homogeneous flow behavior.

This chapter is based on the paper:
Nilsson, G., G. Como, and E. Lovisari (2014). “On resilience of multicommodity

dynamical flow networks”. In: 53rd IEEE Conference on Decision and Control,
pp. 5125–5130. doi: 10.1109/CDC.2014.7040190.

Authors’ contributions:GN developed the theory together with EL and GC. GN and
EL wrote the manuscript, with feedback from GC.

1.4 Notation

Most of the notation in the thesis will be introduced when it is used and it is also
summarized in the Nomenclature. Nevertheless, some basic notation that will be
used throughout the thesis is introduced here. We letR(+) denote the (non-negative)
reals. For a finite setA, we letRA denote the set of vectors indexed by the elements
in the setA. In the samemanner,RA×B denotes the matrices whose rows are indexed
by the elements in the finite set A and whose columns are indexed by elements in
the finite set B.
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2
Preliminaries on Dynamical
Flow Networks

In this chapter, we introduce a general dynamical model for flow networks, gathering
concepts and notation that will be used in the rest of the thesis.

The topology of a transportation network will be modeled as a directed multi-
graph, so the chapter starts with an introduction to some graph-theoretic notation.
With a topological description in place, we then talk about different ways to deter-
mine the routing in the network, i.e., the paths that the traffic propagate through the
network. Later, we describe the dynamical system of traffic flows in networks, that
will serve as the basis for the whole thesis. It will also be shown how these dynam-
ical systems relate to some other well-known models for traffic flows. The chapter
is concluded with a brief description of some control challenges in transportation
networks, and how those enter into our dynamical model.

λ1

λ2

Figure 2.1 An example of a topology for a dynamical flow network.
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v

Ev E+v

Figure 2.2 The set of in-going, Ev , and out-going, E+v , cells to a junction v.

i− i+
i

Figure 2.3 For a cell i ∈ E , i+ denotes the junction that the traffic from cell i flows
out into and i− denotes the junction that the traffic in the cell is coming from.

2.1 Traffic Networks As Graphs

We model the network topology as a directed multi-graph. We denote this multi-
graph as G = (V, E), where V is the set of nodes and E the multi-set of directed links
between the nodes. In contrast to a graph, in a multi-graph there can be multiple
edges between two nodes, as shown in Figure 2.1.

The topology of a multi-graph can be described through the node-link incidence
matrix. For a given multi-graph G = (V, E), the node-link incidence matrix B ∈
{−1, 0, 1}V×E is defined as

Bvi =


1 if the tail of link i is node v,
−1 if the head of link i is node v,

0 otherwise.

A path between link i and j is a sequence of cells γ = (γ0, γ1, . . . , γl) such that
γ0 = i, γl = j and γ+n = γ−n+1 for all 0 ≤ n < l.

The links will further on be referred to as cells, and each cell contains traffic
moving in one direction. While the nodes may correspond to junctions, where in-
coming traffic can proceed to several downstream cells, nodes can also be introduced
to model the boundary between two consecutive cells. As we will see later on, this
type of nodes may be useful for space discretization of specific traffic models. How-
ever, we will throughout the thesis assume that all the nodes correspond to an actual
signalized junction unless otherwise stated. For a given junction v ∈ V , we let Ev
denote the set of incoming cells to that junction and E+v the set of cells going out
from junction v. This is illustrated in Figure 2.2. For a cell i ∈ E , we let i+ denote the
junction v ∈ V that the traffic from cell i will flow out into. In the same manner, i−

denotes the junction that the traffic in cell i is coming from, as shown in Figure 2.3.
To a non-empty subset of the cells, that we will refer to as source cells, there is
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2.1 Traffic Networks As Graphs

an exogenous possibly time-varying inflow λi(t) ≥ 0. We will denote the set of the
source cells as S ⊂ E . Moreover, we will denote the full vector of exogenous inflows
λ(t) ∈ RE

+ , and let λi(0) ≡ 0 for all non-source cells E \ S. To model the dynamical
flows within the network, we will throughout the thesis denote the outflow from each
cell i with zi , and z ∈ RE

+ is the vector of outflows from all cells.
To describe how the traffic flow splits up in the junctions, we introduce a possibly

both time-varying and state-dependent routing matrix R ∈ RE×E
+ , whose elements

are all non-negative. Each element in the routing matrix is telling how large fraction
of the outflow of one cell that will turn to another, and the elements will therefore
be referred to as turning ratios. The routing matrix is assumed to have the following
properties:

1. Ri j > 0 if cell i is connected to cell j through a node.
2. Ri j ≤ 1 is the fraction of flow that proceeds from cell i to cell j.
3. For a given cell i ∈ E , 1 −∑

j∈E Ri j ≥ 0 is the fraction of flow that leaves the
network after have passed by cell i.

In practice, the routing matrix can either be obtained from traffic measurements
or computed by an assignment problem. In the Section 2.2, we will show how such
an assignment can be computed, both under the assumption that each driver takes
her optimal path, and when the routing is controlled by a central authority.

With the exogenous inflow vector and the routing matrix in place, we can state
a couple of connectivity properties. The first one is about if a cell is reachable by
any exogenous inflow and the second one if traffic in a cell can leave the network by
following some path in the network.
Definition 2.1
A pair, (λ, R), of an exogenous inflow vector and routing matrix is said to be inflow-
connected if there for any given cell i ∈ E exists a path from a cell j ∈ E with λj > 0
to cell i. Moreover, a routing matrix is said to be out-connected if there from every
cell i, exists a path to some cell j, denoted sink-cell, such that

∑
k∈E Rjk < 1. �

We also note the following properties of an out-connected routing matrix, that
we will make use of later:
Proposition 2.1
If R is out-connected, then

i) it has spectral radius strictly less than 1,
ii) there exists an induced norm ‖·‖† such that



RT



† < 1, and,

iii) for any subset I ⊂ E the routing matrix describing the routing between the
cells in I, RII , i.e., the restriction of R on I × I, is out-connected.

iv) the matrix I − RT is invertible. �

The proof of the proposition is given in Appendix A.1.
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2.2 Static Flow Optimization in Transportation Networks

In the previous section, the routing matrix was introduced to describe the paths
of the traffic through the transportation network. While the routing matrix can be
estimated from traffic data, it can also be estimated from models of drivers’ path
preferences, referred to as traffic assignment.

To compute a traffic assignment, information about the exogenous inflows to the
nodes and outflows from the nodes is needed. To distinguish the exogenous inflow
to the cells from the exogenous inflows to the cells, we let λ̂ ∈ RV

+ denote the
vector of exogenous inflows to the nodes and µ̂ ∈ RV

+ denote the exogenous outflows
from the cells. This modification does not make us lose generality with respect to
the previously introduced model. An exogenous inflow λ̂v to a node v ∈ V can be
represented as a cell i connected to the node, with λi = λ̂v .

To model the propagation delay, every cell i ∈ E is equipped with a delay
function τi : R+ → R+, that is dependent upon the traffic flow zi in the cell. The
delay functions are assumed to be non-negative, differentiable, and non-decreasing.

As mentioned in Chapter 1.2, two common equilibria for static traffic assign-
ment is the system optimal assignment (SO) and the user optimal equilibrium
(UE) [Ozdaglar and Menache, 2011].

Let us first start with considering a single-origin single-destination assignment
with exogenous inflow α > 0, origin node o ∈ V , and destination node d ∈ V . In
other words, λ̂ = αδ(o) and µ̂ = αδ(d), where δ(o) and δ(d) are vectors with all zero
elements apart from a 1 element at index o and d respectively.

The system optimal assignment is computed by solving

minimize
z ∈ RE

+

∑
i∈E

ziτi(zi) ,

subject to Bz = λ̂ − µ̂ .

The system optimal assignment optimizes the total travel time for the overall trans-
portation network. This may imply that some users can get a shorter travel time by
deviating from their assigned path.

In the user optimal equilibrium (UE), also referred to as Wardrop equilibrium,
each driver is trying to take the path with the shortest delay. This means that no
driver can achieve a shorter delay by taking a different path. Let Γ denote the set of
all paths in the network that start from a cell connected from node o and end with a
cell connected to node d. Formally, a traffic assignment z∗ ∈ RE

+ is an user optimal
assignment if∑
i∈p1

τi(z∗i ) =
∑
j∈p2

τj(z∗j ) for all paths p1, p2 ∈ Γ with
∑
i∈p1

z∗i > 0 ,
∑
j∈p2

z∗j > 0 and∑
i∈p1

τi(z∗i ) ≥
∑
j∈p2

τj(z∗j ) for all paths p1, p2 ∈ Γ with
∑
i∈p1

z∗i = 0 ,
∑
j∈p2

z∗j > 0.
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2.2 Static Flow Optimization in Transportation Networks

It has been shown in [Beckman et al., 1956] that the user optimal equilibrium
can be computed by solving the following optimization problem

minimize
z ∈ RE

+

∑
i∈E

∫ zi

0
τi(s)ds ,

subject to Bz = λ̂ − µ̂ .
While the user equilibrium determines the routing if each driver takes her optimal

path, sometimes referred to as drivers behaving anarchistic, the system optimal
assignment minimizes the total travel time for the whole system. Since the total
travel time for a user optimal equilibrium is always greater than or equal to a system
optimal assignment, there will be a loss of optimality with user optimal behaviors.
This loss of system-optimality is often referred to as the price of anarchy, which is
the ratio between the total travel time for the user optimal equilibrium and the system
optimal assignment. In the case of affine delay functions, i.e., τi(zi) = αizi+βi where
αi > 0 and βi ≥ 0, the price of anarchy is bounded by 4/3, as shown in [Roughgarden
and Tardos, 2002], while there exist other convex delay functions that will make the
price of anarchy arbitrarily large.

One solution to control the user optimal equilibrium towards the system optimal,
and hence reduce the price of anarchy, is to introduce tolls. Under the assumption
that there is an equivalence between time and money, tolls denoted ωi that act as
extra delays can be computed as

ωi = z∗i τ
′
i (z∗i ) ,

for all i ∈ E and where z∗i are the flows at system optimum [Nisan et al., 2007].
With those tolls, the delay for each cell is now given by di(zi) + ωi , and the user
optimal equilibrium will coincide with system optimal assignment. Thus the price
of anarchy is reduced to one.

When the assigned flows have been computed, which we will denote z∗, the
routing matrix can be determined. In order to do so, for each junction v ∈ V with
λ̂v > 0 we add an on-ramp cell i′ ∈ E going into the junction with constant flow λ̂v .
The routing matrix for all cells i, j ∈ E is then given by

Rji =


z∗i∑

`∈E+i− z∗
`

if
∑
`∈E+i− zk∗

`
> 0 and j+ = i− ,

0 otherwise.

While we in this section until now only have considered the traffic assignment
problem with one origin and one destination, the theory applies for multiple origin-
destination pairs as well [Ozdaglar and Menache, 2011]. A natural relaxation of the
problemwithmultiple origin-destination pairs is instead of describing the exogenous
flows by origin-destination pairs, describe the exogenous flows as general vectors
λ̂ and µ̂ with the aggregate net-inflow and net-outflow respectively. Those vectors
then have to satisfy

∑
v∈V λ̂v =

∑
v∈V µ̂v > 0.
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2.3 Dynamical Flow Networks

With the exogenous inflows and routing described, all the exogenous parameters to
describe the dynamical flow network is in place. We let the traffic volume in each
cell i ∈ E be the state-space of our dynamical model and denote the traffic volume
of all cells by x ∈ X where X = RE

+ .
The change of traffic volume, xi , in each cell is given by the conservation of

mass and is simply the sum of exogenous and internal inflows from upstream cells
minus the outflow from the current cell. Hence

Ûxi = λi +
∑
j∈E

Rjizj − zi , ∀i ∈ E . (2.1)

In vector form, the dynamics can be described as

Ûx = λ + (RT − I)z . (2.2)

Until now, the dynamical flow network model is just a linear system and the out-
flow from each cell is not yet prescribed. Depending on the application, constraints
that are possibly non-linear may limit the flow between cells. Usually, the outflow
from a cell i ∈ E is constrained by a demand function zi ≤ di(xi) that depends on the
traffic volume xi in the cell. The demand function is often assumed to be increasing
and bounded from above, such that the cell’s maximal outflow capacity is given by

ci = sup
xi ≥0

di(xi) .

In many models, the outflow from one cell is also limited by the storage capacity
of the downstream cells. To each cell, there is an assigned supply function si(xi) ≥ 0
that limits howmuch flow from upstream cells that the cell can receive. This function
is decreasing, and if a cell’s maximum storage capacity is limited by xmax

i > 0, it
holds that

lim
xi→xmax

i

si(xi) = 0 .

Depending upon the situation that is modeled, the supply constraint can limit
the outflow from a diverge junction in either a first-in-first-out (FIFO) way or in a
non-FIFO way. For a narrow single-lane road, the traffic flow is forced to split up in
a FIFO manner, while if there are several lanes so vehicles can overtake each other,
a non-FIFO behavior can be expected. In the FIFO-case, if any of the downstream
cells are full, the total outflow from cell i is given by

zi ≤ γidi(xi) ,
where

γi = sup
{
γ ∈ [0, 1] | γ · max

k∈E |(i,k)∈E

∑
h∈E

Rhkdh(xh) ≤ sk(xk)
}
.
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For the non-FIFO-case we have to note that the actual turning ratios will be
different from the desired ones. We therefore let R denote the prescribed turning
ratios, i.e., the routing matrix in (2.2) and R̄ the actual turning ratios that may be
different from R due to congestion effects. Then the dynamics is described by

Ûxi = λi +
∑
j∈E

R̄i j zj − zi , zi ≤ di(xi) ,

R̄i j = γ̄i jRi j , γ̄i j = sup
{
γ ∈ [0, 1] | γ ·

∑
h∈E

Rhjdh(xh, αh) ≤ sj(xj)
}
.

Since the outflow zi is only limited from above by inequality constraints, e.g.,
all out-flows equal to zero is still a valid choice, we will throughout the thesis make
the following quite natural assumption about the outflows.

Assumption 2.1
When xi > 0, the outflow zi is the maximal possible. �

With the assumption above, it is only in the cases when

lim
xi→0+

di(xi) > 0

that the dynamics is not well-specified. We will see later on why this technicality
is needed and when it can be guaranteed that the dynamical system has a unique
solution.

We conclude this section by giving three examples of known models that fit into
this framework. The two first are with traffic applications in mind, where the latter
is a computer network example.

Example 2.1—Daganzo’s Cell Transmission Model
Let each demand function be

di(xi) = min
{
vi xi
Li

, ci

}
,

where vi > 0 is the cell’s free-flow speed (usually the speed-limit), Li > 0 the cell’s
length and ci the maximal outflow capacity. Moreover, let each supply function be

si(xi) = max
{
wi

Li
(xmax

i − xi), 0
}
,

where wi > 0 is the cell’s shock wave speed, i.e., the speed by which a congestion
back-propagates. A plot of these demand and supply functions for a given cell i,
is shown in Figure 2.4. This type of diagrams illustrating how the flow at one cell
depends on the traffic volume, are referred to as fundamental diagrams for traffic flow
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xi

zi

di(xi) si(xi)

Ci

Figure 2.4 The demand and supply functions for a cell i, in Daganzo’s cell trans-
mission model. These type of diagrams showing the relationship between the flow
and traffic volume, is commonly referred to as fundamental diagrams for traffic flow.

and have also been observed empirically. For examples of empirical observations,
see e.g., [Dervisoglu et al., 2009].

A time-discretized version of (2.1) for a line graph where the cells are numbered
in order {1, 2, . . . , n} and for a given initial state x(0) then reads

x1(k + 1) = x1(k) + h (λ1 −min{d1(x1), s2(x2)}) ,
xi(k + 1) = xi(k) + h (λi +min{di−1(xi−1), si(xi)} −min{di(xi), si+1(xi+1)}) ,

i ∈ {2, . . . , n − 1}
xn(k + 1) = xn(k) + h (λn +min{dn−1(xn−1), sn(xn)} − dn(xn)) ,

where h > 0 is the discretization step. Under the assumption that the discretization
step h ≤ Li

xi
for all cells i ∈ E , we have obtained the cell transmissionmodel for traffic

flow presented in [Daganzo, 1994; Daganzo, 1995]. Observe that in this example,
the nodes between the cells are not real junctions and just introduced in order to
make a suitable discretization. �

Example 2.2—Point Queue Model
Let

di(xi) = ci

with ci > 0 and
si(xi) = +∞ .

This model is a point queue model. If there are traffic present in the cell, they leave
the cell with the maximum outflow capacity, since no downstream congestions are
affecting the outflow. This point queue model has previously been used in [Mu-
ralidharan et al., 2015] and [Hosseini and Savla, 2017] to model signalized traffic
networks. �
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Observe that for the cell transmission model, the traffic volume x consists of
traffic moving forward, while for the point queue model the traffic volume represents
traffic standing still waiting for service.

While the two previous examples show how the dynamical network flow model
connects to transportation networks, there are other applications where a similar
model structure is used.

Example 2.3—Mean-Value Dynamics in Computer Networks
Let

di(xi) = ciµ
xi

1 + xi
,

where 1/µ > 0 is the average packet length, and

si(xi) = +∞ .

This model was presented in [Tipper and Sundareshan, 1990] to have a fluid model
of M/M/1-queues in a computer network, where the states correspond to the mean
values of the queue-lengths. �

2.4 Some Control Challenges

In this section, three different categories of control challenges in dynamical traffic
flow networks will be presented, namely ramp-metering and variable speed limits,
traffic signal control, and routing. While ramp-metering and variable speed limits
are included for completeness of the presentation, the latter two control problems
will be the focus of this thesis.

Ramp-metering and Variable Speed Limits
Ramp-metering and variable speed limits are used on highways to control the traffic
flow. Ramp-metering is usually done by placing a traffic light on the on-ramps,
enforcing the drivers to wait for a short time before entering the highway. In this
way, a small decrease in the inflow to the highway can be achieved and may prevent
the traffic volume to get above the free-flow region. Another way to avoid that a
cell in highway gets congested is to limit the speed in the upstream cells by variable
speed limit signs, as shown in Figure 1.2. Again, the idea is here to limit the inflow
into one cell, to avoid that the traffic volume goes above the critical one.

For variable speed limits the control action is to reduce the free-flow speed.
Since the free-flow speed is related to the slope of the demand function, the control
action has to enter into a modified version of the demand function, d̃i(xi, αi), such
that the outflow zi ≤ d̃i(xi, αi) ≤ di(xi) where αi ∈ [0, 1].

For ramp-metering, the control action is rather limiting the fraction of time when
outflow is allowed from the on-ramp cell. Hence the outflow from a ramp-metered
cell is limited such that zi ≤ βidi(xi), where βi ∈ [0, 1] if the control action is
time-averaged and βi ∈ {0, 1} if the control action is not time-averaged.
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(a) The network.
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(b) The graph representation.

Figure 2.5 A subset of a traffic network and its graph representation. In the graph,
each link corresponds to one lane or cell wherein traffic is stored. The nodes in the
graphs correspond to junctions.

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

Figure 2.6 Example of a set of phases for a T-junction. The set of phases consist in
this case of three different phases.

Traffic Signal Control
Traffic signals are introduced to avoid collisions and make the traffic flow smoother
in signalized junctions. To each junction or set of junctions, there is a set of phases
assigned where each phase contains a set of lanes that can receive green light
simultaneously. The controller’s task is then to decide which phase that should be
activated and for how long.

To describe which cells that can receive service simultaneously in a junction, we
introduce phases, where each phase contains a subset of edges. For a given junction
v ∈ V , with p phases and n incoming cells, the set of phases can be described as a
phase matrix P(v) ∈ Rn×p

+ where

P(v)i, j =

{
1 if cell i belongs to phase j
0 otherwise

.

Example 2.4
Consider the junction denoted v1 in the network shown in Figure 2.5. One possible
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set of phases is illustrated in Figure 2.6. The corresponding phase matrix is then

P(v1) =

0 1 1 0 0
1 0 0 1 0
0 0 0 0 1


T

.

We will in Chapter 4 show that the set of phases can span over more than one
junction as well.

Just like the ramp-metering, the control action will limit the outflow from the
cells such that zi ≤ ζidi(xi), where ζi ∈ [0, 1] if the control action is time-averaged
and ζi ∈ {0, 1} if the control action is not time-averaged.

Routing
The routing problem is about how traffic should be guided through a traffic network,
i.e., which paths the traffic should take. While the traffic management often solves
the previous two control problems, the routing problem is usually solved by the
driver herself or some third-party service. Depending on which type of objective
and where the routing decisions are taking place, the control actions can be very
different. For instance, as shown earlier, the traffic can be guided towards a system
optimal assignment either via direct guidance or via tolls. However, all control
actions will affect the R matrix in (2.1).
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3
On the Well-Posedness of a
Feedback Controlled Point
Queue Model

In this chapter, we introduce feedback to the point queue model presented in Chap-
ter 2. As already observed in Chapter 2, the dynamics of the flow network may be
specified through inequalities when the traffic volumes are zero in some cells. This
means that classical existence and uniqueness results of a solution to a dynamical
system do not apply. However, even if inequalities specify the outflows from some
cells, wewill in this chapter show that a unique solution exists given that the feedback
controller is Lipschitz continuous.

This problem without feedback has been studied before, originally for Brownian
motion in [Harrison and Reiman, 1981]. Later, the idea has been applied to open loop
traffic signal control in [Muralidharan et al., 2015], where the authors assume that
there is a strictly positive propagation delay between the junctions. In [Hosseini and
Savla, 2017] the authors solve the existence and uniqueness problem with arbitrary
delays and also provide an algorithm to compute the trajectories. While the previous
work only considers an open-loop control, where the outflow control solely depends
on time, we provide a result when the control signals are determined by feedback.

3.1 The Feedback Controlled Continuous Time Point Queue
Model

The point queue model, sometimes referred to as a vertical queue model, is a simple
fluid model for queuing networks. When studying the point queue model, we will
assume that there are no supply constraints present in the network dynamical flow
model presented in Chapter 2, i.e., si(xi) = +∞ for all cells i ∈ E . Moreover, the
outflow from each cell i ∈ E is limited by a feedback-controller, denoted ζi : X →
R+. Sincewe are considering a point queue dynamical system, the demand is equal to
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the queue’s outflow capacity whenever the traffic volume is strictly positive. Hence,
di(xi) = ci for all cells i ∈ E . To simplify the notation, we let C denote the matrix
with the outflow capacities on the diagonal, i.e., C = diag(c). Within this setting,
the dynamics for flow networks in (2.1) can now be described in vector form as

Ûx = λ + (RT − I)z , (3.1)
0 ≤ z ≤ Cζ(x) , (3.2)
0 = xT (z − Cζ(x)) . (3.3)

Observe that the two last equations imply that when the traffic volume is non-zero in
one cell, the outflow from the cell will be the maximum outflow that is allowed by
the controller. In other words, if the traffic volume xi > 0 for some cell i ∈ E , then
the outflow zi = ciζi(x). Hence Assumption 2.1 is satisfied.

3.2 Existence and Uniqueness of Solution

In this point queue model, it may happen, just like in reality, that an empty cell
receives a green-light. This is the reason why inequalities specify the outflow, since
if the outflow was equal to the one prescribed by the controller, the traffic volume
may have become negative. Moreover, the inflow to the downstream cells has to be
correct in the model as well. That is why it is not sufficient to let the inflow to a
downstream cell equal the control signal times the flow capacity and just set the
cell’s traffic volume to zero whenever it becomes negative.

In this sectionwewill show that even if the outflow is just limitedwith inequalities
when the traffic volume is zero, there exists a unique continuous trajectory as a
solution to the dynamics (3.1) – (3.3). We start this section by giving a motivating
example of such occurrence, and also show what a continuous solution can be. After
that, a formal proof for the existence of solutions to the dynamics in (3.1) – (3.3) is
provided.

A Motivating Example
To illustrate the issue of existence and uniqueness of solutions for a dynamical flow
network, we provide a small motivating example.

Example 3.1
Consider the small network whose topology is depicted in Figure 3.1. Let the routing
matrix be

R =


0 0 0.6 0.4
0 0 0.3 0.7
0 0 0 0
0 0 0 0

 ,
and the exogenous inflows be λ1 = 0.5, λ2 = 0.4, and λ3 = λ4 = 0. The outflow
capacity is set to be ci = 1 for all cells i ∈ {e1, e2, e3, e4} and the controller for cell
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e1

e2

e3

e4

Figure 3.1 The network in Example 3.1.
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Figure 3.2 How the traffic volumes evolve in time in Example 3.1.

e1 and e2 is
ζ1(x) = ζ2(x) = x1 + x2 + 0.3 ,

while for cell e3 and e4, it is

ζ3(x) = ζ4(x) = x3 + x4
x3 + x4 + 0.1

.

In this example, ζ1 and ζ2 will both be strictly positive, even when the traffic
volumes in those cells are zero. Moreover, ζ3 will be strictly positive when the traffic
volume is strictly positive in cell e4, even if cell e3 is empty.

The unique trajectories for the traffic volumes, starting from x(0) = 0 are shown
in Figure 3.2. Figure 3.3 shows the two control actions, and Figure 3.4 shows the
actual outflows from each edge. For two of the edges, e2 and e4, the actual outflow is
less than the one given by the controller, since the traffic volumes are zero on those
edges.
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Figure 3.3 How the control actions evolve in time in Example 3.1.
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Figure 3.4 How the actual outflows evolve in time in Example 3.1.

A Well-Posedness Result
In this section, we present a proof of existence and uniqueness of a solution to the
dynamical system (3.1) – (3.3). The proof is an extension of the reflection principle
for Brownian motion, previously presented in [Harrison and Reiman, 1981]. In our
case, the outflow from each cell is determined by a Lipschitz continuous feedback
controller, while the proof in [Harrison and Reiman, 1981] considers the case when
the outflow is limited by a predefined time dependent function, i.e., open-loop
control. Apart from that the outflow is feedback-controlled, another key difference
to [Harrison and Reiman, 1981] is that we allow for non-linear dynamics, which
makes the contraction argument used in proof different.
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Theorem 3.1
Let R be an out-connected routing matrix and λ : R+ → RE

+ a bounded measurable
function describing the time-varying exogenous inflow vector. If ζ : X → RE

+

Lipschitz continuous, then for every initial condition x(0) ∈ X there exists a unique
solution to the dynamics given by (3.1) – (3.3). �

The proof of Theorem 3.1 is divided into two main parts. First we will introduce
an operator and show that this operator is a contraction and hence it has a fixed point.
The operator depends on the routing matrix R, and the contraction can be shown due
to the fact that the routing matrix is assumed to be out-connected. In the second part,
we will show how the point queue dynamics in (3.1) – (3.3) relates to this operator
and that a unique solution to the dynamics exists.

Throughout the proof the of Theorem 3.1, we will make use of the fact that from
Proposition 2.1 that since the routing matrix is out-connected there exists a norm
‖·‖† onRE such that the induced matrix norm of R satisfies ‖R‖† < 1. ForT > 0, we
shall consider the space CT of continuous vector-valued functions f : [0,T] → RE

equipped with the norm

‖ f ‖CT =




 sup

0≤t≤T
| f (t)|






†
.

As a first step towards the proof of Theorem 3.1, to a given continuous vector-
valued function γ in CT , we associate the operator Πγ : CT → CT defined as[

Πγ(v)
] (t) = sup

0≤s≤t

[
RT v(s) − γ(s)]

+
, 0 ≤ t ≤ T , (3.4)

where [a]+ is the vector of positive parts of entries of a ∈ RE . In other words,
[a]+ = max(a, 0)where the max is applied entry-wise. Some fundamental properties
of the operator Πγ are summarized in the following lemma:

Lemma 3.1
For every T > 0 and every continuous vector-valued function γ in CT , the operator
Πγ is a contraction on CT , hence it has a unique fixed point such that

Ψ(γ) = Πγ(Ψ(γ)) ∈ CT . (3.5)

Moreover, the operator Ψ : CT → CT that maps a continuous vector-valued function
γ into the unique fixed point of the associated operator Πγ is Lipschitz continuous.�

Proof. We will first prove that Πγ is a contraction on CT . For any v,w in CT ,
0 ≤ s ≤ t ≤ T , and i in E , put

f (s) = [RT v(s) − γ(s)]i ,
g(s) = [RTw(s) − γ(s)]i ,
h(s) = f (s) − g(s) .

(3.6)
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Then choose some

s∗ ∈ arg max
0≤s≤t

[ f (s)]+ , q∗ ∈ arg max
0≤s≤t

[g(s)]+ ,

and observe that

[ f (s∗)]+ = [g(s∗) + h(s∗))]+ ≤ [g(s∗)]+ + [h(s∗))]+ , (3.7)
[g(q∗)]+ = [ f (q∗) − h(q∗))]+ ≤ [ f (q∗)]+ + [−h(q∗))]+ . (3.8)

Using (3.7) and [ f (s∗)]+ = sup0≤s≤t [ f (s)]+, we get

sup
0≤s≤t

[h(s)]+ ≥ [h(s∗)]+ ≥ [ f (s∗)]+ − [g(s∗)]+ ≥ sup
0≤s≤t

[ f (s)]+ − sup
0≤s≤t

[g(s)]+ .

Analogously, (3.8) and [g(q∗)]+ = sup0≤s≤t [g(s)]+ give

sup
0≤s≤t

[h(s)]− = sup
0≤s≤t

[−h(s)]+ ≥ [−h(q∗)]+

≥ [g(q∗)]+ − [ f (q∗)]+ ≥ −
(

sup
0≤s≤t

[ f (s)]+ − sup
0≤s≤t

[g(s)]+
)
.

Therefore,

sup
0≤s≤t

|h(s)| = max
{

sup
0≤s≤t

[h(s)]+, sup
0≤s≤t

[h(s)]−
}

≥
���� sup
0≤s≤t

[ f (s)]+ − sup
0≤s≤t

[g(s)]+
���� .

Now, define the vector α ∈ RE with entries

αi = sup
0≤t≤T

�� [Πγ(v)] i (t) − [
Πγ(w)

]
i
(t)

�� ,
for all i ∈ E . Using (3.4) and (3.6), we get

αi = sup
0≤t≤T

���� sup
0≤s≤t

[ f (s)]+ − sup
0≤s≤t

[g(s)]+
����

≤ sup
0≤t≤T

sup
0≤s≤t

|h(s)|

= sup
0≤t≤T

��[RT (v(t) − w(t))]i
��

≤
∑
j

Rji sup
0≤t≤T

|vj(t) − wj(t)| .

Hence, 

Πγv − Πγw


CT
= ‖α‖† ≤



RT



† ‖v − w‖CT .
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Since


RT




† < 1, the equation above proves that Πγ is a contraction.

In order to prove the second part of the Lemma 3.1, the fact that the operator
Ψ : CT → CT is a Lipschitz continues operator, for k ≥ 0, let Πk

γ be the composition
of Πγ with itself k times. Then for two functions γ, η ∈ CT and 0 ≤ t ≤ T , we have
that �� [Πk+1

γ (v)
] (t) − [

Πk+1
η (v)

] (t)��
=

���� sup
0≤s≤t

[
RT [Πk

γ v](s) − γ(s)
]
+
− sup

0≤s≤t

[
RT [Πk

ηv](s) − η(s)
]
+

����
≤

���� sup
0≤s≤t

[
RT

(
[Πk

γ v](s) − [Πk
ηv](s)

)
− (γ(s) − η(s))

]
+

����
≤ sup

0≤s≤t

���RT
(
Πk
γ v(s) − Πk

ηv(s)
)��� + sup

0≤s≤t
|γ(s) − η(s)| ,

so that 

Πk+1
γ (v) − Πk+1

η (v)



CT
≤



RT



†


Πk

γ v − Πk
ηv




CT
+ ‖γ − η‖CT .

It follows that, for all v in CT and k ≥ 0,

Πk
γ (v) − Πk

η(v)



CT
≤

k∑
l=0



RT


l
† ‖γ − η‖CT .

Since


RT




† < 1 and Πγ and Πη are both contractions with fixed points Ψ(γ) and

Ψ(η), respectively, taking the limit as k grows large in the above gives

‖Ψ(γ) − Ψ(η)‖CT = lim
k→∞



Πk
γ (v) − Πk

η(v)



CT

≤
+∞∑
l=0



RT


l
† ‖γ − η‖CT =

‖γ − η‖CT
1 −



RT



†
.

which concludes the proof of the Lemma 3.1. �

Our next step towards proving Theorem 3.1 consists of finding an equivalent
formulation of the network flow dynamics described by (3.1) – (3.3). Towards this
goal, we introduce two operators

Φ, Γ : CT → CT ,
where

Φ(y) = y + (I − RT )Ψ(y) , (3.9)
and

Γ(x)(t) = x(0) +
∫ t

0

(
λ(s) − (I − RT )Cζ(x(s))

)
ds . (3.10)

The relationship between the solution to the controlled traffic network dynam-
ics (3.1) – (3.3) and the operators (3.9) and (3.10) is given by the following lemma.
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Lemma 3.2
Let R be an out-connected routing matrix, λ a possible, time varying exogenous
inflow vector, ζ : X → Z a Lipschitz continuous function, and x(0) ∈ X . Then
given any initial condition, (x(t), z(t)) is a solution of the controlled network flow
dynamics (3.1) – (3.3) in a time interval [0,T] if and only if there exist absolutely
continuous y,w ∈ CT such that

x = Φ(y) , (3.11)
y = Γ(x) , (3.12)
w = Ψ(y) , (3.13)
z = Cζ(x) − Ûw , (3.14)

for almost all t ∈ [0,T]. �

Proof. We divide the proof into two parts: in the first part we prove the if part and
in the second part the only if part.
If-part: Let (x(t), z(t)) be a solution of the controlled network flow dynamics
(3.1) – (3.3) on [0,T] with initial condition x(0). For 0 ≤ t ≤ T , let

w(t) =
∫ t

0
(Cζ(x(s)) − z(s))ds , (3.15)

y(t) = x(t) − (I − RT )w(t) . (3.16)

We will show that (3.11) – (3.14) are satisfied. Indeed, taking the time derivative of
both sides of (3.15) gives (3.14). On the other hand, (3.16), (3.1), and (3.15) yield

y(t) = x(t) − (I − RT )w(t)

= x(0) +
∫ t

0
(λ(s) − (I − RT )z(s))ds − (I − RT )w(t)

= x(0) +
∫ t

0
(λ(s) − (I − RT )Cζ(x(s)))ds

= Γ(x)(t) ,
so that (3.12) is satisfied as well. Moreover, (3.16) and (3.13) clearly imply (3.11).
Hence, it remains to prove (3.13). For that, first observe that (3.15) and (3.3) imply
that

x ≥ 0 , xT Ûw = 0 , 0 ≤ Ûw ≤ Cζ(x) . (3.17)

In turn, the above and (3.16) imply that, for 0 ≤ s ≤ t,

w(t) ≥ w(s) = RTw(s) + x(s) − y(s) ≥ RTw(s) − y(s) ,
so that

w(t) ≥ sup
0≤s≤t

{
RTw(s) − y(s)} .
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Since w(0) is non-increasing and w(0) = 0, we have w(t) ≥ 0, which together with
the above gives

w(t) ≥ sup
0≤s≤t

[
RTw(s) − y(s)]

+
= Πy(w)(t) .

In fact, if the above were not an identity for some 0 ≤ t ≤ T , there would exist some
0 ≤ t∗ ≤ T and i ∈ E such that

wi(t∗) > sup
0≤s≤t∗

{∑
j

Rjiwj(s) − yi(s)
}
, Ûwi(t∗) > 0 . (3.18)

But the second inequality above and (3.17) imply that xi(t∗) = 0 so that, by (3.16),
yi(t∗) =

∑
j Rjiwj(t∗) − yi(t∗) which contradicts (3.18). Hence, we necessarily have

w(t) = Πy(w)(t) , 0 ≤ t ≤ T ,

i.e., w is the fixed point Πy on CT , so that (3.13) is satisfied.
Only-if-part: Let w, x, y, z ∈ CT be such that y and w are absolutely continuous and
(3.11) – (3.14) are satisfied. Then, for 0 ≤ t ≤ T , an application of (3.11), (3.9),
(3.12), (3.13), (3.10), and (3.14) give

x(t) = Φ(y)(t) = y(t) + (I − RT )Ψ(y)(t) = Γ(x)(t) + (I − RT )w(t)

= x(0) +
∫ t

0

(
λ(s) − (I − RT )Cζ(x(s))

)
ds + (I − RT )

∫ t

0
(Cζ(x(s)) − z(s)) ds

= x(0) +
∫ t

0

(
λ(s) − (I − RT )z(s)

)
ds ,

hence (3.1) is satisfied. On the other hand, (3.11), (3.9), (3.5), and (3.4) give

x(t) = Φ(y)(t)
= y(t) + (I − RT )Ψ(y)(t)
= y(t) − RTΨ(y)(t) + sup

0≤s≤t

[
RTΨ(y)(s) − y(s)]

+

≥ 0 .

(3.19)

Moreover, (3.13), (3.5), and (3.4) yield

w(t) = Ψ(y)(t) = sup
0≤s≤t

[
RTw(s) − y(s)]

+
, (3.20)

so that wi(t) is non-decreasing for all i ∈ E , hence Ûw ≥ 0 . Furthermore, let I :=
{i ∈ E | Ûwi(t) > 0} be the set of cells i such that wi(t) is strictly increasing at time t.
It then follows from (3.20) that

wi(t) =
∑
j∈E

Rjiwj(t) − yi(t) , i ∈ I . (3.21)
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Equation (3.21) implies that, for i ∈ I,

Ûwi(t) =
∑
j∈E

Rji Ûwj(t) − Ûyi(t)

=
∑
j∈I

Rji Ûwj(t) − λi(t) + ciζi(x(t)) −
∑
j∈E

Rjicjζj(x(t))

≤
∑
j∈I

Rji Ûwj(t) − λi(t) + ciζi(x(t)) −
∑
j∈I

Rjicjζj(x(t)) .

The above implies that

(I − RT
II) ÛwI(t) ≤ (I − RT

II)CζI(x(t)) − λI(t) , (3.22)

where RII is the I × I block of R and ÛwI(t), ζI(x(t)), and λI(t) are the I blocks
of the corresponding vectors Ûw(t), ζI(x(t)), and λI(t). Since R is out-connected,
it follows from Proposition 2.1 that each of its diagonal blocks such as RII has
spectral radius smaller than 1. Hence (I − RT

II) invertible with nonnegative inverse
(I − RT

II)−1. Hence, (3.22) implies that

ÛwI(t) ≤ CζI(x(t)) − (I − RT
II)−1λI(t) ≤ CζI(x(t)) .

Since ÛwE\I(t) = 0 by definition and we have already noticed that Ûw(t) ≥ 0, we thus
have that z = Cζ(x) − Ûw satisfies

0 ≤ z ≤ Cζ(x) . (3.23)

Finally, using again (3.11), (3.9), (3.13), and (3.21), one gets that

xi(t) = yi(t) + wi(t) −
∑
j

Rjiwj(t) = 0

for every i ∈ I. Along with (3.19) and (3.23), this implies that

xT (Cζ(x) − z) = xT Ûw = 0 . (3.24)

From (3.19), (3.23), and (3.24) it follows that (3.3) is satisfied. Therefore (x, z) is a
solution of (3.1) – (3.3). �

Remark 3.1
There is an interpretation of the quantities in Lemma 3.2. The quantity y can be seen
as the traffic volumes in the cells if the volumes were allowed to be negative, and
w is how much one must add to this quantity to make sure that the traffic volume x
stays non-negative. In Figure 3.5 those trajectories are illustrated for a single cell,
i.e., R = 0. Observe that w(t) is non-decreasing and only increases when x = 0. �
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y(t)

t
w(t)

Ûy = λ − ζ(x)
w(t) = sup0≤s≤t [−y(s)]+

x(t)

t

x = y + w

Figure 3.5 The connection between the quantities x, y and w in Lemma 3.2 for the
case when the network consists of a single cell

Proof of Theorem 3.1. It follows from Lemma 3.1 that Ψ is a Lipschitz continuous
operator on CT . Hence, the operator Φ is Lipschitz-continuous as well, and we shall
denote by φ > 0 its Lipschitz constant. Since ζ : X → RE is a Lipschitz continuous
function, the operator Γ is Lipschitz-continuous on CT for all T > 0, with Lipschitz
constant equal to $T for some constant $ > 0 that is independent of T . It then
follows that, for 0 < T < ($φ)−1, the composition operator Φ ◦ Γ : CT → CT is
Lipschitz continuous with Lipschitz constant

L = $φT < 1 .

Therefore,Φ◦Γ is a contraction on CT , hence it has a unique fixed point x = Φ(Γ(x)).
Let y = Γ(x), w = Ψ(y), and z = ζ(x) − Ûw. By Lemma 3.2 we get that this (x, z)
is the unique solution to (3.1) – (3.3) on [0,T] with initial condition x(0). Existence
and uniqueness of the solution (x, z) of (3.1) – (3.3) can then be extended to the
whole semi-infinite time interval [0,+∞) by standard arguments. �

3.3 Conclusions

In this chapter, we showed that the point queue dynamics introduced in Chapter 2
have a unique solutionwhen the outflow is limited by aLipschitz continuous feedback
controller. Since it may can happen that controller allows for outflow evenwhen a cell
is empty, the actual outflow from one cell is only bounded by inequalities. Hence,
classical results about well-posedness for dynamical systems can not be applied.
Nevertheless, due to the fact that the routing matrix is out-connected combined with
assumption of Lipschitz-continuity, existence and uniqueness of a solution to the
dynamics can be ensured.

In the next chapter, we will show how a throughput optimal controller for this
point queue dynamics can be designed, and utilize the results in this chapter to
ensure well-posedness of the problem.
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4
Decentralized Throughput
Optimal Traffic Signal
Control

In the chapter, we present a feedback control law for traffic signals named the Gen-
eralized Proportional Allocation (GPA). We start by introducing phase constraints
to the dynamical point queue model presented in the previous chapter. Then we
post a fundamental bound on how much exogenous inflow any controller for the
point-queue dynamical network can handle, independent of the control strategy.
In the following section, we present the GPA controller for the case when every
cell belongs to only one phase, then show that the with the previously presented
point-queue dynamics, the GPA controller can stabilize the network whenever the
fundamental bound is satisfied. After illustrating the stability results with numerical
simulations, two generalizations of the results are made. The first generalization is
to allow the phases span over multiple junctions, and the second generalization is to
the case when one cell may belong to several phases.

4.1 Point Queue Model with Phases

We recall from Chapter 2 that the control action in ζ(x) is limited by the set of
phases assigned to each junction. To formalize the concept of phases introduced in
Chapter 2, to each junction v ∈ V we assign a set of phases

P (v) ⊆ {Q | Q ⊂ Ev} .
The elements in P (v) are subsets of incoming lanes to the junction Ev . The set P (v)
can then be described by the phase matrix, already introduced in Chapter 2, as

P(v)i, j =

{
1 if cell i ∈ Ev belongs to phase j ∈ P (v) ,
0 otherwise.
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To control which phase that should be activated in each junction in the network,
we introduce for each junction v ∈ V the set of phase activations

U (v) =
{
u ∈ RP (v)

+ | 1Tu ≤ 1
}
.

For a given control signal u ∈ U (v), the element ui corresponds to the fraction of
time that phase i ∈ P (v) is activated.

While the previous sets only models the phases and phase activations for one
isolated junction, we can construct corresponding sets for the whole network as
well. Under the assumption that all junctions are signalized, the set of phases for the
whole network can be constructed as

P =
⋃
v∈V

P (v) ,

where its corresponding phase matrix P is given by

P =


P(1)

P(2)
. . .

P(v)


.

The set of all phase activations is the Cartesian product of the phase activations for
each junction, hence

U =
∏
v∈V

U (v) .

From a given phase activation vector u, the outflow controller ζ is given by

ζ = Pu . (4.1)

Equation (4.1) determines ζ(x) as a function of the phase activation. In effect, this
imposes an additional constraint to the point-queue dynamics in (3.1) – (3.3). To
summarize, the flow network dynamics for point queues constrained by phases is
given by

Ûx = λ + (RT − I)z , (4.2)
0 ≤ z ≤ Cζ , xT (z − Cζ) = 0 , (4.3)

ζ = Pu . (4.4)

Our main goal of this chapter is to find a stabilizing decentralized outflow con-
troller. We say that the dynamics in (4.2) – (4.4) is stable, when the traffic volume
x(t) remains bounded for all t ≥ 0. Observe that, under the assumption of con-
stant exogenous inflows, this definition of stability implies that all the traffic that
exogenously flows into the network will also leave the network eventually.
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4.2 Fundamental Bound on Exogenous Inflows

In this section, we present a fundamental bound on how large exogenous inflow
a network can handle. Clearly, if the exogenous flows are too large, no control
scheme can handle them. This bound states that any controller –independent ofwhich
information the controller has knowledge of– cannot manage a larger exogenous
inflow than the one specified by this bound.

For a given exogenous inflow λ, it is obvious that if (λ, R) is inflow-connected,
then routing matrix R has to be out-connected for the states to stay bounded. To
describe which values the outflow vector z can take, we introduce the set of feasible
outflow vectors

Z =
{
z ∈ RE

+ | 0 ≤ z ≤ CPu for some u ∈ U}
. (4.5)

The following proposition gives a necessary condition for any exogenous inflow
vector λ to be stabilizable:

Proposition 4.1—Necessary condition for stability
Let R be an out-connected routing matrix and λ a possibly time-varying exogenous
inflow vector. If the dynamics (4.2) – (4.4), with an initial state x(0) ∈ RE

+ admit a
stable solution, then the average inflow vector

λ̄(t) = 1
t

∫ t

0
λ(s)ds ,

satisfies
lim

t→+∞ dist
(
(I − RT )−1λ̄(t),Z

)
= 0 , (4.6)

where dist(x,A) denotes the shortest distance between an element x ∈ RE
+ and a set

A ⊂ RE
+ . In particular, if the exogenous inflow vector λ is constant, then

(I − RT )−1λ ∈ Z . (4.7)
�

Proof. For every t > 0 and initial state x(0), integrating (4.2) gives

x(t) = x(0) + tλ̄(t) − (I − RT )
∫ t

0
z(s)ds . (4.8)

Since R is out-connected, it follows from Proposition 2.1 that (I − RT ) is invertible.
Multiplying both sides of (4.8) by 1

t (I − RT )−1 and rearranging terms yields

(I − RT )−1λ̄(t) = z̄(t) + ε(t) , (4.9)

where
z̄(t) = 1

t

∫ t

0
z(s)ds , ε(t) = 1

t
(I − RT )−1 (x(t) − x(0)) .

45



Chapter 4. Decentralized Throughput Optimal Traffic Signal Control
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Figure 4.1 The T-junction in Example 4.1.

Since z(s) ∈ Z for 0 ≤ s ≤ t and Z is a convex set, it follows that z̄(t) ∈ Z .
Hence (4.9) implies that

dist
(
(I − RT )λ̄(t),Z

)
≤ ‖ε(t)‖ , t ≥ 0 . (4.10)

On the other hand, x(t) is a stable solution of the dynamics (4.2) – (4.4), so x(t)
remains bounded in t ≥ 0. This implies that ‖ε(t)‖ converges to 0 as t grows large,
so that (4.6) follows from (4.10). In the special case of constant inflow vector λ, we
have (I − RT )−1λ̄(t) = λ, so that (4.6) reduces to (4.7). �

Observe that if λ is a constant exogenous arrival vector, the quantities in (4.7)
are the average inflows to each cell in the network. Henceforth, whenever they exist,
we will denote these flows as

a = (I − RT )−1λ ∈ RE
+ .

Example 4.1
Consider the junction in Figure 4.1. Suppose that this junction has two phases, either
lane 1 and lane 2 receive green light simultaneously or lane 3 receives green light.
The phase matrix is then given by

P =

1 0
1 0
0 1

 .
For this phase matrix, the set Z is depicted in Figure 4.2, where the axis shows

the average inflow to each cell. �

Since by Proposition 4.1 the vector of average inflows, a = (I − RT )−1λ, has
to belong to Z , with full knowledge of the exogenous inflow rates and the routing
matrix, it is possible to design an open-loop controller that keeps the queue lengths
bounded. However, from a practical point of view both the inflow rates and the
turning ratios are seldom known, and even if they were, controlling the service
allocation based on those leads to poor robustness. Hence a feedback solution –that
requires as little information about the network as possible– is strongly preferable.
Such a controller will be presented in the next section.
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Figure 4.2 The set Z in Example 4.1.

4.3 Generalized Proportional Allocation (GPA) Control

In this section we will construct a decentralized feedback control policy for the
point queue dynamics in (4.2) – (4.4) that is able to stabilize the network whenever
it is possible for any control policy to do so. We will assume that the phases are
orthogonal, i.e.,

P1 ≤ 1 .
This means that every cell belongs to at most one phase. On the other hand, every
cell with some average inflow, i.e., cells i ∈ E with ai > 0, must belong to one phase
in order to be stabilizable, so under the assumption that (λ, R) is inflow-connected,
the fact that the phases are orthogonal implies that every lane belongs to exactly
one phase when the dynamics is stable. This means that if the network is inflow
connected, for orthogonal phases it must hold that P1 = 1. Later in this chapter, we
will show how this assumption can be relaxed.

Remark 4.1
The phases are orthogonal in both Example 2.4 and Example 4.1. �

The controller we propose relies only on local information on traffic volumes.
With local information we mean that the only measurements the controller in a
junction v ∈ V needs is the traffic volume in the in-coming cells Ev . To stress this
out, we let x(v) denote the projection of the traffic volumes x ∈ X onto Ev .

Under the assumption that the phases are orthogonal, we introduce the general-
ized proportional allocation (GPA) that is for a junction v ∈ V given by

u(v)q (x(v)) =
(P(v)T x(v))q

κv +
∑

r ∈P (v) (P(v)T x(v))r
=

∑
i P(v)iq x(v)i

κv +
∑

j∈Ev
x(v)j

, q ∈ P (v) . (4.11)

In the equation above, κv > 0 is a parameter. It is introduced to capture the fact that
it is seldom in practice possible to switch between different phases without loosing
some control action during the phase shift. However, the fraction of time when no
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cell receives service is decreasing with the demand, something that well captures
the fact that in applications such as traffic, one usually lets the traffic signal cycles
be longer when the demand is higher [Roess et al., 2011].

The proposed control strategy has several benefits. First of all, it is distributed,
the control action for each junction can be computed separately. Moreover, the
controller does not require any information about the network topology or how the
traffic propagate thought the network. These facts make the controller robust to
perturbations, but it also makes it easy to deploy new controllers into the network,
since one does not have to re-tune the already deployed ones.

The following example shows that any κ > 0, will make the cycle length depend
on the demands λ.
Example 4.2
Consider a dynamical flow network consisting of one junction with two incoming
lanes. The exogenous inflows to the lanes are λ1 > 0, λ2 > 0 and the capacities are
c1 > 0 and c2 > 0. The junction is equipped with two phases, one for each lane. The
dynamics is then described by

Ûx1 = λ1 − c1
x1

x1 + x2 + κ
,

Ûx2 = λ2 − c2
x2

x1 + x2 + κ
.

The traffic volumes at equilibrium are

(x∗1, x∗2) =
(

κρ1
1 − ρ1 − ρ2

,
κρ2

1 − ρ1 − ρ2

)
,

where ρi = λi/ci . Observe that the necessary condition for stability is ρ1 + ρ2 < 1.
The fraction of the cycle that will be allocated to phase shifts at the equilibrium is
then given by

κ

x∗1 + x∗2 + κ
=

1
1 + ρ1

1−ρ1−ρ2
+

ρ2
1−ρ1−ρ2

= 1 − ρ1 − ρ2 .

Since the total cycle length will be inverse proportional to the fraction allocated to
phase shifts, we get that the cycle length at equilibrium T(x∗)will be proportional to

T(x∗) ∝ 1
1 − ρ1 − ρ2

.

One classical formula for computing the cycle length in a static traffic signal
control setting is Webster’s formula [Webster, 1958], which suggests that that the
cycle length should be

T(x∗) = 1.5L + 5

1 − z∗1
c1
− z∗2

c2
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where L is the total lost time, i.e., the total time where no phase is activated. Hence,
for any κ > 0, the GPA will adjust the cycle length after the demand –without
knowing the demand or the lanes outflow capacity– in the same way as Webster’s
formula suggests. �

The example above also shows that while the cycle length at equilibrium does
not depend on κ, the traffic volumes at equilibrium do. To keep the traffic volumes
low at equilibrium, one should choose a small κ. However, as we will show in the
next chapter choosing a too small κ may decrease the performance of the controller
when it is discretized.

As a corollary of Theorem 3.1, we state existence and uniqueness of the solution
to the dynamics (4.2) – (4.4), with the GPA controller (4.11) for orthogonal phases
when the routing matrix R is out-connected.
Corollary 4.1
Consider the network flow dynamics (4.2) – (4.4) with a given initial state x(0) ∈ X .
Then, for every out-connect routingmatrix R the network flow dynamics (4.2) – (4.4)
with GPA controller (4.11) has a unique solution. �

Proof. Since the GPA controller in (4.11) is Lipschitz continuous, the outflow con-
troller ζ in (4.1) is Lipschitz continuous. The corollary is then a direct consequence
of Theorem 3.1. �

4.4 Stability of the GPA Controller

In this section we will analyze the stability properties of the GPA control (4.11) for
orthogonal phases. We will show that the network flow dynamics converge to a set
of states X ∗ such that the phase activation is at least as much as average arrival rate.
The remarkable feature of this result is that this happens even though the controller
has no explicit information about the flows.
Theorem 4.1
Assume that the exogenous inflow vector λ and routing matrix R are such that (λ, R)
is inflow-connected and R is out-connected. Introduce the set X ∗ as

X ∗ =
{

x ∈ X | Cζ(x) ≥ a , xT (Cζ(x) − a) ≥ 0
}
. (4.12)

If the vector of average arrival rates a = (I − RT )−1 lies in the interior of the set Z ,
defined in (4.5), i.e.,

a = (I − RT )−1λ ∈ int(Z) , (4.13)
the dynamical flow network with dynamics specified in (4.2) – (4.4) with the GPA
controller (4.11) is stable and, for every initial state x(0), the traffic volumes

x(t) → X ∗ ,
as t → +∞. �
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In order to prove Theorem 4.1 we shall use a LaSalle-Lyapunov argument. For
every junction v ∈ V , let C(v) = diag((ci)i∈Ev ) and

bv = 1 − min
u∈U (v) :

C(v)P(v)u≥a(v)
1Tu . (4.14)

Observe that the assumption a ∈ int(Z) implies that bv > 0. Then, define the scalar
fields

H : X × U → R , V : X → R ,

by

H(x, υ) =
∑
i∈E

xi log
(CPυ)i

ai
+

∑
v∈V

κv log
1 − 1Tυ(v)

bv
, (4.15)

and
V(x) = max

υ∈U
H(x, υ) , (4.16)

respectively.
As we shall see, the proof of Theorem 4.1 relies on showing that, when the gen-

eralized proportional allocation feedback controller (4.11) is employed, the quan-
tity V(x(t)) is non-increasing in t along solutions of the network flow dynamics
(4.2) – (4.4) and strictly decreasing outside the set X ∗ defined in (4.12). Let also
ω : X → RE be the vector field defined by

ωi(x) B log
Ciζi(x)

ai
, i ∈ E . (4.17)

The following lemma gathers a few properties of the functions above.

Lemma 4.1
Let u(x) be the generalized proportional allocation controller defined in (4.11), and
let H(x, υ), V(x), and ω(x) be defined as in (4.15), (4.16), and (4.17), respectively.
Then, for every state vector x ∈ X ,

V(x) = H(x, u(x)) ≥ 0 . (4.18)

Moreover, V(x) is absolutely continuous on X and

∂V(x)
∂xi

= ωi(x) , (4.19)

for all i ∈ E such that xi > 0. �

Proof. To show the first equality in (4.18), we have to show that

u(x) = argmax
υ∈U

H(x, υ) . (4.20)
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Let L : X × U ×RV
+ → R defined as

L(x, υ, γ) = H(x, υ) +
∑
v∈V

γv(1 − 1Tυ(v))

=
∑
i∈E

xi log
(CPυ)i

ai
+

∑
v∈V

κv log
1 − 1Tυ(v)

bv
+

∑
v∈V

γv(1 − 1Tυ(v))

=
∑
v∈V

(∑
i∈Ev

xi log
(CPυ)i

ai
+ κv log

1 − 1Tυ(v)
bv

+ γv(1 − 1Tυ(v))
)

be the Lagrangian associated with the optimization problem in (4.20). Then neces-
sary conditions for optimum is that

∂L

∂υ
(v)
q

=
1
υ
(v)
q

∑
i∈Ev

P(v)iq xi − 1
1 − 1Tυ(v) κv − γv = 0 .

Moreover, since the problem in (4.20) is convex, using the complementary slackness
principle [Boyd and Vandenberghe, 2004], we get that either 1 − 1Tυ(v) is zero,
which clearly cannot be a maximum, or γv = 0. For the latter case, it holds that

1
κv

∑
i∈Ev

P(v)iq xi =
υ
(v)
q

1 − 1Tυ(v) . (4.21)

Summing up the expression above over all phases q ∈ P (v) and using the fact that
the phases are orthogonal yields

1
κv

∑
i∈Ev

xi =
1Tυ(v)

1 − 1Tυ(v) ,

and hence
1Tυ(v) =

∑
i∈Ev

xi
κv +

∑
i∈Ev

xi
. (4.22)

By combining (4.21) and (4.22) we get

u(v)q =

∑
i∈Ev

Piq xi
κv +

∑
i∈Ev

xi
,

which, together with the concavity of (4.15), proves that (4.11) is a solution to (4.16).
The inequality in (4.18), that V(x) ≥ 0 follows from the fact that

V(x) = max
υ

H(x, υ) ≥ H(x, υ̃) ≥ 0 ,

where υ̃ ∈ U is chosen such that (CPυ̃)i ≥ ai for all i ∈ E and 1 − 1T υ̃(v) = bv for
all v ∈ V . That such a choice exists follows from the definition of bv in (4.14).
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To show (4.19), we follow the idea presented in [Walton, 2014]. For a x ∈ X ,
let x(ε ) ∈ X be a vector such that x(ε )i = xi + ε for some ε > 0 and x(ε )j = xj for all
j , i ∈ E . Then

V(xε ) − V(x) =
∑
j∈E

x(ε )j log
Cjζj(x(ε ))

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x(ε ))

bv

−
∑
j∈E

xj log
Cjζj(x)

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x)

bv

≥
∑
j∈E

x(ε )j log
Cjζj(x)

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x)

bv

−
∑
j∈E

xj log
Cjζj(x)

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x)

bv

= ε log
Ciζi(x)

ai
,

where the inequality follows from the fact that

H(x(ε ), u(x(ε ))) = max
υ∈U

H(x(ε ), υ) ≥ H(x(ε ), u(x)) .

In the same manner, we have that

V(x(ε )) − V(x) =
∑
j∈E

x(ε )j log
Cjζj(x(ε ))

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x(ε ))

bv

−
∑
j∈E

xj log
Cjζj(x)

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x)

bv

≤
∑
j∈E

x(ε )j log
Cjζj(x(ε ))

aj
+

∑
v∈V

κv log
1 − 1Tu(v)(x(ε ))

bv

−
∑
j∈E

xj log
Cjζj(x(ε ))

aj
+

∑
v∈V

κv log
1 − 1Tυ(v)(x(ε ))

bv

= ε log
Ciζi(x(ε ))

ai
.

The bounds combined together yields

log
Ciζi(x)

ai
≤ 1
ε
(V(x(ε )) − V(x)) ≤ log

Ciζi(x(ε ))
ai

.

Since ζ(x) depends continuously on x, letting ε → 0 proves the statement. �
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A key difficulty in proving that V(x(t)) is nondecreasing along solutions x(t) of
the network flow dynamics (4.2) – (4.4) consists in dealing with the time instants
when some of the entries xi(t) are equal to 0. Towards this goal, it is convenient to
introduce the following additional notation. Recall that AIJ denotes the restriction
of the matrix A, only containing the rows indexed by I and columns indexed J . For
a state vector x ∈ X , define I(x) = I and J (x) = J as

I = {i ∈ E | xi = 0} , J = { j ∈ E | xj > 0} , (4.23)

and the vector λ̃(x) ∈ RJ
+ , the matrix R̃(x) ∈ RJ×J

+ , and the scalar W(x) ∈ R as

λ̃(x) B λJ + (RT )JI(I − RT
II)−1λI , (4.24)

R̃T (x) B RT
JJ + (RT )JI(I − RT

II)−1(RT )IJ , (4.25)

W(x) B −ωT
J (x)

(
λ̃ − (I − R̃T (x))CJ ζJ (x)

)
, (4.26)

where CJ is a matrix with the outflow capacities of the cells in J on the diagonal.
The following lemma states a fundamental property of W(x).

Lemma 4.2
For every state vector x ∈ X , it holds true that

W(x) ≥ 0 ,

with equality if and only if
ζj(x) =

aj

Cj
,

for all j ∈ J . �

We prove Lemma 4.2 by combining two intermediate results. The first one is a lower
bound on W(x) as stated in the following.
Lemma 4.3
For every state x ∈ X we have

W(x) =
∑
j∈J

λ̃jFj(ωJ ) , (4.27)

where
F(ωJ ) = (I − R̃)−1diag((I − R̃)wJ )(eωJ − 1) ,

and eωJ is the vector with entries (eωJ )j = eω j for j ∈ J . Moreover,

Fj(ωJ ) ≥ χj , ∀ j ∈ J , (4.28)

where
χj =

∑
i,k∈J

N (j)
ik
ωi(eωi − 1) −

∑
i,k∈J

N (j)
ik
ωi(eωk − 1)
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and, for every i, j, k ∈ J ,

N (j)
ik
=

∑
h≥0

R̃h
ji

(
R̃ik + δ

(j)
k

(
1 −

∑
l∈J

R̃il

))
. (4.29)

�

Proof. It follows from λ = (I − RT )a that

λI = (I − RT
II)aI − (RT )IJ aJ ,

λJ = (I − RT
JJ )aJ − (RT )JIaI .

Using the above, as well as (4.24), we obtain that

(I − RT
JJ )aJ = λJ + (RT )JIaI

= λ̃ + (RT )JI(I − RT
II)−1(RT )IJ aJ

so that, by substituting (4.25), we get that

(I − R̃T )aJ = λ̃ .
Let A = diag((aj)j∈J ). Then, CJ ζJ (x) = AeωJ , so that

W(x) = −ωT
J

(
λ̃ − (I − R̃T )AeωJ

)
= −ωT

J

(
(I − R̃T )A1 − (I − R̃T )AeωJ

)
= −ωT

J (I − R̃T )A(1 − eωJ )

= λ̃T F(ωJ ) ,
which proves the first part of the claim.

In order to prove the second part, let

B(ωJ ) = diag((I − R̃)ωJ )(eωJ − 1) .
For i ∈ J , rewrite ωi = [ωi]+ − [ωi]− and observe that e[ωi ]± − 1 = [qi]±, where
qi = eωi − 1. Then,

Bi(ωJ ) = qi

(
ωi −

∑
k∈J

R̃ikωk

)
= [qi]+

(
[ωi]+ −

∑
k∈J

R̃ik[ωk]+
)
+ [qi]−

(
[ωi]− −

∑
k∈J

R̃ik[ωk]+
)

+ [qi]+
∑
k∈J

Rik[ωk]− + [qi]−
∑
k∈J

Rik[ωk]−

≥ Bi(ω+J ) + Bi(ω−J ) ,
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where the fact that [qi]±[ωi]∓ = 0 is used in the second equality. Since (I − R̃)−1 is
a nonnegative matrix, the above implies that

F(ωJ ) = (I − R̃)−1B(ωJ )
≥ (I − R̃)−1B([ωJ ]+) + (I − R̃)−1B([ωJ ]−)
= F([ωJ ]+) + F([ωJ ]−) .

Now, rewrite Fj(wJ ) as

Fj(ωJ ) =
∑
i∈J

∑
n≥0

R̃n
ji(ωi −

∑
k∈J

R̃ikωk)(eωi − 1)

=
∑
i,k∈J

N (j)
ik
(eωi − 1)ωi −

∑
i,k∈J

N (j)
ik
(eωi − 1)ωk

−
∑
i∈J

∑
n≥0

R̃n
ji

(
1 −

∑
l∈J

R̃il

)
(eωi − 1)ωj .

It then follows that

Fj(ωJ ) ≥ Fj([ωJ ]+) + Fj([ωJ ]−)

≥
∑
i,k∈J

N (j)
ik
(e[ωi ]+ − 1)[ωi]+

−
∑
i,k∈J

N (j)
ik
(e[ωi ]+ − 1)[ωk]+

+
∑
i,k∈J

N (j)
ik
(e[ωi ]− − 1)[ωi]−

−
∑
i,k∈J

N (j)
ik
(e[ωi ]− − 1)[ωk]−

≥
∑
i,k∈J

N (j)
ik
(eωi − 1)ωi −

∑
i,k∈J

N (j)
ik
(eωi − 1)ωk

= χj ,

thus completing the proof. �

The following lemma is generalization of the rearrangement inequality. It provides
alternative deterministic proof without necessity to use the probabilistic interpreta-
tion used in [Massoulié, 2007] to show the same result.

Lemma 4.4
Let µ ∈ Rn

++ be a strictly positive vector and let

M B
{

M ∈ Rn×n
+ | M1 = MT1 = µ

}
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be the set of nonnegative square matrices with both row and column sum vectors
equal to µ. Let f , g : R→ R be strictly increasing functions. Then, for every vector
v ∈ Rn, it holds true that

n∑
i=1

µi f (vi)g(vi) ≥
n∑
i=1

n∑
j=1

Mi j f (vi)g(vj) ,

for every M ∈M, with equality if and only if

Mi j = 0 , ∀ i, j : vi , vj . (4.30)
�

Proof. Let us define the function h : M→ R by

h(M) =
n∑
i=1

n∑
j=1

Mi j f (vi)g(vj) .

Observe that h(M) is a continuous function and M is a compact set. Hence, h(M)
admits a maximum over M. We shall prove the claim by showing that such a
maximum value is

max{h(M) | M ∈M} =
n∑
i=1

µi f (vi)g(vi) ,

and that the set of maximum points

argmax{h(M) | M ∈M} = {M ∈M | (4.30)} ,

coincides with the subset of matrices satisfying (4.30).
Without any loss of generality, we shall assume that

v1 ≤ v2 ≤ · · · ≤ vn−1 ≤ vn .

Now, letm ≤ n be the number of distinct entries of v and letH1, . . . ,Hm ⊆ {1, . . . , n}
be the subsets of indices such that vi = vj if and only if i, j ∈ Hl for the same
1 ≤ l ≤ m. Then, a matrix M ∈M satisfies (4.30) if and only if is in the following
block diagonal form

M =


M (1) · · · 0
...

. . .
...

0 · · · M (m)

 ,
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4.4 Stability of the GPA Controller

with each block M (l) ∈ R |Hl |× |Hl |
+ for 1 ≤ l ≤ m. Using the block diagonal form

above, for an arbitrary selection of kl ∈ Hl , 1 ≤ l ≤ m, one gets that

h(M) =
m∑
l=1

∑
i, j∈Hl

Mi j f (vi)g(vj)

=

m∑
l=1
|Hl |µkl f (vkl )g(vkl )

=

n∑
i=1

µi f (vi)g(vi) ,

for every matrix M ∈M satisfying (4.30).
We are then left with proving that no matrix M ∈M not satisfying (4.30) can

be a maximizer of h(M) over M. For any such M , let j be the unique value in
{1, 2, . . . , n−1} such that Mii = µi for all 1 ≤ i < j and Mj j < µj and let 1 ≤ q ≤ m
be such that j ∈ Hq . Then, since M ∈M and it does not satisfy (4.30), there must
exist indices k ∈ Hr and l ∈ Hs , with r, s ∈ {q + 1, . . . ,m}, such that

ε = min{Mjl, Mk j} > 0 .

Define the matrix M̃ ∈ Rn×n with entries

M̃hi =



Mhi + ε if i = j and h = j ,
Mhi + ε if i = l and h = k ,
Mhi − ε if i = l and h = j ,
Mhi − ε if i = j and h = k ,
Mhi otherwise .

It is easily verified that M̃ ∈M. Moreover, since j ∈ Hq , k ∈ Hr , and l ∈ Hs , with
r, s ∈ {q + 1, . . . ,m}, we have that vk > vj and vl > vj . Since the functions f and g

are strictly increasing, this implies that

f (vl) > f (vj) , g(vk) > g(vj) .

It follows that

0 < ε( f (vl) − f (vj))(g(vk) − g(vj))
= ε( f (vj)g(vj) + f (vl)g(vk) − f (vl)g(vj) − f (vj)g(vk))
= h(M̃) − h(M) .

The above shows that no matrix M ∈ M that does not satisfy (4.30) can be a
maximizer of h(M) over M, thus completing the proof. �
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We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. For i, j, k ∈ J , let N (j)
ik

be defined as in (4.29) and let

µ
(j)
i =

∑
h≥0

R̃h
ji .

Clearly, µ(j)j ≥ 1 > 0 and, more in general, µ(j)
k

> 0 if and only if k is reachable
from j through R̃. Let Kj be the the set reachable from j through R̃. Now observe
that, for i ∈ Kj , ∑

k∈K j

N (j)
ik
=

∑
h≥0

R̃h
ji = µ

(j)
i ,

while, for k ∈ Kj ,∑
i∈K j

N (j)
ik
=

∑
h≥0

R̃h+1
jk +

∑
h≥0
(R̃h

jk − R̃h+1
jk ) = µ(j)k .

On the other hand, observe that, since Kj is the set reachable from j, the restriction
of the matrix N (j) to Kj × Kj consists of a single diagonal block. Then, (4.28) and
Lemma 4.4 imply that, for every j ∈ J ,

Fj(ωJ ) ≥ χj

=
∑

i,k∈K j

N (j)
ik
ωi(eωi − 1) −

∑
i,k∈K j

N (j)
ik
ωi(eωk − 1)

≥ 0 , (4.31)

where the last inequality holds true as an equality if and only if w is constant over
Kj . Observe that, in this case, there exists some c ∈ R such that

Fj(ωJ ) =
∑
i∈K j

∑
h≥0

R̃h
ji

(
1 −

∑
l∈K j

R̃il

)
(ec − 1)c ≥ 0 . (4.32)

However, since Kj is out-connected, then necessarily there must exist at least one
i ∈ Kj such that

∑
l∈K j

R̃il < 1 and an h ≥ 0 such that R̃h
ji > 0. It then follows from

(4.31) and (4.32) that
Fj(ωJ ) ≥ 0 , j ∈ J ,

with equality if and only if ωi = 0 for every i ∈ Kj .
Finally, observe that ⋃

j∈J :λ̃ j>0

Kj = J .

The above, (4.27), and (4.32) imply that

W(x) =
∑
j∈J

λ̃jFj(ωJ ) ≥ 0 ,
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4.4 Stability of the GPA Controller

with equality if and only if ωi = 0 for all i ∈ J , i.e., if and only if

ζi(x) = ai
Ci
, ∀i ∈ J .

The proof of Lemma 4.2 is then complete. �

Proof of Theorem 4.1. For a state vector x ∈ X , let the subsets of cells I(x) = I
and J (x) = J be defined as in (4.23). Let (x(t), z(t)) be a solution of the dynamics
(4.2) – (4.4) with the GPA controller (4.11). Observe that, within any open time
interval (t−, t+) where no entry of x(t) changes sign, so that the sets I = I(x(t)) and
J = J (x(t)) remain constant, one has that zJ = ζJ (x) and

0 = ÛxI = λI + (RT )IJ zJ + RT
II zI − zI

so that the vector zI of outflows from the cells in I satisfies

zI = (I − RT
II)−1(λI + (RT )IJ ζJ (x)) . (4.33)

Moreover, the vector xJ of the states of the cells in J has time-derivative

ÛxJ = λJ + RT
JJ ζJ (x) + (RT )JI zI

= λ̃(x) − (I − R̃T (x))ζJ (x) . (4.34)

Now, letω : X → RE be the vector field defined by (4.17) andV,W : X → R be
the scalar fields defined by (4.16) and (4.26), respectively. Then, for every solution
(x(t), z(t)) of the dynamics (4.2) – (4.4) with the GPA controller (4.11) and for every
time instant t belonging to an open interval where the sign of all entries of x(t) are
constant, Lemma 4.1 and (4.34) imply that

ÛV(x(t)) =
∑
j∈J

∂V
∂xj
(x(t)) Ûxj(t)

= ωT
J (x(t))

(
λ̃(x(t)) − (I − R̃T (x(t)))ζJ (x(t))

)
= −W(x(t)) .

Since V(x(t)) is absolutely continuous as a function of t, it follows that

V(x(t)) = V(x(0)) −
∫ t

0
W(x(s))ds .

By rearranging terms in the identity above and using Lemma 4.1 one gets that∫ t

0
W(x(s))ds = V(x(0)) − V(x(t)) ≤ V(x(0)) , (4.35)
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for all t ≥ 0. For all J ⊆ E , let

ΩJ = int{t ≥ 0 | J (x(t)) = J } .

Now, it follows from Lemma 4.2 that

W(x(t)) ≥ 0 , t ≥ 0 . (4.36)

Hence V(x(t)) ≤ V(x(0)) for all t ≥ 0. We will now show that x(t) will be bounded
for all t ≥ 0.

Due to the assumption in (4.13), there exists a ũ ∈ U such that (CPũ)i = ai(1+εi)
for some εi > 0 for all i ∈ E .

V(x(0)) ≥ V(x(t)) = max
υ∈U

H(x, υ) ≥ H(x, ũ)

=
∑
i∈E

xi log(1 + εi) + D =
∑
i∈E
|xi | log(1 + εi) + D ,

where

D =
∑
v∈V

κv log
1 − 1T ũ(v)

bv
.

Hence x(t) will be bounded for all t ≥ 0.
Now, inequality (4.36), combined with (4.35), implies that the integral∫

ΩJ

W(x(t))dt ≤ lim
t→+∞

∫ t

0
W(x(t))dt ≤ V(x(0))

is finite for all J ⊆ E .
Since x(t) is bounded and W(x) is continuous, W(x(t)) is uniformly continuous

on ΩJ . This implies that
lim

t ∈ ΩJ
t → +∞

W(x(t)) = 0 , (4.37)

for all J ⊆ E such that ΩJ has infinite measure. Then, it follows from (4.37) and
Lemma 4.2 that

lim
t ∈ ΩJ
t → +∞

ζj(x(t)) =
aj

cj
, j ∈ J . (4.38)

On the other hand, one has that

λI = ((I − RT )a)I = (I − (RT )II)aI − (RT )IJ aJ . (4.39)
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4.4 Stability of the GPA Controller

Using (4.33), (4.38), and (4.39), one gets that

CIζI(x(t)) ≥ zI(t)
= (I − RT

II)−1(λI + (RT )IJ ζJ (x))
t∈ΩJ−→
t→∞ (I − RT

II)−1(λI + (RT )IJ aJ )
= aI . (4.40)

Together, (4.38) and (4.40) imply that

lim inf
t ∈ ΩJ
t → +∞

ζi(x(t)) ≥ ai
Ci
, i ∈ E ,

so that, for every J ⊆ E such that ΩJ has infinite measure,

lim
t ∈ ΩJ
t → +∞

dist (x(t),X ∗) = 0 .

The claim now follows from the fact that, on the one hand, since x(t) is absolutely
continuous,

R+ =
⋃
J ⊂E
ΩJ ∪ A

for some measure-0 subset of times A ⊆ R+, on the other hand,
lim

t→+∞ µ(ΩJ ∩ [t,+∞)) = 0

for every J ⊆ E such that ΩJ has finite measure. �

Observe that the set X ∗ can consist of more than one point, as the following
example shows.

Example 4.3
Consider a network with two cells and only one phase. Assume that the exogenous
inflows to the cells are strictly positive, λ1 = λ2 = λ > 0 and that the outflow
capacities for both cells are c1 = c2 = 1. Then, the dynamics is given by

Ûx1 = λ − z1

Ûx2 = λ − z2

where

0 ≤ z1 ≤ u(x) , x1(z1 − u(x)) = 0 ,
0 ≤ z2 ≤ u(x) , x2(z2 − u(x)) = 0 ,
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0 5 10 15 20
0

0.5

1

1.5

Time

x1
x2

Figure 4.3 The trajectories in Example 4.3. The solid lines are for the initial state
(x1(0), x2(0)) = (1.5, 1), while the dashed lines are for (x1(0), x2(0)) = (0.5, 0.7). For
both simulations λ = 0.5 and κ = 1.

and the controller is given by

u(x) = x1 + x2
x1 + x2 + κ

.

If x1(0) > x2(0), then limt→+∞ x1(t) > limt→+∞ x2(t). On the other hand, if
x1(0) < x2(0), limt→+∞ x1(t) < limt→+∞ x2(t). The trajectories for the two different
cases are shown in Figure 4.3. �

However, in the special case when every phase only consists of one cell, the
following corollary states that X ∗ is a singleton.

Corollary 4.2
In the case when each phase only consists of one cell, the solution to the dynam-
ics (4.2) – (4.4) with the GPA controller (4.11) converges to a point x∗ ∈ X , such
that x∗i > 0 for all i ∈ E and ζi(x) = ai/ci for all i ∈ E . This equilibrium point is
independent of the initial state x(0). �

Proof. When every phase consists of one cell, it holds that when xi = 0 for a cell i,
ζi(x) = 0. Since each cell is inflow-connected, this cannot be an equilibrium. Hence
the equilibrium must be such that x∗i > 0. From the definition of X ∗ in (4.12), it
follows that

ζi(x) = ai
ci
, ∀i ∈ E .

Let {e1, e2, . . . , el} be an arbitrary block in v ∈ V . Using the expression for the
GPA-controller in (4.11), the equality above can be rewritten as
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
c1 − a1 −a1 · · · −a1
−a2 c2 − a2 · · · −a2

. . .

−al −al · · · cl − al



x∗1
x∗2
...

x∗
l


= κv


a1
a2
...

al


,

Let a(v) = (ai)i∈Ev which can be written in compact form as

(C(v) − a(v)1T )(x(v)∗) = κva(v)

where the matrix (C(v) − a(v)1T ) is invertible if and only if 1− 1T (
C(v)

)−1
a(v) , 0,

which is clearly the case since ai < ci for all i ∈ E and it follows that X ∗ only
consists of one point. �

4.5 Simulation of Point Queue Dynamics with GPA

To illustrate the concepts presented in this paper, we will simulate the dynamical
system using an Euler solver in MATLAB. Since the traffic volumes can not go
below zero, we let the actual outflow from one cell be the minimum between the
outflow in that discretization step, and the remaining traffic volume in the cell. The
network topology we use is the one shown in Figure 2.5. We let the exogenous inflow
rate be 0.2 on all incoming cells from the outside of the network, i.e., cell 1 and 2
for junction v1 and v3 and cells 3 and 4 for junction v2 and v4. For simplicity, we let
the outflow capacity be 1 for every cell in the network.

For the vehicles propagating from junction v1 to junction v2, we let 20 percent go
to the devoted turn cell and 80 percent to the cell that leaves the network (and denote
this 20/80). For the vehicles propagating from junction v2 to junction v1, this ratio is
30/70 instead. For the vehicles propagation between junction v3 and v4, this ratio is
set to be 40/60 and in the opposite direction it is 50/50. For the north-south cells, we
assume that 65 percent of the vehicles will turn so they will leave the network, i.e.,
65 percent do a right turn in cell v1 and v3 and 65 percent do a left turn in cell v2 and
v4. To illustrate the controllers’ ability to adopt a new traffic setting, when one-third
of the simulation time has passed we change so that 60 percent of the vehicles are
turning away from the network in all four junctions instead.

The trajectories for the dynamics (4.2) – (4.4) with GPA control (4.11) in the
setting previously described are shown in Figure 4.4. For all four junctions, we let
the initial traffic volume in the cells be x(0) = [

0.5 0.4 0.3 0.2 0.1
]T . As we

can see, the controller manages to keep the traffic volume bounded, and adapt to a
new setting when the routing is changed. We also see that the traffic volume in a few
cells will be close to zero. This is expected since we have cells with different average
inflow rate belonging to the same phase, so the cell with lower average inflow rate
will stay at zero.
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Figure 4.4 How the traffic volumes varies with time for all incoming lanes to the
four nodes in the simulations described in Section 4.5.
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Figure 4.5 How the control signals ζ vary with time for all four junctions in the
simulations described in Section 4.5. Observe that the control signal, and hence the
controlled outflow is larger than or equal to the average inflow, i.e., ζ1 ≥ a1, a4,
ζ2 ≥ a2, a3, and ζ3 ≥ a5.
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In Figure 4.5 we show the control signals, together with the average inflow rates.
We see that the control signals are always greater than or equal to the average inflow
rates. In other words, for all cells at equilibrium, it holds that a1, a4 ≤ ζ1, a2, a3 ≤ ζ2,
and a5 ≤ ζ3. This is, of course, necessary to keep the traffic volume bounded. For
the lanes where the control signals are strictly greater than the average inflow rates,
the traffic will stay zero, and the actual outflow from every such cell will equal its
inflow.

4.6 Phases That Span over Multiple Junctions

In Chapter 4.1 we said that the set of phases was associated with each junction.
In this section we will generalize the set of phases, and talk about phases assigned
to partitions of the junctions instead. The reason for talking about partitions is that
sometimes there is a need to activate green lights at nearby junctions simultaneously.

We let W be a partition of the cells, i.e.,

E =
⋃
k∈W

Ek , Ek ∩ Eh = ∅ , ∀h , k ∈ W .

Moreover, for every k ∈ W , we let P (k) ⊆ {Q : Q ⊆ Ek} be a set of local phases
of cardinality pk and let nk the number of cells in partition k.

For each set of local phases, i.e., the phases associated with a partition, we
associate a local phase matrix. This phase matrix is constructed exactly in the same
way as the phase matrix was constructed earlier in this chapter when the phases were
associated with junctions. The phase matrix for a partition k ∈ W is a binary nk × pk
matrix

P(k) ∈ {0, 1}Ek×P (k)

that is defined as

P(k)i, j =

{
1 if cell i ∈ Ek activated in phase j ∈ P (k),
0 if cell i ∈ Ek is not activated in phase j ∈ P (k).

The global phase matrix is then defined as

P =


P(1)

P(2)
. . .

P(w)


.

To control how the phases should be activated in each block of the partition, we
introduce the set of control signals

U =
∏
k∈W

U (k) ,
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Figure 4.6 An example of when considering another partitioning than the standard
partitioning can be useful. In this case, the short one-directional cross-roads may
should receive green light simultaneously with the turning lanes on the main roads,
in order to avoid spill-back from the cross-roads into the main roads.

where
U (k) =

{
u ∈ RP (k)

+ : 1Tu ≤ 1
}

is the set of local controls.
The following example shows when partitions different from the standard one

may be useful.

Example 4.4
Consider the small traffic network shown in Figure 4.6. If vehicles are allowed to turn
into the short cross-roads, we want to make sure that the cross-roads have green light
as well. This to avoid back-spill into the main-roads. Hence, instead of constructing
the phases over the four junctions in the network, we construct the phases over two
partitions Ek1 and Ek2 . A set of phases that makes sure that the cross-roads receives
green light whenever there is a inflow to the cross-roads and prevents collisions is

P(k) =
[
0 1 1 0 0 1 1 1 1
1 0 0 1 1 0 0 0 0

]T
,

where k ∈ {k1, k2}. �

The previously stated stability results can be generalized to when the phases are
constructed over partitions as well
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Proposition 4.2
If the set of phases and control signals are constructed over a partition of the network
instead of over the junctions, the stability results in Theorem 4.1 still hold true. �

The proof of the proposition above goes in the same way as the proof of Theo-
rem 4.1, but with summations over partitions instead of junctions.

4.7 Non-Orthogonal Phases

In the case when the phases are not orthogonal, it is still possible to compute a
control action that will stabilize the system.

In the general case, the controller u(x) is computed by solving the following
convex optimization problem

u(x) ∈ argmax
υ∈U

H(x, υ) (4.41)

This is a generalization of the results presented in Chapters 4.3 – 4.4, since the
controller in (4.11) is the solution to (4.41) when the phases are orthogonal.

If xi = 0 for a subset of cells, the optimization problem in (4.41) is not necessary
strictly convex anymore, and the control action may not be a unique one, as the
following example illustrates

Example 4.5
Consider a junction v with three cells (indexed {1, 2, 3}), all with unit outflow
capacity. Let the phase matrix be

P(v) =

1 0
1 1
0 1

 .
The maximization problem in (4.41) can then be equivalently written as

u(v)(x) ∈ argmax
υ∈U (v)

{x1 log(υ1) + x2 log(υ1 + υ2)

+x3 log(υ2) + κv log(1 − υ1 − υ2)} .
The solution to the maximization problem is:

• If x1 = 0, x2 > 0, x3 = 0, then

0 ≤ u1 ≤ x2
x2 + κv

, u2 =
x2

x2 + κv
− u1 .

• For all other cases,

u1 =
x1(x1 + x2 + x3)

(x1 + x3)(x1 + x2 + x3 + κv) , u2 =
x3
x1

u1 .
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4.8 Conclusions

We will now show for this example that there exits a control signal in u such
that the trajectory is absolutely continuous. Assume that the cells have exogenous
inflows, λ1, λ2 and λ3, respectively, and no inflows from other cells. Let x1 = 0 and
x3 = 0, then

u1 + u2 =
x2

x2 + κv
.

Now suppose that λ1 + λ3 < u1 + u2. To keep x(t) ≥ 0, we have to choose z1, z2
such that z1 ≤ λ1 and z3 ≤ λ3. However, choosing z1 < λ1 or z3 < λ3, will make
Ûx1 > 0 or Ûx3 > 0, and the traffic volumes will become positive. Let us for simplicity
assume that z1 = 0 and z3 = λ3, then after a sufficiently small time, x1 > 0 and

u1 =
x1 + x2

x1 + x2 + κv
> λ1 ,

and x1 will immediately go back to zero again. Therefore this solution cannot be
absolutely continuous. To get an absolutely continuous solution in this case one has
to choose z1 = λ1 and z3 = λ3. �

Although, the existence and possible uniqueness is topic for further research, the
previously developed stability theory applies to all absolutely continuous trajectories.

Proposition 4.3
Consider the network flow dynamics (4.2) – (4.4) with the controller in (4.41). If
an absolutely continuous trajectory x(t) exists for the dynamics, the trajectory will
converge to the set X ∗ as given in (4.12). In other words,

x(t) → X ∗ ,

when t → +∞. �

The proof of this proposition follows in the sameway as the proof of Theorem4.1,
since there it is has already been shown that all absolutely continuous trajectories
for the dynamics (4.2) – (4.4) with the controller in (4.41), we converge to the set
X ∗.

4.8 Conclusions

In this chapter, we have presented a decentralized feedback controller for control of
traffic signals, the Generalized Proportional Allocation controller. We have shown
that the controller is both stabilizing, i.e., the traffic volumes will stay bounded
over time, and throughput optimal, i.e., no other controller is able to stabilize the
network for a larger amount of exogenous inflows than this one. While the dynamics
we have analyzed in this chapter should be seen as an averaged dynamics for the
control signal, we will in the next chapter discuss how to discretize the controller
and evaluate the controller’s performance in a microscopic traffic simulator.
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5
Evaluation of GPA Control
in a Microscopic Traffic
Simulator

In this chapter, we perform simulations in a micro-simulator of the Generalized
Proportional Allocation policy presented in the previous chapter. We start by show-
ing a discretized version of the controller suitable for implementation. The micro-
simulator we will be using is SUMO [Krajzewicz et al., 2012], which is an open-
source micro-simulator for traffic, mainly developed by the Institute of Transporta-
tion Systems at the German Aerospace Center. The GPA controller for two different
topologies will be tested, one artificial Manhattan-like grid and one real scenario
covering the city of Luxembourg. For the artificial scenario, we will compare the
controller’s performance with the MaxPressure-controller, but also with standard
fixed-time control and with a pure proportional fairness controller that does not
adapt the cycle length. For the Luxembourg scenario, we compare the GPA with the
standard fixed-time controller that comes with the scenario.

5.1 Signal Control with Discrete Control Actions

In the previous chapters a time-averaged control signal for the outflows from the
point queue dynamics was studied. However, in reality traffic signals are either
allowing outflow or not allowing out flow. This means to implement the controller in
a traffic simulator, a discretized version of the controller is needed. In other words,
the outflow controller, ζ(x), now either gives the control signal 0 or 1, and hence
ζ ∈ {0, 1}E .

When discretizing the control action, we also explicitly need to define the clear-
ance phases, i.e., the phases that need to be activated between two real phases to
give the vehicles that already are in the junction time to pass through. For each phase
p ∈ P , we will denote its corresponding clearance phase as p′. We then introduce
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Figure 5.1 The phases for the junction in Example 5.1. This junction has four
incoming lanes and two phases, p1 = {e1, e3} and p2 = {e2, e4}. Hence there is no
specific lane for the drivers who are turning left.

the extended set of phases, which we will denote P̄ , that is constructed such that for
every phase p ∈ P , both the phase and its corresponding clearance phase is in P̄ .
Hence P̄ has twice the cardinality compared to P and p, p′ ∈ P̄ .

With the clearance phases defined, we can now define a signal program for
every signalized junction. A signal program tells at which time each phase should
be deactivated and which phase that should be activated next. For each signalized
junction v ∈ V a signal program is assigned. The signal program will be denoted
T (v), and is such that

T (v) = {(p, tend) | (p, tend) ∈ P̄ (v) ×R+} ,

where p is the phase and tend is the time when the phase should be deactivated.
Specifying the signal program with only the deactivation time is enough, since the
phase that will be active at time t can then be determined by the phase with the
smallest deactivation time that is larger than t. Formally, we can define the function
ρ(v)(t) that gives the phase that is activated at time t as follows

ρ(v)(t) = {p : (p, tend) ∈ T̄ (v) | tend > t and tend ≤ t ′end for all (p′, t ′end) ∈ T̄ (v)} .

To illustrate how a signal program can look like, we provide an example for a
junction with two phases:

Example 5.1
Consider the junction in Figure 5.1 with the incoming lanes numbered as in the
figure. For this junction the phase matrix is

P =
[
1 0 1 0
0 1 0 1

]T
.

An example of signal program is shown in Figure 5.2. The program is T =
{(p1, 25), (p′1, 30), (p2, 55), (p′2, 60)}, which means that both the phases are activated
for 25 seconds each, and the clearance phases are activated for 5 seconds each. �
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t
0 25 30 55 60

c(t) p1 p′1 p2 p′2

Figure 5.2 Example of a signal program for the junction in Example 5.1. In this
example the signal program is T = {(p1, 25), (p′1, 30), (p2, 55), (p′2, 60)}.

Moreover, we let

T (v) = max{tend | (p, tend) ∈ T̄ (v)}

denote the time when the signal program ends for junction v. At latest at time T (v) a
new signal timing program has to be determined.

5.2 Discretization of the GPA Controller

In this section, we present two different discretization schemes of the GPA. The
first one makes sure that all the clearance phase are activated during one cycle. The
second one only activates the clearance phases if their corresponding phases have
been activated.

Asmentioned earlier, theGPA controllers are fully distributed, in the sense that to
determine the signal program in one junction, the controller only needs information
about the queue lengths on the incoming lanes for that junction.

For all of the controllers presented in this section, we assume for simplicity
of the presentation that after a phase has been activated, a clearance phase has to
be activated for a fixed amount of time, which we will denote Tw > 0. This time
is independent of which phase that has just been activated and which junction the
program is computed for.

GPA with Full Clearance Cycles
For this discretization of the GPA, we assume that all the clearance phases have to
be activated for each cycle. When t = T (v), a new signal program is computed for

72



5.2 Discretization of the GPA Controller

junction v ∈ V by solving the following convex optimization problem:

maximize
u ∈ U (v)
w ∈ R+

∑
i∈Ev

xi(t) log ((Pu)i) + κv log(w) ,

subject to
∑

p∈P (v)
up + w = 1 ,

w ≥ w̄ .

(5.1)

Recall fromChaper 4 that κv is a tuning parameter for the controller. The optimization
problem above is a restatement of the optimization problem in (4.41). In (5.1) we
have introduced the variable w = 1 − 1Tu to explicitly have a quantity for how
large fraction of a cycle that should be used for the clearance phases. Moreover, we
introduce the possibility to explicitly impose a lower bound w̄ on this quantity. The
parameter w̄ is a design-parameter for the controller and we will later see why this
lower bound is needed.

The solution (u,w) to the optimization problem in (5.1) determines the fraction
of a cycle that each phase should be activated, where each element in u contains
this fraction, but also how large fraction of the cycle that should be allocated to
clearance phases, w. Observe that as long as the measured queue lengths are finite,
which they will always be due to limited sensor coverage area, w will be strictly
greater than zero. Since we assume that each clearance phase has to be activated for
a fixed amount of time, Tw > 0, the total cycle length Tcyc for the upcoming cycle
can be computed by

Tcyc =
|P (v) | · Tw

w
. (5.2)

From the expression above we see that imposing a lower bound on w will impose an
upper bound on the cycle length.

With the knowledge of the full-cycle length, the signal program for the upcoming
cycle can be computed according to Algorithm 1.

For the case when w̄ = 0, we recall from Chapter 4, that when the phases are
orthogonal, an explicit solution to the optimization problem (5.1) can be found.
Hence an explicit expression for the fraction of the cycle that should be used for
clearance phases can be obtained as well, and the full explicit solution to (5.1) for
every junction v ∈ V is

up(x(t)) =
∑

i∈E Pipxi(t)
κv +

∑
i∈Ev

xi(t) , ∀p ∈ P (v) ,

w(x(t)) = κv
κv +

∑
i∈Ev

xi(t) .
(5.3)
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Algorithm 1: GPA with Full Clearance Cycles
Data: Current time t, local queue lengths x(v)(t), phase matrix P(v),

clearance time Tw , tuning parameters κ, w̄
Result: Signal program T (v)
T (v) ← ∅
npv ← Number of columns in P(v)

(u,w) ← Solution to (5.1) given x(v)(t), P(v), κ, w̄
Tcyc ← npv · Tw/w
tend ← t
for i ← 1 to npv do

tend ← tend + ui · Tcyc
T (v) ← T (v) + (pi, tend) . Add phase pi
tend ← tend + Tw

T (v) ← T (v) + (p′i, tend) . Add clearance phase p′i
end

From (5.2) a direct expression for the total cycle length can be obtained

Tcyc = Tw |P (v) | + Tw |P (v) |
κv

∑
i∈Ev

xi(t) .

From the expressions above we can observe a few things. First, we see that the
fraction of the cycle that each phase is activated is proportional to the queue lengths
in that phase, and this explains why we denote this control strategy Generalized
Proportional Allocation. Moreover, we get an interpretation of the tuning parameter
κ: it tells how the cycle length Tcyc should scale with the current queue lengths. If κv
is small, even small demands will cause longer cycles, while if κ is large, the cycles
will be short even for high demands. Hence, a too small κv may give too long cycles,
which can result in that lanes get more green-light than needed and the controller
ends up giving green light to empty lanes. This while vehicles in other lanes are
waiting for service. On the other hand, a too large κ may make the cycle lengths so
short that the fraction of the cycle that each phase gets activated is too short for the
drivers to react on.

The following example shows that one needs to explicitly impose an upper bound
on the cycle length when the controller is discretized:

Example 5.2
Consider a junction with two incoming lanes with unit flow capacity, both having
their own phase, and let the exogenous inflows λ1 = λ2 = λ, Tw = 1, w̄ = 0,
x1(0) = A > 0, and x2(0) = 0. The control signals and the cycle time for the first
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Figure 5.3 How the traffic volumes evolve in time together with the cycle times for
the system in Example 5.2. We can observe that the cycle length increases for each
cycle.

iteration is then given by

u1(x(0)) = A
A + κ

,

u2(x(0)) = 0 ,

T(x(0)) = A + κ
κ

.

Observe that the cycle time T(x(0)) is strictly increasing with A. After one full
service cycle, i.e., at t1 = T(x(0)) the queue lengths are

x1(t1) = A + T(x(0))
(
λ − A

A + κ

)
=

f (A)︷               ︸︸               ︷
A + λ

A + κ
κ
− A
κ
,

x2(t1) = T(x(0))λ = λ
(

A + κ
κ

)
.
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If x1(t1) = 0, then due to symmetry, the analysis of the system can be repeated in
the same way with a new initial condition. To make sure that one queue always get
empty during the service cycles, it must hold that f (A) ≤ 0. Moreover, to make
sure that the other queue grows, it must also hold that x2(t1) > A which can be
equivalently expressed as

Aκ + λ(A + κ) − A ≤ 0 ,
Aκ − λ(A + κ) < 0 .

The choice of λ = κ = 0.1 and A = 1 is one set of parameters satisfying the
constraints above, and will hence make the queue lengths and cycle times grow
unboundedly. How the traffic volume in the lanes and cycle times evolve in this case
is shown in Figure 5.3. �

GPA with Shortened Cycles
One possible drawback of the GPA controller with full clearance cycles is that it has
to activate all the clearance phases in one cycle. This property implies that if the
junction is empty when the signal program is computed, it will take |P (v) |Tw seconds
until a new signal program is computed. Therefore we also present a version of the
GPA where the clearance phases only get activated if their corresponding phases
have been activated. If we let n′pv denote the number of phases that will be activated
during the upcoming cycle, the total cycle time is given by

Tcyc =
n′pvTw

w
.

How to compute the signal program in this case with shortened cycles, is shown in
Algorithm 2.

5.3 Comparison with MaxPressure Control in a Manhattan Grid

In this section we will compare the two discretized versions of the GPA with the
MaxPressure controller in an artificial Manhattan-like grid. As stated in Chapter 1.2,
the MaxPressure controller and variants of it has been well-studied in the literature,
which motivates a comparison.

MaxPressure Controller
While the GPA controller only needs information about the incoming queues to
the junction it is controlling, the MaxPressure controller needs information about
the queues at the down-stream junctions as well. The idea behind the MaxPressure
controller is that for each lane compute the difference between its queue length and
the queue lengths immediately downstream, i.e., the queues the vehicles will proceed
to when they receive a green light in the current junction. Then a phase’s pressure is
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Algorithm 2: GPA with Shortened Cycles
Data: Current time t, local queue lengths x(v)(t), phase matrix P(v),

clearance time Tw , tuning parameters κ, w̄
Result: Signal program T (v)
T (v) ← ∅
npv ← Number of columns in P(v)

(u,w) ← Solution to (5.1) given x(v)(t), P(v), κ, w̄
. Compute the number of phases to be activated

n′pv ← 0
for i ← 1 to npv do

if ui > 0 then
n′pv ← n′pv + 1

end
end
if n′pv > 0 then

. If vehicles are present on some phases, activate those
Tcyc ← n′pv · Tw/w
tend ← t
for i ← 1 to npv do

if ui > 0 then
tend ← tend + ui · Tcyc
. Add phase pi
T (v) ← T (v) + (pi, tend)
tend ← tend + Tw

. Add clearance phase p′i
T (v) ← T (v) + (p′i, tend)

end
end

else
. If no vehicles are present, hold a clearance phase for one time unit
T (v) ← (p′1, t + 1)

end
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Algorithm 3: MaxPressure
Data: Current time t, local queue lengths x(t), phase matrix P(v), routing

matrix R, phase duration d
Result: Signal program T (v)
T (v) ← ∅
npv ← Number of columns in P(v)

for i ← 1 to npv do
for l ∈ Ev do

if l ∈ p(v)i then
wi ← wi + xl(t) −

∑
k Rlk xk(t)

end
end

end
i ← argmaxi wi

. Add phase pi
T (v) ← T (v) + (pi, t + d)
. Add clearance phase p′i
T (v) ← T (v) + (p′i, t + d + Tw)

defined as the sum of these differences for all lanes in the phase. Since vehicles in
one lane may proceed to several different lanes, the MaxPressure controller needs to
know the routingmatrix R, to compute the right pressures. Thismeans that, compared
to the GPA strategies, the MaxPressure requires both more state information and
more exogenous information.

While the MaxPressure allows for taking different flow rates for different phases
into account when determining the phases’ pressures, we will assume that the flow
rates are the same for all the phases. Under this assumption, the pressure, wp , for
each phase p ∈ P (v) can be computed as

wp =
∑
i∈p

(
xi(t) −

∑
k

Rik xk(t)
)
.

The phase that should be activated is then any phase in the set argmaxi wi .
When implementing the MaxPressure in a discretized signal control setting,

one has to determine how long a phase should be activated. We will denote this
activation time parameter d, and will assume that after a phase has been activated
for d seconds, its corresponding clearance phase will be activated for Tw seconds.
After that, all the pressures associated with the junction will be recomputed, and a
new phase will be activated for d seconds. The algorithm for computing a signal
program with the MaxPressure controller is given in Algorithm 3.
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Figure 5.4 The Manhattan-like network used in the comparison between GPA and
MaxPressure.

Simulation Setting
To compare the two different discretized versions of the GPA and the MaxPressure
controller, we simulate both controllers on an artificial Manhattan-like grid with
artificial demand. A schematic drawing of the network is shown in Figure 5.4.
In a setting like this, we can experiment with the turning ratios, and provide the
MaxPressure controller both correct and incorrect turning ratios, to investigate the
robustness properties of both theMaxPressure and the variants of theGPA controller.

The Manhattan grid we will be using has ten bidirectional north to south streets
(indexed A to J) and ten bidirectional east to west streets (indexed 1 to 10). All
streets with an odd number or indexed by letter A, C, E, G or I consist of one
lane in each direction, while the others consist of two lanes in each direction. The
speed limit on each lane is 50 km/h. The distance between each junction is three
hundred meters. Fifty meters before each junction, every street has an additional
lane, reserved for vehicles that want to turn left. Due to the varying number of lanes,
four different junction topologies exist, all shown in Figure 5.5, together with the set
of possible phases. Each junction is equipped with sensors on the incoming lanes
that can measure the number of vehicles queuing up to fifty meters from the junction.
The sensors measure the queue lengths by the number of stopped vehicles.

Since the scenario is artificial, we can generate demand with prescribed turning
ratios and hence let the MaxPressure controller run in an ideal setting. For the
demand generation, we assume that at each junction a vehicle will with probability
0.2 turn left, with probability 0.6 go straight and with probability 0.2 turn right.
We do assume that all vehicles depart from lanes connected to the boundary of
the network, and all vehicles will also end their trips when they have reached the
boundary of the network. In other words, no vehicles will depart or arrive inside
the grid. We will study the controllers’ performance for three different demands.
The demands are determined by the rate vehicles are inserted on the boundary of
the network. Every second and for every lane directly connected to the boundary

79



Chapter 5. Evaluation of GPA Control in a Microscopic Traffic Simulator

2 by 2 junction 2 by 3 junction

3 by 2 junction 3 by 3 junction

Figure 5.5 The four different types of junctions present in the Manhattan grid,
together with their phases.

of the network, a new vehicle will depart with probably δ. The probabilities for the
three different demands are δ = 0.05, δ = 0.1 and δ = 0.15. We generate vehicles
for 3600 seconds and then let the simulations run until all the vehicles have left the
network.

Heuristic Tuning of the GPA Controller
Tofind a suitable choice of the parameter κ for theGPAcontrollerwith shorted cycles,
we test the controller with five different values of κ = 1, 5, 10, 15, 20. In Table 5.1 we
show how the total travel time varies for the GPA controller with shortened cycles
for different values of κ, which is set to be the same for all junctions in the network.
Since the phases in this scenario are all orthogonal, the expressions in (5.3) can be
used to solve the optimization problem in (5.1). The tuning parameter w̄ is set to
w̄ = 0 for all simulations. How the total queue length varies with time is shown
in Figure B.1–B.3. From the figures, we can conclude that κ = 5 and κ = 10 give
the best performance in this setting for the cases when δ = 0.10 and δ = 0.15. In
Figure 5.6 we have plotted the total queue lengths in those cases, in order to get
a side by side comparison. In Table 5.1 the total travel time (TTT) for all vehicles
loaded into the network is shown.
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Table 5.1 GPA with Shorted Cycles - Manhattan Scenario

κ δ Total Travel Time [h]

1 0.05 1398
5 0.05 715

10 0.05 699
15 0.05 696
20 0.05 690

1 0.10 7636
5 0.10 1898

10 0.10 1992
15 0.10 2263
20 0.10 2495

1 0.15 +∞
5 0.15 5134

10 0.15 4498
15 0.15 5140
20 0.15 6050
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Figure 5.6 How the queue length varies with time when the GPA with shortened
cycles are used in the Manhattan grid. The GPA is tested with two different values
of κ = 5, 10 for the three demand scenarios δ = 0.05, 0.10, 0.15. To improve the
readability of the results, the queue lengths are averaged over 300 seconds interval.
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Heuristic Tuning of the MaxPressure Controller
Since the MaxPressure controller will decide its control action based on queue
lengths on the downstream lanes, it is not always clear which downstream lane a
vehicle can end up in. Because a vehicle can choose between several lanes that are all
valid for its path, the vehicle’s lane choice will be determined during the simulation,
and depend upon how many other vehicles that are occupying the possible lanes.
Because of this, we assume that if a vehicle can choose between several lanes, it
will try to join the shortest one. This implies that if for example, a vehicle going
straight can choose between lane l1 and l2, but l2 is also used by vehicles turning
right (the probability that a vehicle is turning right is 0.2, and going straight is 0.6),
the probability that the vehicle will queue up in lane l1 is assumed to be 0.4 and the
probability that the vehicle will queue up in lane l2 is 0.2.

To also investigate the MaxPressure controller’s robustness with respect to the
routing information, we perform simulations both when the controller has the correct
information about the turning probabilities, i.e., that a vehicle will turn left with
probability 0.2, continue straight with probability 0.6 and turn right with probability
0.2, andwhen it has incorrect information. For the simulationswhen theMaxPressure
has the wrong turning information, the controller instead has the information that
with probability 0.6 the vehicle will turn right, with probability 0.3 the vehicle will
proceed straight and with probability 0.1 the vehicle will turn left. In the simulations,
we consider four different phase durations: d = 5 seconds, d = 10 seconds, d = 20
seconds, and d = 30 seconds.

How the total queue lengths vary over time for the different demands is shown
in Figure B.4, Figure B.5 and Figure B.6. The total travel time, both when the
MaxPressure controller is operating with the right and the wrong turning ratios,
are shown in Table 5.2. From these results, we conclude that a phase duration of
d = 10, is the most efficient for the demands δ = 0.10 and δ = 0.15. For δ = 0.05,
a phase duration of d = 5 is most efficient. That the phase durations should be low
has probably has to do with that with a longer phase duration the activation time is
becoming larger than the time it takes to empty the measurable part of the queue.
Another interesting observation is that if the MaxPressure controller has wrong
information about the turning ratios, it seems like, for at least in this case, that its
performance does not decrease significantly.

Results of the Comparison
To better observe the difference between the GPA and MaxPressure, we have taken
the best GPA configuration with κ = 20 for δ = 0.05 and κ = 10 for δ = 0.10
and δ = 0.15, and the best MaxPressure configuration with d = 5 for δ = 0.05
and d = 10 for δ = 0.10 and δ = 0.15. The results are shown in Figure 5.7. From
the simulations, we can conclude that, for this scenario and during high demands,
the MaxPressure controller performs better than the GPA controller. On the other
hand, during low demands the GPA performs better. One explanation for this could
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Table 5.2 MaxPressure - Manhattan Scenario

d δ TTT correct TR [h] TTT incorrect TR [h]

5 0.05 770 772
10 0.05 858 856
20 0.05 1079 1102
30 0.05 1172 1193

5 0.10 1910 1906
10 0.10 1865 1864
20 0.10 2254 2312
30 0.10 2690 2718

5 0.15 4873 4861
10 0.15 3511 3488
20 0.15 3992 4102
30 0.15 5579 5590

be that during low demands, adapting the cycle length is critical, while during high
demands when almost all the sensors are covered, it is more important to keep the
queue balanced between the current and downstream lanes.

For reference, we also compare the results for GPA and MaxPressure with a
standard fixed-time (FT) controller and a proportional fair (PF) controller, i.e., the
GPA controller with κ = 0 and a prescribed fixed cycle length of 110 seconds.
For the fixed-time controller, we use the standard phase activation times given by
SUMO. The phases which contain a straight movement are activated for 30 seconds
and phases only containing left or right turn movements are activated for 15 seconds.
The clearance time for each phase is still set to 5 seconds. This means that the cycle
lengths for each of the four types of junctions will be 110 seconds.

The total travel times for the fixed-time controller and proportional fairness
controller are shown in Table 5.3 and how the queue lengths compared to the other
controllers are shown in Figure B.7–B.9. Observe that when the demand d = 0.15,
the proportional fair controller creates a gridlock situation. Since the controller is
known to be throughput optimal in an ideal setting [Walton, 2014], the reason for
this gridlock is probably due to back-spill of vehicles. This occurs when a queue for
one junction is getting so long so that it blocks another junction.

A interesting observation fromFigureB.7 andB.8 is that the fixed-time controller
performs better than the proportional fair controller, but worse than the GPA and
MaxPressure controller. This means that the idea of imposing dynamic cycle lengths
into the proportional fair controller –as the GPA controller does– is quite significant
to achieve a good performing controller.
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Figure 5.7 Comparison between theGPA controller and theMaxPressure controller
for the three different demand levels in the Manhattan scenario. In order to improve
the readability of the results, the queue lengths are averaged over 300 seconds interval.

Table 5.3 Fixed-Time and Proportional Fair Control - Manhattan Scenario

Controller δ Total Travel Time [h]

FT 0.05 1201
FT 0.10 2555
FT 0.15 4642
PF 0.05 1694
PF 0.10 4165
PF 0.15 +∞
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Figure 5.8 The roads in the city of Luxembourg in the LuST scenario, imported as
a screenshot from the SUMO micro-simulator.

5.4 Simulations of a Luxembourg Scenario

To test the proposed controller in a realistic scenario, wemake use of the Luxembourg
SUMO Traffic (LuST) scenario presented in [Codecá et al., 2017]1. The scenario
models the city center of Luxembourg during a full day, and the authors of [Codecá
et al., 2017] have made several adjustments from some given population data when
creating the scenario, to make it as realistic as possible.

To each of the 199 signalized junctions, we have added a lane area detector to
each incoming lane. The length of the detectors are 100 meters, or as long as the
lane is if it is shorter than 100 meters. Those sensors are added to give the controller
real-time information about the queue lengths at each junction.

As input to the system, we are using the Dynamic User Assignment demand
data. For this data-set, the drivers try to take their shortest path (with respect to time)
between their current position and destination. It is assumed that 70 percent of the
vehicles can recompute their shortest path while driving, and will do so every fifth
minute. This rerouting possibility is introduced in order to model the fact that more
and more drivers are using online navigation with real-time traffic state information,

1 The scenario files are obtained from https://github.com/lcodeca/LuSTScenario/tree/v2.0
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and will hence get updates about what the optimal route choice is.
In the LuST scenario, the phases are constructed in a bit more complex way

and are not always orthogonal. For non-orthogonal phases, it is not always the case
that all lanes receive yellow light when a clearance phase is activated. If the lane
receives a green light in the next phase as well, it will receive green light during
the clearance phase too. This property makes it more difficult to shorten the cycle,
and for that reason, we choose to implement the controller which activates all the
clearance phases in the cycle, i.e., the controller is given in Algorithm 1.

As mentioned, the phases in the LuST scenario are not orthogonal in each
junction.Hencewe have to solve the convex optimization problem in (5.1) to compute
the phase activation. The computation is done by using the solver CVXPY2 in
Python. Although the controller can be implemented in a distributed manner, the
simulations are in this thesis performed on a single computer. Despite the size of
the network, and that the communication via TraCI between the controller written
in Python and SUMO slows down the simulations significantly, the simulations are
still running about 2.5 times faster than real-time. Hence there is no problem with
running this controller in a real-time setting.

Since the demand is high during the peak-hours in the scenario, gridlock situa-
tions occur. Those kinds of situations are unavoidable since there will be conflicts
in the car following model. To make the simulation continue to run, SUMO has a
teleporting option that is utilized in the original LuST scenario. The original LuST
scenario is configured such that if a vehicle has been locked for more than 10 min-
utes, it will teleport along its route until there is free space. Without the possibility
for the vehicles to teleport, gridlocks occur with the standard open-loop controller
that comes with the scenario, so it is not just for this comparison it is needed to have
the teleportation activated. It is therefore important when we evaluate the control
strategies that we keep track of the number of teleports, to make sure that the con-
trol strategy will not create a significantly larger amount of gridlocks, compared to
the original fixed-time controller. In Table 5.4 the number of teleports are reported
for each controller. It is also reported how many of those teleports that are caused
directly due to traffic jam, but one should have in mind that, e.g., a gridlock caused
by that two vehicles want to swap lanes, is often a consequence of congestion.

The total travel time and the number of teleports for different choices of tuning
parameters are shown in Table 5.4. For the fixed-time controller, we keep the standard
fixed-time plan provided with the LuST scenario. Based on our conclusions from the
Manhattan grid simulations, we choose to run the GPA controller for two different
values of κ: 5 and 10. The values of w̄ are chosen from 0 up to 0.50 with increments
of 0.05. How the queue lengths vary with time is shown in Figure 5.9 for κ = 5 and
in Figure 5.10 for κ = 10.

From the results, we can see that any controller with κ = 10 and w̄ within the
range of investigation will improve the traffic situation. However, the controller that

2 https://cvxpy.org
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Figure 5.9 How the queue lengths vary with time when the traffic lights in the
LuST scenario are controlled with the GPA controller and the standard fixed-time
controller. For the GPA controller the parameters κ = 5 and different values of w̄
are tested. In order to improve the readability of the results, the queue lengths are
averaged over 300 seconds interval.

yields the overall shortest total travel time is the one with κ = 5 and w̄ = 0.40, which
means that when we bound the cycle length, a lower κ may yield better performance.
This result suggests that tuning the GPA only with respect to κ, and keeping w̄ = 0,
may not lead to the best performance with respect to total travel time, although it
gives higher throughput.

5.5 Conclusions

In this chapter, we performed evaluations of the Generalized Proportional Alloca-
tion controller in a microscopic traffic simulator. First, we showed two different
discretization schemes of the controller: one scheme that ensures that all clearance
phases are activated during one cycle, and one scheme that just activates the neces-
sary clearance phases. We then performed simulations for two different scenarios.
In the first scenario, the network topology was a Manhattan-like grid with artificial
demands. The reason behind designing and testing in a scenario like this one is that
it is easy to implement another well known decentralized traffic signal controller, the
MaxPressure controller. For the investigated scenario, it can be concluded that the
GPA controller performs better than the MaxPressure controller when the demands
are low, while the MaxPressure performs better during high demands. Although the
MaxPressure controller needs information about the turning ratios, it seems to be
quite robust to deviant traffic flow behavior.

To evaluate the GPA controller in a more realistic scenario, simulations were
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Figure 5.10 How the queue lengths vary with time when the traffic lights in the
LuST scenario are controlled with the GPA controller and the standard fixed-time
controller. For the GPA controller the parameters κ = 10 and different values of w̄
are tested. In order to improve the readability of the results, the queue lengths are
averaged over 300 seconds interval.

also done for a scenario covering the city of Luxembourg. In this case, it could be
seen that the GPA controller outperforms the standard fixed-time controller included
in the scenario.
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Table 5.4 Comparison of the different control strategies - LuST scenario

κ w̄ Teleports (jam) Total Travel Time [h]

GPA 10 0 76 (6) 49 791
GPA 10 0.05 65 (1) 49 708
GPA 10 0.10 37 (0) 49 519
GPA 10 0.15 57 (19) 49 408
GPA 10 0.20 50 (10) 49 380
GPA 10 0.25 35 (0) 49 265
GPA 10 0.30 30 (0) 48 930
GPA 10 0.35 25 (1) 48 922
GPA 10 0.40 51 (0) 48 932
GPA 10 0.45 49 (5) 49 076
GPA 10 0.50 42 (15) 49 383
GPA 5 0 668 (76) 57 249
GPA 5 0.05 234 (62) 54 870
GPA 5 0.10 68 (10) 52 038
GPA 5 0.15 47 (9) 50 696
GPA 5 0.20 50 (6) 49 904
GPA 5 0.25 41 (3) 49 454
GPA 5 0.30 23 (0) 48 964
GPA 5 0.35 30 (1) 48 643
GPA 5 0.40 35 (5) 48 445
GPA 5 0.45 39 (1) 48 503
GPA 5 0.50 42 (10) 48 772

Fixed-time – – 122 (80) 54 103
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6
Two-Tier Traffic Assignment

While we in the previous three chapters have focused on the control of traffic signals,
we will in this and next chapter cover two different aspects of the routing problem.
In this chapter, we will study the routing problem mentioned in Chapter 2, but for
two different classes of vehicles.

Thiswork in this chapter ismotivated by the eventual introduction of autonomous
vehicles onto roads, which will result in new possibilities for technological impact
in traffic route planning. We will study the assignment of traffic where the network
includes the operation of a large fleet of autonomous vehicles among many ordinary
drivers. This situation may fast become a reality, as the tenth principle of the Shared
Mobility Principles for Livable Cities [Chase, 2018] states:

10. We support that autonomous vehicles (AVS) in dense urban areas
should be operated in only shared fleets.

The restriction to autonomous traffic to be operated solely by fleets would incentivize
the need for novel methods of traffic control for use in networks with fleets.

In this chapter, we study a two-tier assignment problem, where one class of users
seeks user optimality, i.e., minimizes their own traveling time in the network, while
the other class of users seeks fleet optimality, i.e., minimizes the total travel time
for the entire fleet. We provide simpler conditions for uniqueness of equilibrium
than [Yang et al., 2007], where the problem is previously mentioned, and introduce
two different algorithms to obtain the equilibrium, one centralized with proven con-
vergence properties and the other decentralized. We also show the interconnection
between the two-tier assignment problem and a multicommodity dynamical network
flow model, proving stability properties in the case of acyclic networks. By having
this linkage between the static assignment problem and the dynamical network flow
problem, we allow for further research of feedback controllers in order to improve
the robustness of the assignment.
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1 2
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5
τ1(z1)

τ2(z2)

τ3(z3)

τ4(z4)

τ5(z5)

τ6(z6)

τ7(z7)

λ̂A, λ̂B µ̂A, µ̂B

Figure 6.1 Example of a traffic network where delay functions are assigned to the
cells.

6.1 The Two-Tier Assignment Problem

In this chapter, we consider a traffic network facilitating two types of vehicular
traffic. The first type, which we denote Class A, consists of vehicles optimizing a
user-optimal policy, i.e., vehicles minimizing their marginal delay. The second type,
which we denote Class B, consists of vehicles optimizing a fleet-optimal policy, i.e.,
vehicles minimizing the total delay of the fleet. The flows of Class A and Class B
vehicles along each cell are denoted by zA, zB ∈ RE

+ , and the exogenous inflows
and outflows for Class A and Class B vehicles are given as λ̂A, µ̂A ∈ RV

+ and
λ̂B, µ̂B ∈ RV

+ , respectively, where the entries of λ̂A, µ̂A, λ̂B, and µ̂B are nonnegative
and are associated with the junctions of the network. We further assume that the
exogenous flows are feasible, i.e., there exist zA, zB ∈ RE such that BzA = λ̂A − µ̂A
and BzB = λ̂B − µ̂B.
Definition 6.1
To each cell i ∈ E we associate a delay function τi : R+ → R+, mapping the flows
zAi and zBi to a delay value. Delay functions are assumed to be twice continuously
differentiable, strictly increasing, and nonnegative at 0. �

Class A and Class B vehicles optimize different policies. Class A vehicles
minimize the amount of time taken for each vehicle to arrive at its destination given
the current state of traffic. In this case, the assignment of traffic flow along each cell
is given as the solution to the following optimization problem,

minimize
zA ∈ RE

+

gA(zA, zB) B
∑
i∈E

∫ zAi

0
τi(s + zBi )ds , (6.1a)

subject to BzA = λ̂A − µ̂A . (6.1b)

Class B vehicles minimize the average amount of time taken for each vehicle to
arrive at its destination given the current state of traffic. In this case, the assignment
of traffic flow along each cell is given as the solution to the following optimization
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Assignment RB

RA

Dynamical
flow network

λ̂, µ̂, d(z) zB∗

zA∗

Figure 6.2 Conceptual schematic of the assignment and control. Observe that Class
A vehicles are assumed to find the optimal assignment by their own.

problem,

minimize
zB ∈ RE

+

gB(zA, zB) B
∑
i∈E

zBi τi(zAi + zBi ) , (6.2a)

subject to BzB = λ̂B − µ̂B . (6.2b)

We study the assignment of traffic flow based on the solution to (6.1) and (6.2),
the optimal behavior of vehicleswhen the dynamical traffic network is at equilibrium.
Based on this assignment, it becomes necessary to route the traffic to achieve the
desired flows. The assignment and routing scheme is presented in Figure 6.2. In the
figure, the assignment block computes the optimal traffic flows zA∗, zB∗ ∈ RE based
on delay functions τi and exogenous inflows and outflows. Once the assignment
is computed, the desired flows are achieved by employing a routing policy which
routes the fleet of Class B vehicles, denoted RB, in the presence of a routing policy
of the opportunistic behavior of Class A drivers, denoted RA.

6.2 Existence and Uniqueness of an Assignment

The solutions to the assignment problems in (6.1) and (6.2) depend on each other.
Therefore it is of interest to investigate the properties of equilibrium flows, zA∗ and
zB∗, which solve both equations at the same time.

In this section, we provide sufficient conditions for the existence and uniqueness
of an equilibrium which depend solely on the properties of the delay functions τi .
The proof relies on results of [Rosen, 1965], which provides conditions for existence
and uniqueness of equilibria in convex games. The optimization problems (6.1)
and (6.2) are both convex under certain choices of the delay functions τi . Here, we
present the requirements imposed on τi which imply existence and uniqueness. We
begin with a sufficient condition for existence.
Proposition 6.1
Assume that the delay functions τi(zi), as given in Definition 6.1, satisfies

2τ′i (zAi + zBi ) + zBi τ
′′
i (zAi + zBi ) ≥ 0 , (6.3)
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for all i ∈ E and all feasible zA, zB ∈ RE . Then there exist zA∗ and zB∗ such that zA∗

is a solution to (6.1) given zB = zB∗, and zB∗ is a solution to (6.2) given zA = zA∗.�

Proof. Theorem 1 of [Rosen, 1965] states that there exists a solution to any concave
(resp. convex) game. A game is concave (resp. convex) if the cost functions are
concave (resp. convex) and individual constraints of every strategy are convex, i.e.,
the constraints can be written in the form h(z) ≥ 0 where every h is a convex
function. Since the constraints are convex in both (6.1) and (6.2), all that is left to
show is that the cost functions are both convex.

In the case of (6.1), the cost function is convex because τi is monotonically
increasing for all i ∈ E , implying that its integral is monotonically increasing and
therefore is convex. In the case of (6.2), convexity follows from (6.3). �

Results for uniqueness are less straightforward to obtain than results for exis-
tence. We proceed by providing a sufficient condition for uniqueness, which is a
generalization of Proposition 4 of [Yang et al., 2007], in which the authors require
τi(zi) to be affine and strictly monotone.

Proposition 6.2
The pair zA∗ and zB∗ of Proposition 1 is unique if τi satisfies the following relation-
ship,

2τ′i (zAi + zBi ) > zBi τ
′′
i (zAi + zBi ) , (6.4)

for all i ∈ E and feasible zA > 0 and zB > 0. �

Proof. Let S(zA, zB, yA, yB) = gA(zA, yB) + gB(yA, zB) and let,

h(zA, zB) =
[∇zAgA(zA, zB)
∇zBgB(zA, zB)

]
,

denote the pseudogradient of S. We let the cells in E be indexed {1, 2, . . . , n}. Since
τi is differentiable for any i ∈ E , the pseudogradient of S is given by,

h(zA, zB) =



τ1(zA1 + zB1 )
...

τn(zAn + zBn )
τ1(zA1 + zB1 ) + zB1 τ

′
1(zA1 + zB1 )

...
τn(zAn + xB

n ) + zBn τ
′
n(zAn + zBn )


.

Let H denote the Jacobian of S, which is equal to

H =
[
A B
C D

]
, (6.5)
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where,

A = B = diag
(
τ′i (zAi + zBi )

)
i∈E

,

C = diag
(
τ′i (zAi + zBi ) + zBi τ

′′
i (zAi + zBi )

)
i∈E

,

D = diag
(
2τ′i (zAi + zBi ) + zBi τ

′′
i (zAi + zBi )

)
i∈E

.

Now let,

F = H + HT =

[
2A A + C

A + C 2D

]
=

[
2A D
D 2D

]
.

According to [Rosen, 1965, Theorem7], S is strictly diagonally convex if F is positive
definite for all feasible zA > 0 and zB > 0. Furthermore, according to [Rosen, 1965,
Theorem 3], if S is strictly diagonally convex then the flow equilibrium zA∗ and
zB∗ is unique. We now show that F is positive definite by considering its Schur
complement F̄ = 2D+DT(2A)−1D = 2D+ (2A)−1D2. The matrix F is then positive
definite if and only if F̄ and A are positive definite. The matrix A is positive definite
because τi is strictly increasing. The matrix F̄ is given by,

F̄ = diag
(
4τ′i (zAi + zBi ) + 2zBi τ

′′
i (zAi + zBi )

− (2τ
′
i (zAi + zBi ) + zBi τ

′′
i (zAi + zBi ))2

2τ′i (zAi + zBi )

)
i∈E

= diag
(
2τ′i (zAi + zBi ) −

(zBi τ′′i (zAi + zBi ))2
2τ′i (zAi + zBi )

)
i∈E

.

Clearly, the elements in F̄ are positive when (6.4) is satisfied. �

We now consider the special case where the delay functions are given by an
affine relation to the power of a positive exponent,

τi(zi) = (αizi + βi)ci . (6.6)

We introduce this form of delay function because it is useful inmodeling the behavior
of traffic flow in the free-flow regime, where the flows do not saturate. In the sequel,
we will show how these delay functions can recover the free-flow regime of the
fundamental diagram.

Corollary 6.1
Suppose the delay functions take the form in (6.6) with αi, ci > 0 and βi ≥ 0 for all
i ∈ E . The solution to the assignment problem (6.1) – (6.2) exists and is unique if
ci ≤ 3. �
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τ1(z1)

τ2(z2)

λ̂A, λ̂B

Figure 6.3 The network of Example 6.1.

Proof. Existence follows from the fact that τi satisfies the requirements imposed on
the delay function and Proposition 1. To show uniqueness, we compute the first two
derivatives,

τ′i (zi) = αici(αizi + βi)ci−1,

τ′′i (zi) = α2
i ci(ci − 1)(αizi + βi)ci−2.

Then the expression

2τ′i (zAi + zBi ) − zBi τ
′′
i (zAi + zBi )

= αici(αi(zAi + zBi ) + βi)ci−2(2(αi(zAi + zBi ) + βi) − zBi αi(ci − 1))
= αici(αi(zAi + zBi ) + βi)ci−2(2αizAi + (3 − ci)αizBi + 2αiβi) ,

is greater than 0 for all positive flows if ci ≤ 3. �

We have thus far shown that an equilibrium solution to the optimization prob-
lem (6.1) and (6.2) always exists and given conditions that guarantee this equilibrium
to be unique. We now present a case in which a slight modification, in terms of a
maximum flow capacity constraint, no longer guarantees uniqueness of the equilib-
rium solution. Specifically, if we introduce a capacity constraint on the flow of each
cell, then uniqueness may not be guaranteed since capacity constraints are concave
constraints.
Example 6.1
Consider the network consisting of two cells in Figure 6.3 with exogenous inflows
λ̂A = 1, λ̂B = 1, and delay functions τ1(z1) = z1, τ2(z2) = 2z2. Impose a constraint
on the flow capacity of cell 1 so that zA1 + zB1 ≤ 1. Then zA = (0, 1), zB = (1, 0) is an
equilibrium because the minimizer of

zB1 τ1(zB1 ) + zB2 τ2(1 + zB2 ) =
(
zB1

)2
+ 2zB2 (1 − zB2 )

is (1, 0) and the minimizer of the other optimization must satisfy

0 ≤ zA1 + zB1 = zA1 + 1 ≤ 1 ,
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implying that zA1 = 0 and therefore zA = (0, 1). Furthermore, zA = (1, 0), zB = (0, 1)
is also an equilibrium because the minimizer of∫ zA1

0
τ1(s)ds +

∫ zA2

0
τ2(s + 1)ds =

1
2

(
zA1

)2
+

(
zA2

)2
+ 2zA2

is (1, 0) and the minimizer of the other optimization must satisfy

0 ≤ zA1 + zB1 = 1 + zB1 ≤ 1 ,

implying that zB1 = 0 and therefore zB = (0, 1). �

6.3 Algorithms for Determining the Traffic Assignment

We propose two algorithms for determining the equilibrium flows zA∗ and zB∗. The
first is a centralized algorithm based on the idea that the optimal flow assignments
for each class of vehicles are updated simultaneously in the constraint-admissible
opposite direction of the gradient of the objective functions.

This is done by keeping the total flow in the system the same as an initial
assignment, while making sure that the flow on each cell remains non-negative.

Centralized algorithm
We begin by defining the Lagrangian corresponding to the optimization prob-
lem (6.1),

LA(zA, zB, γA, ξA) = −gA(zA, zB) + (γA)T (BzA − λ̂A + µ̂A) + (ξA)T zA ,

where γA ∈ RV and ξA ∈ RE . We define LB analogously,

LB(zA, zB, γB, ξB) = −gB(zA, zB) + (γB)T (BzB − λ̂B + µ̂B) + (ξB)T zB .

The algorithm we propose updates the flow assignments by following the gradients
of the Lagrangians,

ÛzA = ∇zA LA = −∇zAgA(zA, zB) + BTγA + ξA C f A(zA, zB, γA, ξA) , (6.7)
ÛzB = ∇xB LB = −∇zBgB(zA, zB) + BTγB + ξB C f B(zA, zB, γB, ξB) . (6.8)

The values of γA, γB, ξA, and ξB are chosen according to the optimization,

(γA, ξA) = argmin
ξ A≥0

‖ f A(zA, zB, γA, ξA)‖2 , (6.9)

(γB, ξB) = argmin
ξB ≥0

‖ f B(zA, zB, γB, ξB)‖2 , (6.10)

subject to the constraint that ξAi = 0 and ξBi = 0 whenever zAi > 0 and zBi > 0,
respectively.
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Proposition 6.3
Given feasible initial states zA(0), zB(0), i.e, Bzk(0) = λ̂k − µ̂k and zk(0) ≥ 0
are satisfied for k ∈ {A, B}, and assume that the delay functions τi(xi) stratifies
the conditions in Proposition 6.1 and Proposition 6.2. Then algorithm (6.7)–(6.10)
converges to the unique equilibrium of the two tier assignment problem (zA∗, zB∗),
where zA∗ is a solution to (6.1) given zB = zB∗, and zB∗ is a solution to (6.2) given
zA = zA∗ �

Proof. We begin by showing that as dynamics proceeds, the constraint will always
be satisfied. This means that if we start the algorithm with a feasible solution, zk(t)
will be feasible for all t > 0. Suppose that for k ∈ {A, B}, there exists z̃k such that
Bz̃k , λ̂k − µ̂k or z̃k � 0. By continuity of the solution and the assumption of
feasible initialization, there must exist a point z̄k where Bz̄k = λ̂k − µ̂k and z̄k ≥ 0,
with corresponding Lagrange multipliers γ̄k and ξ̄k , which are solutions to (6.9) or
(6.10), and for which either Bz̃k , λ̂k − µ̂k or z̃k � 0.

In the first case, it must hold that B Û̄zk , 0. Observe that,

 f k(zA, zB)


2
= (∇zk gk(zA, zB))T∇zk gk(zA, zB)

+ 2(∇zk gk(zA, zB))T (BT γ̄k + ξ̄k) + 2(ξ̄k)T BT γ̄k + (γ̄k)T BBT γ̄k + (ξ̄k)T ξ̄k .

Taking the partial derivative of


 f k(zA, zB)



2 with respect to γ̄k gives,

∂

∂γ̄k



 f k(zA, zB)


2
= 2B(∇zk gk(zA, zB) + ξ̄k + BT γ̄k) = 2B Û̄zk .

If (2B Û̄zk)i > 0 (respectively< 0) for some i, the norm


 f k(zA, zB)



2 can be decreased
by decreasing (respectively increasing) γ̄ki . Therefore, γ̄

k cannot be a solution to (6.9)
or (6.10) implying a contradiction. In the second case, it must hold that Û̄zki < 0 for
some i. Taking the partial derivative of



 f k(zA, zB)


2 with respect to ξ̄k gives,

∂

∂ξ̄k



 f k(zA, zB)


2
= 2(∇zk gk(zA, zB) + ξ̄k + BT γ̄k) = 2 Û̄zk .

Since there exists i such that Û̄zki < 0, the norm can be decreased by increasing ξ̄ki ,
which contradicts that ξ̄k is a solution to (6.9) or (6.10). From the above contradic-
tions, it follows that the algorithm will always stay inside the feasible region.

To prove convergence, we will show that the time derivative of


 f (zA, zB)



2 is
always negative, apart from when f (zA, zB) = 0. As a first step, we find an explicit
solution to (6.9) and (6.10). From the necessary KKT conditions it follows that, for
k ∈ {A, B},

B(∇zk gk(zA, zB) + ξ̄k + BT γ̄k) = 0 . (6.11)
Moreover, for any cell i ∈ E such that ξ̄ki > 0, it must hold that

(∇zk gk(zA, zB) + ξ̄k + BT γ̄k)i = 0 . (6.12)
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From the assumption that the graph G is connected, it follows that rank(B) =
|V | − 1. In order to solve the equations (6.11) and (6.12) we have to fix one element
in γk for each k. For simplicity, let γk1 = 0. Moreover, let B̄ be the matrix B with the
first column removed. Then it follows that,

γk =

[
0

−(B̄B̄T )−1B̄(∇zk gA(zA, zB) + ξ̄k)
]
.

Observe that,
f k(zA, zB) = −∇zk gk(zA, zB) + Bγ̄k + ξ̄k ,

and that, [ Ûf A(zA, zB)
Ûf B(zA, zB)

]
= −H

[
zA

zB

]
+

[
Bγ̄A + ξ̄A

Bγ̄B + ξ̄B

]
,

with H given as in (6.5). Taking the time-derivative of the norm yields,

1
2

d
dt



 f (zA, zB)


2
= ( f (zA, zB))T Ûf (zA, zB) = − f T H f + f T

[
Bγ̄A + ξ̄A

Bγ̄B + ξ̄B

]
.

The second term in the sum is zero due to the fact that γ̄ satisfies (6.11) and ξ̄i
satisfies (6.12) for all i where ξ̄i > 0. Hence it holds that,

1
2

d
dt



 f (zA, zB)


2
= −1

2
( f (zA, zB))T [H + HT ] f (zA, zB) ≤ −ε



 f (zA, zB)


2
,

where the last inequality with ε > 0 follows from the fact that H + HT is positive
definite. Therefore,



 f (zA, zB)


2 → 0 as t →∞ for all



 f (zA, zB)


2
> 0. �

Decentralized algorithm
Wewill now present a decentralized algorithm for obtaining traffic assignment equi-
librium. The benefits of decentralized algorithms are several. Since traffic networks
often are large-scale networks, we are able to decrease the amount of computations
by solving part of the optimization locally in the network and restricting communi-
cation to the local neighborhood.

Furthermore, it imposes desired scalability problems to the algorithm. If a part
of the topology of the network changes, only the algorithms associated with the
neighboring areas need to be updated. The algorithm presented in the previous
section is in general not decentralized due to the fact that γ in (6.11) is computed using
(B̄T B̄)−1B̄T , which is in general not limited to having entries between neighboring
junctions. Furthermore, when one of the cells has zero flow, the ξ value associated
with it may affect the computations of γ all over the network. For our proposed
decentralized algorithm, we propose a dual descent scheme. We utilize the idea that,
in order to compute the optimal flow in one cell i ∈ E , we only need information about
the Lagrange multipliers γA,B associated with the tail junction i− and head junction
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i+. The dynamics to update the Lagrange multiplier for each junction v ∈ V are then
only dependent on the incoming flows zA,Bi for the cells i ∈ Ev and the outgoing
flows zA,Bi for the cells in E+v . The algorithm consists of solving the following,

zA = argmin
zA≥0

LA(zA, zB, γA, 0) ,

zB = argmin
zB ≥0

LB(zA, zB, γB, 0) ,

ÛγA = BzA − λ̂A + µ̂A ,

ÛγB = BzB − λ̂B + µ̂B .

Since zA and zB depend only on the differences between different components in γA

and γB, the system above will have multiple equilibria in γA and γB. These will be
related to each other by a constant offset term so that if (γ̃A, γ̃B) is an equilibrium,
then (γ̃A + c1ne, γ̃

B + d1ne ) will be an equilibrium for any scalars c and d. This is
not a limitation, however, due to the fact that the difference in Lagrange multipliers
determines the flow.

The decentralized aspect of the algorithm can be seen by deriving the necessary
conditions,

0 = τi(zAi + zBi ) + γA
i+ − γA

i− ,

0 = zBi τ
′
i (zAi + zBi ) + τi(zAi + zBi ) + γBi+ − γBi− ,

for all i ∈ E . Defining τ̃−1 as,

τ̃−1(γi) =
{

0 if γi < τi(0) ,
τ−1
i (γi) otherwise.

Then,

zAi = max
{
τ̃−1
i (ΓAi ) − zBi , 0

}
,

zBi = max

{
ΓBi − ΓAi

τ′i (τ̃−1
i (ΓAi ))

, 0

}
,

where Γki = γk
i+
− γki− for k ∈ {A, B}, thus showing that updates of the flow are

independent of nonadjacent cells.

Example 6.2
In the case when the delay functions are affine, i.e., di(xi) = αi xi + βi , with αi > 0
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and βi ≥ 0, the expressions introduced above become,

zAi = max

{
ΓAi − βi
αi

− xB
i , 0

}
,

zBi = max

{
ΓBi − ΓAi

αi
, 0

}
. �

6.4 Routing of Two-Tier Traffic

In this section, we study the stability of a routing scheme that statically allocates
traffic to each node dependent on the solution to the assignment problem. To model
the flow dynamics in the network, we introduce traffic density vectors xA, xB ∈ X .
A static relationship between the densities and the flows on each cell can be derived
from delay functions, in the same way as proposed for one class of vehicles in
[Como et al., 2013b]. Specifically, since the outflow on each cell is given by the
traffic volume over the delay, it must hold that

xi =
ziτi(zi)
`i

,

where `i > 0 is the length of the cell. Under the assumption that the supply function
is not limiting the outflow in our model for dynamical flow networks, we have that
zi = di(xi), where di(xi) is the cell’s demand function as described in Chapter 2.
Using the above relationship, we get that,

τi(zi) =


d−1
i (zi)

zi
if zi > 0 ,

1
d ′i (0)

if zi = 0 .

We observe that the demand functions di(xi) are always strictly increasing, due to
the fact that

d ′i (d−1
i (zi)) =

`i
τi(zi) + ziτ′i (zi)

> 0 .

Example 6.3
Let the delay function be given by τi(zi) = αizi + βi . Then,

xi =
zi(αizi + βi)

`i
,

and hence,

zi = di(xi) =
√

1
4

(
βi
αi

)2
+

xi`i
αi
− 1

2
βi
αi
.
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For all junctions with an exogenous inflow, we add a cell that acts as an on-
ramp with the exogenous inflow instead. Then, combined with the static relationship
between flow and density, the flow dynamics of the network can be described as

ÛxA
i = λ

A
i +

∑
j∈Ev

xA
j

xj
dj(xj)RA

j,i −
xA
i

xi
di(xi) , (6.13a)

ÛxB
i = λ

B
i +

∑
j∈Ev

xB
j

xj
dj(xj)RB

j,i −
xB
i

xi
di(xi) . (6.13b)

For a given flow assignment zk∗, the routing policies are given by,

Rk
ji B


zk∗i∑

`∈E+i− zk∗
`

if
∑
`∈E+i− zk∗

`
> 0 and j+ = i− ,

0 otherwise.
(6.14)

In the following proposition, we show that the dynamics (6.13) – (6.14) is glob-
ally asymptotically stable under the assumption that the network G is acyclic.

Proposition 6.4
Suppose the network G is acyclic. Then the dynamics given by (6.13) – (6.14) con-
verges to the assigned equilibrium. �

Proof. Since the graph is acyclic, according to [Leiserson et al., 2001], a topological
ordering exists among the junctions. Starting from the first junction v1 ∈ V , we first
show that the aggregate traffic volumes of each cell xi where i ∈ E+v1 converge if the
inflows converge. Then we show that convergence in the aggregate traffic volume
implies convergence of the traffic volume of each class.

Let

fi(xi, λ̂A(t), λ̂B(t)) = λA
i +

∑
j∈Ev

xA
j

xj
dj(xj)RA

j,i + λ
B
i +

∑
j∈Ev

xB
j

xj
dj(xj)RB

j,i − di(xi) ,

for all cells i ∈ E+v1 where all xkj (t) with j ∈ Ev1 and k ∈ {A, B} are converging. For
all i ∈ E+v1 , we have that

∂ fi
∂xj
= 0 ,

∂ fi
∂xi
= −d ′i (xi) < 0 .

Hence the system is a monotone system with an equilibrium, so the assignment and
convergence of the aggregate traffic volume on each cell can be assured [Lovisari
et al., 2014, Lemma 6].
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Since the aggregate density is converging, i.e., xi → x∗i for all i ∈ E+v , there
exists εi > 0 such that for all t ≥ t∗ it holds that

|xi(t) − x∗i | < εi .

This implies that there also exists an ε ′i such that

|di(xi(t)) − di(x∗i )| < ε ′i ,

and since the inflows are converging, there also exists ε ′′i > 0 such that����∑
j∈Ev

xkj
xj

dj(xj)Rk
j,i −

∑
j∈Ev

xk∗j
x∗j

dj(x∗j )Rk
j,i

���� ≤ ε ′′i ,
for all t ≥ t∗. Hence it holds that,

Ûxki ≤ λki +
∑
j∈Ev

xk∗j
x∗j

dj(x∗j )RA
j,i + ε

′′
i −

xki
x∗i + ε

′
i

(di(x∗i ) − εi) ,

and

Ûxki ≥ λki +
∑
j∈Ev

xk∗j
x∗j

dj(x∗j )RA
j,i − ε ′′i −

xki
x∗i − ε ′i

(di(x∗i ) + εi) .

Direct use of Gronwall’s Lemma yields that xki (t) converges.
We have thus shown convergence of the outflows from the node v1, which means

that node v2 must have converging inflows. Similar reasoning to the above can be
applied to show that the outflows from v2 converge and the rest of the proof follows
by the application of inductive reasoning. �

6.5 Numerical Example

In this section, we perform numerical simulations in order to test the schemes
proposed in this chapter against a network with dynamics given in (6.13). The
network, shown in Figure 6.1, is similar to the one used to illustrate Braess paradox,
but with one additional cell. With the right choice of parameters, the user- and
fleet-optimal assignments will be different. Moreover, the optimal assignment in the
first node will depend on the delay functions in other parts on the network, rather
than just the outgoing cells from the first node. In order to test if our algorithm can
handle cycles, we have added an extra cell to the Braess network.

Let the delay functions be affine, given by τi(zi) = αizi + βi for all cells with the
values of αi and βi specified in Table 6.1. We let λ̂A = µ̂A = 1 and λ̂B = µ̂B = 4
and, for simplicity, we let all the cells be of unit length, i.e., `i = 1 for all cells. The
results of simulations using the centralized and decentralized algorithm are shown
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Table 6.1 Parameters and assigned flows for simulations

ei αi βi zA∗i zB∗i
e1 1 1 1 4
e2 1 1 0.25 2.5
e3 2 1 0.75 1.5
e4 1 3 0.125 2.25
e5 1 1 0.875 1.75
e6 2 1 0.125 0.25
e7 1 2 0 0

in Figure 6.4. In both simulations, the dynamics of the algorithms are simulated by
using an Euler solver with a step length of 0.1. While the decentralized algorithm
does not require a start from a feasible solution, i.e., the initial flows zA and zB can
be any non-negative value, the centralized algorithm needs to start from a feasible
solution because the algorithm has no information about exogenous inflows.

The routing polices RA and RB of (6.14) are determined according to the desired
assignment. Figure 6.5 presents the outflows of each class of vehicles from each cell.
Two simulations are performed. The first simulation corresponds to setting all initial
densities to zero, i.e., xA

i (0) = xB
i (0) = 0 for all i ∈ E . The second simulation

corresponds to setting all initial densities to 5, i.e., xA
i (0) = xB

i (0) = 5 for all i ∈ E .
In the first simulation, cell e7 can be removed from the network without causing
any effect on the dynamics. This is because R2,7 = 0 for k ∈ {A, B}, thus making
the network equivalent to an acyclic network with proven convergence properties
according to Proposition 6.4. In the second simulation, cell e7 contributes with a
converging inflow to node v1 but has no inflow to itself. Therefore it can be seen
as a converging inflow to node v1 and the proof of Proposition 6.4 can be slightly
modified to show convergence in this case as well.

6.6 Conclusions

In this chapter, we have analyzed the routing assignment problem for the two classes
of vehicles, where vehicles in each class either follow user-optimal or fleet-optimal
paths. For the assignment problem, we have provided sufficient conditions for the
existence and uniqueness of an equilibrium of the assignment, as well as two algo-
rithms to compute it. We have also showed how the assignment may be achieved
using static routing.
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Figure 6.4 The assigned equilibria zA∗ and zB∗ computed by centralized (solid)
and decentralized (dotted) algorithms, plotted as a function of algorithm iteration.
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Figure 6.5 The evolution of the outflows zA(t) and zB(t) for first (solid) and second
(dotted) simulations.
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7
Resilience of Dynamically
Routed Multicommodity
Flows

In this chapter, we extend the model in Chapter 2 in two ways. First we allow the
model to contain several classes of vehicles, a so called multicommodity network,
where each class has its own routing preferences. This extension was already partly
done in the end of the previous chapter, where we modeled two different classes of
flows. Moreover, we will enhance the routing to be dynamic, so that each class of
vehicles will adjust their path in the network, depending upon the current congestion
levels in the cells. Situations like this can for example occur when commuters, not
using a route guidance application, have to avoid a congested route due to an accident
or roadworks.

Models for multicommodity flow networks based on PDEs and the celebrated
LWRmodel have been studied [Lebacque and Khoshyaran, 2002; Herty et al., 2008],
but solutions are usually difficult to obtain even in simple settings. In this chapter,
we propose and analyze a model for dynamical flow networks with heterogeneous
routing. Differently from single-commodity scenario, in which all vehicles belong
to the same class and hence there is no competition among different classes, multi-
commodity networks show a complex behavior even in the static setting [Leighton
and Rao, 1999], in which it has been shown that the maximum flow that can flow in
a multicommodity network is bounded away from the value predicted by the cele-
brated max-flowmin-cut theorem. The main results of this chapter are the following:
1) Under certain assumptions on the constant inflows in the network, the network
admits a globally asymptotically stable equilibrium for each commodity, and 2)
When the network is not single-commodity, it can be extremely fragile with respect
to perturbations. In particular, if a network is at equilibrium is perturbed, e.g„ the
flow capacities of some cells decrease, a cascade effect can be triggered that destroys
the stability of the network. This behavior arises in a multicommodity setting with
heterogeneous routing only and has no counterpart in single-commodity networks.
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7.1 A Motivating Example

Let us start with the case when only one commodity is present in the network, and
introduce the dynamical routing.

Let us consider the network displayed in Figure 7.1. First, we focus on single-
commodity dynamical flows, where the traffic volume in each cell i ∈ E is described
by the dynamics in (2.2). We will in this chapter assume that the demand functions
are always limiting the outflow from the cells, i.e., si(xi) = +∞ for all i ∈ E . We let
the demand functions be of the form

di(xi) = ci(1 − e−xi ) ,

where ci > 0 is the cell’s maximal outflow capacity and xi the cell’s traffic volume.
While the routing matrix R previously has been assumed to be static, we will

now let it be state-dependent. This means that, under the assumption that di(0) = 0,
the dynamics in (2.2) can be rewritten as

Ûx = λ + (RT (x) − I)d(x) ,

where the notation R(x) stresses out that the routing now will be dependent on the
state. The routing polices are constructed as

R1,2(x1, x2) = e−x1

e−x1 + e−x2
, R3,4(x4, x5) = e−x4

e−x4 + e−x5
,

R1,3(x1, x2) = e−x2

e−x1 + e−x2
, R3,5(x4, x5) = e−x5

e−x4 + e−x5
,

and R4,5 = 1. We let the exogenous inflow to each cell be zero, apart from λ1 = 2.
Moreover, we let the cells’ flow capacity, ci = 2, for all cells in the network apart
from cell e5, which has capacity c5 = 0.7. In this setting, it can be verified that the
dynamical flow network admits an equilibrium with corresponding flow vector z∗

whose entries are specified in Figure 7.1. It has already been shown in [Como et al.,
2013a] that the equilibrium is globally asymptotically stable.

We want to study how the equilibrium flows change when the network is per-
turbed, namely, when the flow capacity is reduced from ci to c̃i < ci for some cells
i ∈ E , and denote the corresponding perturbed demand functions d̃, such that

c̃i = sup
xi ≥0

d̃i(xi) ,

for all cells i ∈ E .Wewill define the network’s margin of resilience to be the infimum
aggregate flow capacity reduction

∑
i∈E (ci − c̃i), or perturbation magnitude, such

that the perturbed system

Ûx = λ + (RT (x) − I)d̃(x) ,
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v1 v2 v3

v4

λ1 = 2

z∗2 = 1
c2 = 2

z∗3 = 1
c3 = 2

z∗4 = 0.5
c4 = 2

z∗6 = 0.5
c6 = 0.7z∗5 = 0.5

c5 = 2

Figure 7.1 A single-commodity network. The minimum residual capacity 0.2 is
achieved at junction v3. Hence, under any perturbation of magnitude smaller than 0.2
the network is still able to transfer the external inflow λ1 to the junction v4.

is unstable, i.e., the traffic volume goes to infinity for at least one cell i ∈ E when
time goes to infinity. For a single-commodity network, it was shown that the margin
of resilience equals the minimum junction residual capacity [Como et al., 2013a;
Como et al., 2013b], where the junction residual capacity is the difference between
the equilibrium flow and the maximum capacity for each outgoing cell from a
junction. This implies that the network in Figure 7.1, with the given routing policies,
can handle any capacity perturbation of a magnitude smaller than 0.2.

Now, let us assume that there are two different classes, denoted A and B, of flows
present in the network. Our state-space will then consist of traffic volumes for both
the classes, and we will denote those volumes xA, xB ∈ X . The aggregate traffic
volume xi in each cell i ∈ E is then given by

xi = xA
i + xB

i .

We assume that the vehicles are fully mixed, so that the dynamics for vehicles of
class k ∈ {A, B} is

Ûxki = λki +
∑
j

Rk
ji(x)

xkj
xj

dj(xj) −
xki
xi

di(xi) .

We let the classes of vehicles have different routing policies. In particular, we
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v1 v2 v3

v4

λA
1 = 1 , λB1 = 1

zA∗2 = 0.80
zB∗2 = 0.20

c2 = 2

zA∗3 = 0.20
zB∗5 = 0.80

c3 = 2

zA∗4 = 0.19
zB∗4 = 0.31

c4 = 2

zA∗6 = 0.01
zB∗6 = 0.49

c6 = 0.7zA∗5 = 0.19
zB∗5 = 0.31

c5 = 2

Figure 7.2 Equilibrium flows for a simple network. All flows are less than the cells’
capacities, so that the network is able to fully transfer the external inflows λA, λB to
their destination, junction v4.

consider routing polices of the form

Rk
1,2(x2, x3) = 1 − Rk

1,3(x2, x3) =
z̄k2 · e−α

k
2 x2

z̄k2 · e−α
k
2 x2 + z̄k3 · e−α

k
3 x3

,

Rk
3,4(x4, x5) = 1 − Rk

3,5(x4, x5) =
z̄k4 · e−α

k
4 x4

z̄k4 · e−α
k
4 x4 + z̄k5 · e−α

k
5 x5

,

and RA
4,6(x) = RB

4,6(x) ≡ 1. Here, z̄ki is the desired limit flow for class k in cell i,
and are specified in Figure 7.2. Observe that the aggregate limit flows coincide with
those in the single-commodity case. On the other hand, αk

i > 0 are parameters which
do not effect the limit flows. However, these parameters do affect how the dynamical
flow network responds to perturbations.

In order to illustrate the fragility of the multicommodity setting, we let αA
2 =

αB
3 = 1000 and αB

2 = α
B
3 = 1 and αk

4 = α
k
5 = 0.01, and consider now a perturbation

of magnitude 0.01 which reduces c2 = 2 to c̃2 = 1.99. The limit flows for the
perturbed dynamics are shown in Figure 7.3. The perturbation causes the limit flow
in cell 3 to increase and exceed the capacity of the subsequent cell 5. Consequently,
the traffic volume in cell 5 grows unbounded. This implies that the margin of
resilience in the multicommodity case is not larger than 0.01. This example then
indicates that a dynamical multicommodity network can be muchmore fragile than a
single-commodity network with the same topology and same aggregate equilibrium
flows.
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v1 v2 v3

v4

λA
1 = 1 , λB1 = 1

zA∗2 = 0.24
zB∗2 = 0.75
c̃2 = 1.99

zA∗3 = 0.76
zB∗3 = 0.25

c3 = 2

zA∗4 = 0.72
zB∗4 = 0.10

c4 = 2

zA∗6 = 0.04
zB∗6 = 0.15

c6 = 0.7zA∗5 = 0.62
zB∗5 = 0.08

c5 = 2

Figure 7.3 The same network when cell e2’s capacity is slightly decreased. Now
the inflow to cell e6 is larger than its capacity, and hence the network is not able to
handle the flow demands.

7.2 Flow Networks with Dynamical Heterogeneous Routing

We will in this chapter study different classes of vehicles and we will denote the set
of classes K. It is assumed that each class of vehicles k ∈ K has a given destination
junction1, which is denoted vk ∈ V . For each class of vehicles, we will denote the
subset of cells that the class has access to Ek ⊆ E . In the same manner, we let Ek+

v

denote the subset of outgoing cells from junction v that class k has access to. This
restriction is introduced for modeling purposes since we do not want the vehicles to
end up in cells from where it is possible for the vehicles to reach their destinations.
In practice, this situation can occur when heavier vehicles such as trucks may not
be allowed to enter all roads in a city. For a subset of classes J ⊂ K, we denote the
cells that the classes in J have access to as EJ+

v = ∪k∈J Ek+
v . The traffic volume of

each vehicle-class in each cell will now be the state-space, so the overall state-space
from Chapter 2 is now extended toXK. We will denote the traffic volume for a given
class k ∈ K as xk ∈ X . In the same way, the exogenous static inflows and routing
matrices for each class are denoted as λk ∈ RE

+ and Rk ∈ RE×E
+ , where λki = 0 for

all i ∈ E \ Ek and Rk
i j = 0 for all i ∈ E and all j ∈ E \ Ek .

Throughout the chapter, we will make the following assumption about the de-
mand functions:

Assumption 7.1—Demand functions
For each cell i ∈ E the demand function di : R+ → R+ is assumed to

1 This assumption is not restricting the model, since if a class should have the possibility to end up at
several different junction, all those junctions can be connected to a fictive destination junction
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be strictly increasing, continuously differentiable, with bounded derivative, and
ci = supxi ≥0 di(xi) < +∞. �

A class of vehicles k passing through a junction v splits among its accessible
out-links Ek+

v . Following [Como et al., 2013a; Como et al., 2013b], we allow for
routing through distributed routing policies that are functions of the local aggregate
traffic volumes x(v+) B {xi}i∈E+v ∈ R

E+v
+ on the outgoing cells from the junction v.

The key novelty with respect to [Como et al., 2013a; Como et al., 2013b] is that we
allow the different classes of vehicles to have different routing policies. We define
distributed routing policies formally as follows:

Definition 7.1—Distributed routing policy
A distributed routing policy is a family of differentiable functions

R B {Rk
i j(x) : RE

+ → R+}k∈K,i, j∈E ,

satisfying the following properties for all classes k ∈ K and all cells i ∈ Ek :

a) The routing policy adheres the network topology,

Rk
i j(x) ≡ 0 , ∀ j ∈ E \ Ek+

i+ .

b) The routing policy only depends on local information,

∂

∂x`
Rk
i j(x) ≡ 0 , ∀ j ∈ Ek+

i+ , ∀` ∈ E \ Ek+
i+ .

c) The routing policy is mass-conserving:∑
j∈Ek+

i+

Rk
i j(x) ≡

{
1 if i+ , vk ,

0 otherwise.

d) The routing policy is congestion avoiding:

∂

∂x`
Rk
i j(x) ≥ 0 , ∀` , j ∈ Ek+

i+ .

e) The routing policy does not route traffic into congested cells. This means
that for every nonempty proper subset I ( Ek+

i+ there exists a continuously
differentiable family of functions R̄ B {R̄k

i j(x) : RE
+ → R+}k∈K,i, j∈E such

that ∑
j∈Ek+

i+

R̄k
i j(x) ≡ 1 , if i+ , vk ,
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and such that if

xj → +∞ , ∀ j ∈ Ek+
i+ \ I , x` → xI` , ∀` ∈ I ,

then
Rk
i j(x) → 0 , ∀ j ∈ Ek+

i+ \ I ,
Rk
i`(x) → R̄k

i`(x) , ∀` ∈ I .

Having defined the distributed routing policies, we can now formally define
dynamical multicommodity networks with distributed routing.

Definition 7.2—Dynamical multicommodity flow network with distributed
routing
A dynamical multicommodity flow network is a dynamical flow network with dis-
tributed routing, with classes of vehicles K and a family of distributed routing
policies satisfying Definition 7.1. The dynamics for each cell i ∈ E and each class
k ∈ K is given by

Ûxki = λki +
∑
j∈E

zkj Rk
ji(x) −

xki
xi

di(xi) .

The most important aim of a dynamical flow network is that all vehicles will
reach their destinations. Therefore, we define a fully transferring network as:

Definition 7.3—Fully transferring
A dynamical flow network is said to be fully transferring if

lim inf
t→∞

∑
i∈E

vk

zki (t) =
∑
i∈E

λki , ∀ k ∈ K. �

The definition above states that the outflow to the destination junctions (which
is only one junction for each class k ∈ K) should equal the exogenous inflows in the
limit.

7.3 Stability Analysis

In this section we will state a sufficient condition for an acyclic dynamical multi-
commodity network to have finite cell volumes in equilibrium and a unique limit
flow. First of all, we analyze a local network consisting of only the outgoing cells
from one junction, as shown Figure 7.4, namely a network with a single junction.
For in-coming cells i ∈ Ev , we assume that they all have converging outflows, which
we denote y ∈ REv×K

+ , such that

lim
t→+∞ ykj (t) = yk∗j , ∀ j ∈ Ev , ∀k ∈ K .
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v

y1

y2 Ev E+v

Figure 7.4 An example of a local network. In a local network, only the dynamics
on the outgoing cells from a junction is studied. The set of those cells are denoted
E+v , while the incoming cells in Ev are assumed to only have converging outflows,
which we denote y.

For a local network, i.e., for a fixed junction v ∈ V , the multicommodity dynamics
reads

Ûxki = λki +
∑
j∈E

ykj Rk
ji(x(v+)) −

xki
xi

di(xi) , ∀i ∈ E+v , k ∈ K . (7.1)

The next result, which is the building block of thewhole theory, offers a necessary
and sufficient condition for the local network to admit a globally asymptotically
equilibrium.

Theorem 7.1
Consider a local dynamical multicommodity network with a junction v ∈ V as
in (7.1). Assume moreover that the inflows are converging, namely limt→+∞ ykj (t) =
yk∗j for all k ∈ K and all j ∈ Ev . Then it holds that

a) if ∑
k∈J

∑
j∈E

yk∗j <
∑

i∈EJ+
v

(
ci −

∑
k∈J

λki

)
,

for every nonempty J ⊆ K, then there exists a finite traffic volume x∗ such
that limt→∞ xki (t) = xk∗i for every i ∈ E+v and k ∈ K.

b) if there exists a nonempty J ⊆ K such that∑
k∈J

∑
j∈E

yk∗j ≥
∑

i∈EJ+
v

(
ci −

∑
k∈K

λki

)
,

then there exists at least one k ∈ J such that limt→+∞ xi(t) = +∞ for all
i ∈ Ek+

v . �
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Proof of Theorem 7.1
The proof of Theorem 7.1 is divided into several steps. First, we prove convergence
of the aggregate flow on each link in the local network. While the aggregate flow
will always converge, the aggregate traffic volume in each cell may not converge if
the outflow converges to the flow capacity. If the converging outflow is less than the
maximum flow capacity, we show that the aggregate traffic volumes converge too.

Lemma 7.1
Suppose that the inflows to the local network are constant, i.e., ykj (t) ≡ ykj for
all k ∈ K and all j ∈ Ev , the dynamics is given by (7.1) and the demand-functions
satisfies Assumption 7.1. Then there exists a unique aggregate limit outflow z ∈ RE+v

+ ,
such that for every initial traffic volumes x(0) ∈ RE+v

+ ,

lim
t→∞ zi(t) = z∗i , ∀i ∈ E+v .

Moreover, if z∗i < ci or a cell i ∈ E+v , then also the limit traffic volume x∗i is unique.�

Proof. Consider the aggregate dynamics for a junction v ∈ V , given by

Ûxi =
∑
k∈K
Ûxki =

∑
k∈K

λki +
∑
k∈K

∑
j∈Ev

ykj Rk
ji(x(v+)) − di(xi) .

Let

Hi(x(v+)) =
∑

k∈K
∑

j∈Ev
ykj Rk

ji(x(v+))∑
k∈K

∑
j∈Ev

ykj
.

Then Hi(x(v+)) is a distributed routing policy. The aggregate dynamics for the local
network can the be written as

Ûxi =
∑
k∈K

λki +

(∑
k∈K

∑
j∈Ev

ykj

)
Hi(x(v+)) − di(xi) , ∀i ∈ E+v . (7.2)

The aggregate dynamics then have the same properties as in the single commodity
case, and therefore [Como et al., 2013a, Lemma 2] can be used to show that there
exists a unique aggregate limit flow, z∗i , for all i ∈ E+v . Due to Assumption 7.1, there
is a bijection between the aggregate flow and the aggregate traffic volume on each
link when the limit flow is less than the capacity, and therefore the aggregate traffic
volumes will converge as well. �

Next, a condition for having finite aggregate traffic volumes will be stated.

Lemma 7.2
A sufficient and necessary condition for a local network to have aggregate finite limit
traffic volumes when the inflows y∗ ∈ REv×K

+ is constant, is that for every subset

114



7.3 Stability Analysis

J ⊆ K it holds that ∑
k∈J

∑
j∈Ev

yk∗j <
∑

i∈EJ+
v

(
ci −

∑
k∈J

λki

)
. (7.3)

�

Proof. Sufficiency: Let I B {i ∈ E | x∗i = +∞}. Observe then that

lim sup
t→∞

Ûxi(t) ≥ 0 , ∀i ∈ I .

For a commodity k ∈ K two scenarios are possible. Either Ek+
v * I, but then the

property e) in Definition 7.1 gives that Rji(x(v∗)) = 0 for all cells i ∈ I and those
classes of vehicles are not contributing to the infinite limit traffic volume. In the
other case, we have that Ek+

v ⊆ I. Introduce the set J B {k ∈ K | Ek+
v ⊆ I} and

sum up equation (7.1) over the classes in J ,

lim sup
t→+∞

∑
k∈J

∑
i∈EJ+

v

Ûxi(t) = lim sup
t→+∞

∑
k∈J

∑
i∈EJ+

v

(
λki +

∑
j∈Ev

yk∗j Rji(x(v)) −
xki
xi

di(xi)
)

=
∑
k∈J

∑
j∈Ev

yk∗j −
∑

i∈EJ+
v

(
ci −

∑
k∈J

λki

)
≥ 0 .

In the equality we use the fact that the image of the routing policy is a simplex,
together with the fact that the aggregate flow is bounded. Then inequality (7.3) is
violated. Hence I = ∅.

Necessity: Let J ⊆ K be a nonempty subset such that∑
k∈J

∑
j∈Ev

yk∗j ≥
∑

i∈EJ+
v

(
ci −

∑
k∈J

λki

)
.

Then ∑
k∈J

∑
i∈EJ+

v

Ûxki =
∑
k∈J

(∑
j∈Ev

yk∗j +
∑

i∈EJ+
v

λki

)
−

∑
i∈EJ+

v

(∑
k∈J xki

xi

)
di(xi)

≥
∑
k∈J

(∑
j∈Ev

yk∗j +
∑

i∈EJ+
v

λki

)
−

∑
i∈EJ+

v

di(xi) .

Taking the limit of both sides gives

lim inf
t→+∞

∑
k∈J

∑
i∈EJ+

v

Ûxki ≥
∑
k∈J

(∑
j∈Ev

yk∗j +
∑

i∈EJ+
v

λki

)
−

∑
i∈EJ+

v

di(x∗i )

≥
∑
k∈J

(∑
j∈Ev

yk∗j +
∑

i∈EJ+
v

λki

)
−

∑
i∈EJ+

v

ci ≥ 0 ,
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where the central inequality is strict for any i ∈ EJ+
v such that x∗i < +∞. This implies

that there exists at least one cell i ∈ EJ+
v such that xi → +∞ as t → +∞ and the

network is not fully transferring. Moreover, if xi → +∞, there must exist at least
one k ∈ K such that xki → +∞. Then

lim sup
t→+∞

Ûxki ≥ 0 ,

and

lim sup
t→+∞

λki +
∑
j∈Ev

yk∗j Rk
ji(x(v+)) −

xki
xi

di(xi) ≥ 0 ,

which implies that either λki ≥ ck and then the inequality in (7.3) is clearly violated
or

lim sup
t→+∞

Rk
ji(x(v+)) > 0 .

Then Definition 7.1 e), gives us that none of the traffic volumes xj, ∀ j ∈ Ek
v can be

finite. �

Next, we establish convergence in each class of vehicles under the assumption
that the aggregate traffic volumes on the outgoing cells converge to finite values.

Lemma 7.3
If the local network (7.1) with static inflows satisfies the condition given in
Lemma 7.2, then the traffic volume for each class of vehicles on the outgoing
cells will also converge to a unique finite value, i.e.,

lim
t→+∞ xi(t) = x∗i < +∞ =⇒ lim

t→+∞ xki (t) = xk∗i , ∀i ∈ E+v , ∀k ∈ K .

Proof. First observe that if x∗i = 0, then xk∗i = 0 as well for all k ∈ K, since the
traffic volume for each class of vehicles cannot be below zero. Let us therefore for
the rest of the proof assume that x∗i > 0.

Consider an arbitrary cell i ∈ E+v . Since the aggregate traffic volumes converge,
for every ε > 0 there exists a t0 > 0 such that

|xi(t) − x∗i | < ε , ∀t ≥ t0 .

Due to the continuity assumption of the routing policy and since the aggregate
densities are finite, there also exists a ξ > 0 such that�����∑

j∈Ev

yk∗j Rk
ji(x(t)) −

∑
j∈Ev

yk∗j Rk
ji(x∗)

����� < ξ ,

116



7.3 Stability Analysis

and an η > 0 such that ��di(xi(t)) − di(x∗i )
�� < η .

Using the local system dynamics from (7.1) together with the inequalities, gives for
t > t0

Ûxki = λki +
∑
j∈E

yk∗j Rk
ji(x(v+)) −

xki
xi

di(xi)

≤ λki +
∑
j∈E

yk∗j Rk
ji(x(v+)∗) + ξk −

xki
x∗i + ε

(di(x∗i ) − η) , ∀k ∈ K . (7.4)

Let α = λki +
∑

j∈E yk∗j Rk
ji(x(v+)∗) and β = di(x∗i ), then the equation above reads

Ûxki ≤ α + ξ − xi · β − ηx∗i + ε
.

By applying the affine transformation,

x̂ki (t) = xki (t) −
(α + ξ)(x∗i + ε)

β − η ,

Equation (7.4) can be written as

Û̂xki ≤ −xki (t) ·
β − η
x∗i + ε

.

Direct use of Gronwall’s inequality [Gronwall, 1919] yields

x̂ki (t) ≤ x̂ki (0) · exp
{
− β−ηx∗i+ε

t
}
→ 0 when t → +∞ ,

if we choose η such that η < β. With xk∗i = limt→+∞ xki (t), the inequality above can
be written as

xk∗i ≤
(α + ξ)(x∗i + ε)

β − η .

In the same way it holds

Ûxki = λki +
∑
j∈E

yk∗j Rk
ji(x(v+)) −

xki
xi

di(xi)

≥ λki +
∑
j∈E

zk∗j Rk
ji(x(v+)∗) − ξ −

xki
x∗i − ε

(di(x∗i ) + η) , ∀k ∈ K.
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Using the same technique again gives a lower bound on xk∗i , and the limit traffic
volume can be bounded as follows

(α − ξ)(x∗i − ε)
β + η

≤ xk∗i ≤
(α + ξ)(x∗i + ε)

β − η .

Since we have the freedom to choose ξ, ε , and η arbitrarily small, this implies that

lim
t→+∞ xki (t) = xk∗i , ∀i ∈ E+v , ∀k ∈ K . �

The next step is to show that if the aggregate traffic volumes converge when the
inflows are static, they will also converge for converging inflows.

Lemma 7.4
Consider a local network given by (7.1) with converging inflows, such that
limt→+∞ ykj (t) = ykj for all j ∈ Ev and all k ∈ K. Then the aggregate densities
on each outgoing link also converge, such that

lim
t→+∞ xi(t) = x∗i , ∀i ∈ E+v . �

Proof. Denote the right hand side of (7.2) Fi(x(v+), z). Then
∂

∂xj
Fi(x(v+), y) ≥ 0 , ∀ j , i ∈ E+v ,

and
∂

∂ykj
Fi(x(v+), y) ≥ 0 ∀ j ∈ Ev , ∀k ∈ K.

Hence the system is a controlled monotone system in the sense of Angeli and
Sontag [Angeli and Sontag, 2003]. If y ∈ REv×K

+ is converging to y∗, for each ε > 0
there exists a t0 > 0 such that |yki (t) − yk∗i | < ε for t > t0. Due to the monotonicity
of the system it holds that

Φt (y∗ − ε, x(0)) ≤ Φt (y(t), x(0)) ≤ Φt (y∗ + ε, x(0)), t ≥ t0,

where Φt : R+ × (REv×K
+ ,REv+

+ ) → RE+v is the semiflow. For a given inflow y,
denote the corresponding limit traffic volume x(y). As t → +∞ it holds that

x∗(y − ε) ≤ lim
t→+∞ x(y(t)) ≤ x∗(y + ε),

where Lemma 7.1 guarantees that x∗(y−ε) and x∗(y+ε) converge. Since x∗ depends
continuously on y, see [Como et al., 2013a, Lemma 3], by letting ε → 0 the aggregate
on each link will converge to a unique limit traffic volume. �
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Proof of Theorem 7.1. Lemmas 7.1, 7.2, 7.3 and 7.4 together prove the first part of
the theorem. The necessity condition in Lemma 7.2 proves the second part. �

Theorem 7.1 deals with stability of a local system. In the rest of this section
we shall address the stability of an acyclic network with a single origin junction,
denoted o ∈ V , where all the exogenous inflow enter. The stability is then shown by
interpreting it as a cascade of local networks. To this end, let J ⊂ K and

VJ B {v ∈ V | EJ+
v , ∅} .

In other words, VJ contains all the junctions that allow flow of class k ∈ J on their
outgoing cells. Moreover, let UJ ⊂ VJ and ∂UJ B {e = (a, b) ∈ EJ | a ∈ U, b <
U }. Define the minimum cut capacity between two junctions o, s ∈ V , Ck

o→s as

CJ
o→s B min

UJ ⊂VJ s.t o∈UJ ,s<UJ

∑
e∈E+

∂U

Ce .

For sake of simplicity, consider now an acyclic network with the same origin
o ∈ V for all the classes of vehicles, i.e., λki = 0 for all i < Eo and all k ∈ K. The
following proposition offers a sufficient condition for such a network.

Proposition 7.1
Consider an acyclic dynamical multicommodity network with single origin, i.e.,
λki = 0 for all i < Eo. Then a sufficient condition for it to admit a unique limit traffic
volume and a unique limit flow is that for every k ∈ K and for every v ∈ Vk it holds
that

min

(
CJ
o→v,

∑
j∈Eo

∑
k∈J

λkj

)
<

∑
e∈EJ

v

ce . �

Proof. Since the graph is acyclic, a topological ordering exists [Leiserson et al.,
2001, Theorem 22.12], so we can proceed by induction over the junctions of the
graph. Number the junctions v = 0, 1, .., n − 2. For v = 0, we only have converging
from cells with exogenous inflows, and then Theorem 7.1 guarantees that the network
is fully transferring. Now consider an arbitrary node w such that 0 < w < n − 1 and
assume that the traffic volumes on the outgoing cells from junction up to index w

are converging, and hence the outflows are converging as well. Also observe that the
inflow to junction w cannot be greater than

min

(
CJ
o→w,

∑
j∈Eo

∑
k∈J

)
.
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Then it follows from Theorem 7.1 that the densities on the links in E+w admit a unique
asymptotically stable equilibrium if and only if

min

(
CJ
o→w,

∑
j∈Eo

∑
k∈J

λkj

)
<

∑
i∈EJ

w

ci .

This is indeed satisfied by assumption, so the induction step is valid. Therefore the
network admits a unique limit traffic volume. Uniqueness of the limit flow follows
immediately from Assumption 7.1. �

7.4 Resilience

In this section we investigate how the dynamic multicommodity network responds
to perturbations. Following [Como et al., 2013a; Como et al., 2013b], a perturba-
tion is modeled as a family of perturbed demand functions, {d̃i(xi)}∀i∈E such that
d̃i(xi) ≤ di(xi), for all i ∈ E and d̃i satisfies Assumption 7.1. The magnitude of the
perturbation on one cell i ∈ E is then defined as δi B supxi ≥0 (d̃i(xi) − di(xi)) and
the total magnitude of the perturbation is then given by δ B

∑
e∈E δe. The resilience

of a dynamical flow network is then defined as the infimum total magnitude of
perturbations making the resulting dynamical flow network not fully transferring.

It was proven in [Como et al., 2013a; Como et al., 2013b] that, in the single
commodity case, the resilience of an acyclic dynamical flow network coincides with
the minimum residual capacity, defined as

min
v,vd

{∑
i∈E+v

ci − z∗i

}
,

where z∗ is the limit flow of the unperturbed dynamical flow network and vd the
destination junction of the flow. At the core of the proof is a diffusivity property of
single-commodity local dynamical flow networks (cf. [Como et al., 2013b, Lemma
1]) guaranteeing that a perturbation of total magnitude δ in either some of the
outgoing cells, or the inflow, does not increase the limit flow of any out-link by more
than δ. In other words, the network does not overreact to perturbations.

The goal of this section is to show that, when more than one class of vehicles
are present, dynamical flow networks can be instead arbitrarily fragile. In particular,
we will construct a family of simple examples of multicommodity dynamical flow
networks (with topology illustrated in Figure 7.2) that, irrespective of their mini-
mal residual capacity, can lose their fully transferring property even by means of
arbitrarily small perturbations. This will show that their resilience equals 0.

We will proceed by first stating some properties of local multicommodity dy-
namical flow networks that have the fully accessible properties. The first one can
be considered as a weaker version of the aforementioned diffusivity property for
multicommodity dynamical networks.
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Lemma 7.5
Consider a fully accessible local dynamical multicommodity network for a junction
v ∈ V , with a fixed inflow ykj for all j ∈ Ev and all k ∈ K. Assume that λki = 0 for
all i ∈ E+v and all k ∈ K, and ∑

k∈K

∑
j∈Ev

ykj <
∑
i∈E+v

ci .

Let z∗ denote the vector of limit outflows for this junction. Moreover, let ỹ be
perturbed inflows and c̃ perturbed capacities such that∑

k∈K

∑
j∈Ev

ỹkj <
∑
i∈E+v

c̃i .

Let z̃∗ denote the limit outflows from the perturbed junction, with the inflows ỹ.
Then for every I ⊆ E+v it holds that∑

i∈I

(
z̃∗i − z∗i

) ≤ ∑
k∈K

∑
j∈Ev

[
ỹkj − ykj

]
+
+

∑
i∈E+v

δi . �

Proof. First, let ẑ B max(z, z̃) and ŷ B max(y, ỹ) where max() applies component-
wise. Moreover denote the solution of the local aggregate system (7.2) after pertur-
bation x̂ with the inflow ẑ and initial condition x̂(0) = x∗, where x∗ is the limit traffic
volume before perturbation. As a first step, we will prove that

ẑi(t) ≥ d̃i(x∗i ) , ∀t ≥ 0 , ∀i ∈ E+v . (7.5)

Consider a point in the space for the aggregate traffic volumes x̂ ∈ RE+v
+ , such that

x̂ > x∗ and there exits a cell i ∈ E+v such that x̂i = x∗i . Then [Como et al., 2013a,
Lemma 1] implies that Rk

ji(x̂(v+)) ≥ Rk
ji(x(v+∗)) for all k ∈ K. Since we also know

that ŷ ≥ y and
d̃i(x̂i) ≤ di(x̂i) = di(x∗i ) ,

it holds that∑
k∈K

∑
j∈Ev

ŷkj Rk
ji(x̂(v+)) − di(x̂i) ≥

∑
k∈K

∑
j∈Ev

ykj Rk
ji(x(v∗+)) − di(x∗i ) = 0 .

Let Ω B { x̂ ∈ RE+v
+ | x̂i ≥ x∗i , ∀i ∈ E+v } and ω ∈ RE+v the unit outpointing normal

vector to the boundary of the set Ω. Then

d
dt
(x̂ · w) =

[∑
k∈K

∑
j∈Ev

ŷkj Rk
ji(x̂(v+)) − di(x̂i)

]
i∈E+v

· ω ≤ 0 ,
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ω

ω
Ω

x∗

Figure 7.5 Schematic sketch of the invariant set used in the proof of the diffusivity
lemma.

for all x̂ ∈ ∂Ω and for all t ≥ 0. Hence Ω is an invariant set, see Figure 7.5, so that
the aggregate traffic volumes will always be larger or equal to the limit volumes for
the unperturbed system. This proves the inequality in (7.5).

Introduce now I ⊆ E+v and L = E+v \ I. Since there exists an equilibrium for the
perturbed system it follows that∑

i∈I
ẑ∗i =

∑
k∈K

∑
j∈Ev

ŷkj −
∑
l∈L

ẑ∗l ≤
∑
k∈K

∑
j∈Ev

ŷkj −
∑̀
∈L

d̃`(x∗` )

=
∑
k∈K

∑
j∈Ev

(
ŷkj − ykj

)
+

∑
i∈I

z∗i +
∑̀
∈L

d`(x`) −
∑̀
∈L

d̃`(x∗` )

≤
[∑
k∈K

∑
j∈Ev

ŷkj − ykj

]
+

+
∑
i∈I

z∗i +
∑̀
∈L
δ`

≤
[∑
k∈K

∑
j∈Ev

ŷkj − ykj

]
+

+
∑
i∈I

z∗i +
∑
`∈E+v

δ` .

Since the aggregate system is monotone and λ ≤ λ̂ it also follows that

z̃∗i (y) ≤ z̃∗i (ŷ) = ẑ∗i , ∀i ∈ E+v ,
which implies ∑

i∈I
z̃∗i (y) ≤

∑
i∈I

ẑ∗i . �

Lemma 7.5 provides a bound on the difference between aggregate limit flows
before and after the perturbation in terms of its magnitude and of the difference
between the inflows. Observe that when there is only one class of vehicles, i.e.,
|K| = 1, Lemma 7.5 reduces to Lemma 1 in [Como et al., 2013b]. On the other
hand, the following two results show that when more than one class of vehicle is
present, each class can change in an arbitrary way as long as the bound on the
aggregate flow provided by Lemma 7.5 is satisfied.
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Lemma 7.6
Consider a local dynamical network with two outgoing cells e2, e3 and two classes
of inflows yA1 , y

B
1 enter through one incoming link in the network . Let zk∗ be a

feasible equilibrium flow. Then, for ε > 0 small enough, there exists distributed
routing policies, RA, RB, such that

a) zk∗ is the equilibrium flow of the dynamical local network,

b) there exists a perturbation of magnitude ε such that the perturbed limit flow,
for one class k ∈ E and for one of the cells i ∈ {e2, e3}, satisfies

z̃k∗i > min(yk1 , z∗i ) − δ ,

where δ > 0 can be chosen arbitrary small. �

Proof. From a given limit flow z∗, the monotonicity of the flows in Assumption 7.1
gives unique corresponding limit traffic volumes x̃. By constructing the distributed
routing policies as

Rk
1,i =

zk∗i e−α
k
i (xi−x∗i )∑

j∈E+v zk∗j e−α
k
j (x j−x∗j )

, ∀k ∈ K , i ∈ E+v ,

where αk
i > 0, the equilibrium point to the dynamics given by (7.1) is x∗.

After a small capacity perturbation of ε > 0 on one cell, assume without loss of
generality e2, such that d̃2(x2) < d2(x2) it holds that

z̃∗2 = yA1 RA
1,2(x2, x3) + yB1 RB

1,2(x2, x3) ,
z̃∗3 = yA1 RA

1,3(x2, x3) + yB1 RB
1,3(x2, x3) .

The equations above are linearly dependent since Rk
1,2 = Rk

1,3 = 1 for all k ∈ K.
Hence we have one degree of freedom in the construction of the routing policies,
which determines the ratio between the classes. Choose z̃∗2 = z∗3 and z̃∗3 = z∗3. Then,
due to the perturbation x̃2 > x3 (also at limit) and x̃3 = x2. Moreover, either λA

1 > z̃∗2
or λB1 > z̃∗2 or both. In the first case, let α

B
2 = β and keep the other coefficients fixed.

Then as β→ +∞, RB
1,2(x2, x3) → 0 and

z̃∗2 = yA1 RA
1,2(x2, x3) ,

z̃∗3 = yA1 RA
1,3(x2, x3) + yB1 .

Hence all flow of class B is routed to cell e3. If instead yB1 > z̃∗2, choosing α
A
2 = β

will route all flow of class A to link e3. �
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Remark 7.1
In the single commodity case, it holds that

z̃2 = yR1,2(x2, x3) ,
z̃3 = yR1,3(x2, x3) ,

and since x is uniquely determined by the limit flows, there is no room for a parameter.
This motivates why this fragile behavior can occur in a multicommodity setting but
not in a single commodity setting. �

Notice in particular that the perturbation considered in Lemma 7.6 does not
change the inflows yA and yB, and hence by Lemma 7.5 z̃∗i ≤ z∗i + ε for i ∈ {e2, e3}.
Also notice that trivially z̃ik∗ ≤ min{yk1 , z̃∗i } ≤ min{yk1 , z∗i + ε}. Lemma 7.6 ensures
then that after perturbation we get

min(yk1 , z∗i ) − δ ≤ z̃k∗i ≤ min(yk1 , z∗i + ε) .

Since ε and δ are arbitrary, we can steer z̃k∗i arbitrarily close to min(yk1 , z∗i ).
Lemma 7.7
Consider a local dynamical network, with two outgoing links e1, e2 and two classes
of inflows yA1 , y

B
1 . Let z∗ be a feasible limit flow. Then, if the inflows change to ỹ

and the new limit flows satisfy c2 > z̃∗2 > z∗2 and z̃∗3 < z∗3, there exist routing policies
RA, RB, such that for a given δ > 0

z̃∗2 >
zA∗2

yA1
ỹA1 +

zB∗2

yB1
ỹB1 − δ. �

Proof. Construct the routing policies as in Lemma 7.6 with αk
e =

1
β . Then, since

z̃∗2 < c2, x̃i(β) − x∗i is bounded and

z̃∗1 = ỹA1 RA
1,2(x̃∗(β)) + ỹB1 RB

1,2(x̃∗(β)) →
zB∗2

yB1
ỹB1 +

zA∗2

yA1
ỹA1 ,

when β→ +∞. �

We are now ready to construct an example showing that resilience can be ar-
bitrarily low. To this aim, consider the network in Figure 7.1. Start from a given
feasible limit flow z∗ such that

γ1 =
zA∗4

zA∗3
> γ2 =

zB∗4

zB∗3
,
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and assume that

min(λA
1 , z
∗
3) >

c6 − z∗3γ2

γ1 − γ2
.

We claim that we can construct routing policies such that the network will not
be fully transferring after an arbitrarily small perturbation.

Consider first the local network around junction v1. Using Lemma 7.6, we know
that we can construct routing policies such that after a small perturbation on link e2
the flow of class A on link e3 is steered close to the value

z̃A∗3 ≈ min(λA
1 , z
∗
3) >

c6 − z∗3γ2

γ1 − γ2
.

In junction v3, we construct then the routing policies according to Lemma 7.7.
In this way, when, after perturbation, f A

3 approaches z̃A3 the perturbed limit flow on
link e4 converges to

z̃∗4 =
zA∗4

zA∗4
z̃A∗3 +

zB∗4

zB∗3
z̃B∗3 > c6 .

Since the perturbed limit flow on e4 is greater than the capacity of e6, the network
loses the fully transferring property, and the claim is proved.

To illustrate this behavior numerically, let the demand functions be

di(xi) = ci(1 − e−xi ) ∀i ∈ E .
Moreover, let λA

1 = λ
B
1 = 1.5, c2 = c3 = 1.55, c4 = c5 = 2 and c6 = 1.45. Since

C2→4 = 1.51 > 1.45 the sufficient condition stated in Proposition 7.1 is violated.
However, by letting zB∗3 = 1, zA∗3 = 0.5, zA∗4 = 0.49 and zB∗4 = 0.1, distributed
routing policies can be constructed such that the network is still fully transferring.
Let αA

2 = αB
3 = 50 and αA

3 = αB
2 = 0.01 and αA

4 = αB
4 = 0.01. Then one can

perturb the network in such a way that c2 = 1.55 decreases to c2 = 1.54 and zA∗4 to
z̃A∗4 = 1.454 > 1.45. With these values after perturbation, the network is not fully
transferring. In Figure 7.6 we show how the flows on link e3 and e4 evolve, starting
from zero initial state. The perturbation occurs at t = tp .

7.5 Conclusions

In this chapter, we have introduced dynamic routing to a multi-commodity version of
the dynamical flow model presented in Chapter 2. We showed that if an equilibrium
exists, the systemwill converge to this equilibrium. For the single-commodity case, it
has previously been shown that the class of dynamical routing policies we are using,
makes the network resilient to perturbations. However, we have in this chapter shown
that when more than one class of vehicles are present in the network, those resilience
results do not necessarily hold anymore.
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tp
0

0.5

1

1.5

Time

zA2
zB2
zA3
zB3

Figure 7.6 The propagation of flows on cells e2 and e3. At time t = tp a perturbation
occurs such that z3 goes above the capacity of cell e5.
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8
Conclusions and Future
Work

8.1 Conclusions

In the thesis, we studied two control problems related to transportation networks,
namely signal control and routing. For the first problem, we presented a fluid model
for point queues, with the possibility for empty lanes to receive green-light. Because
of this, the outflow from one lane cannot be equal to the amount of green light
received. Instead, the actual outflow has to be upper bounded by the amount of green
light. Although inequities in the model bound the actual outflow, we showed that
there exists a unique solution, when the traffic signal control is feedback-based and
Lipschitz continuous.

We also proposed a fully decentralized controller for traffic signals, the gener-
alized proportional allocation (GPA) controller. We showed that the GPA controller
could stabilize the queue lengths in the traffic network. Moreover, we showed that
the GPA controller is throughput optimal, i.e., no other controller can handle a larger
amount of exogenous inflows than the GPA controller. While there exist different
throughput optimal controllers for signal control, the GPA has the benefit that it
does not require any information about the network topology, average arrival rates
or how the drivers propagate through the network. Those properties make the GPA
controller very robust since it can allow for a new setting while maintaining its
stability properties. Also, the GPA controller takes into account that a fraction of a
cycle in signalized junction has to be devoted to phase shifts. The GPA controller
adjusts the cycle length with the demand, such that a higher demand yields longer
cycles, and a less fraction of the time is wasted for phase shifts.

Since the theoretical analysis of the GPA is done for an averaged model, we also
evaluated the GPA controller’s performance in a microscopic traffic simulator. The
purpose of this was to investigate howwell the GPA controller performed in a setting
with discretized control action and a close-to-real traffic dynamics. We showed that
the GPA controller outperformed standard fixed-time control for a traffic scenario

127



Chapter 8. Conclusions and Future Work

covering all the traffic in Luxembourg during a full day. We also compared the
GPA controller with the MaxPressure controller in the simulator on an artificial
Manhattan-like grid. In this case, we observed that the GPA controller performs well
when the demands are low, but during high demands, the MaxPressure controller
performs better.

A few routing problems were also studied in the thesis. First, we considered a
static assignment problembetween different classes of vehicles. One class of vehicles
wants a route assignment that is fleet-optimal, i.e., the average delay for the whole
fleet is optimized. The other class of vehicles is individual drivers that all try to take
the route that is the fastest for just themselves. We present a sufficient condition for
when a static routing assignment for both classes of vehicles exists. Also, we showed
two algorithms to compute this assignment.

At last, we studied the robustness of local congestion-avoiding routing policies
in a multicommodity setting. First, we presented a model for dynamically routed
multicommodity flows and showed the stability of the model. We also showed that,
if there are several classes of vehicles present, and they avoid congestions in a
heterogeneous manner, cascade failures may occur. This is different to already exist-
ing results for single-commodity flows, where congestion-avoiding routing policies
make the network robust to perturbations.

8.2 Directions for Future Work

Distributed Traffic Light Control
The fluid point queue model we are using has no propagation delay in it. While this
simplifies the analysis, it may be too much of simplification if one considers the
timing of signals between different junctions within a partition. It would therefore
be nice to extend the analysis when the fluid model for queuing networks also has
propagation delays, just like the way it has already been done in [Muralidharan et al.,
2015] for open-loop control.

Another topic for further investigation is the existence and uniqueness of so-
lutions for non-orthogonal phases. Although we conjecture that a solution always
exists, it would be preferable to have a formal proof. Also, either proof of uniqueness
or a counterexample for non-uniqueness is a point for further research.

For the discretized version of the GPA, a formal stability analysis is a topic for
future work. In our discretization, two tuning parameters come into play, κ and w̄.
In the thesis, to illustrate that the controller conceptually works, we only did some
experiments by trying out different values for the parameters. It would, therefore, be
interesting to develop more sophisticated tuning rules for the parameters so that they
can be tuned in an optimal way for each junction. While the controller already can
achieve good throughput, the tuning rules should aim to achieve some optimality in
e.g., the number of cycles vehicles that are queuing have to observe before passing
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through the junction, or make sure that green-time is not over-allocated such that
empty lanes receive green-light while vehicles in other lanes are waiting.

Also, in practice, the measurement of the queue lengths will saturate. Therefore
a theoretical investigation on how saturation in the measurements of queue lengths
affects the stability region is needed. If the arrival rates are high, the current controller
is not able to “see behind” the area covered by the sensor, which means that it can
not achieve throughput optimality when the measurement is saturated.

Another topic of future investigation is a weighting of the lanes in each phase.
As it is now, if two lanes belong to the same phase, the fraction of the cycle allocated
to that phase will be the same independent of if it is two vehicles queuing up in
one of the lanes, or one vehicle in each lane. In the first case, it will, however, take
a longer time to empty the lanes in the phase compared to the second case. By
introducing weights, one can then get a more fair comparison between the demand
on the different phases, while hopefully still keeping the stability properties of the
controller.

In the presentation of the controller, we have not said anything about how to
order the phases within a cycle. While keeping the same order for each makes the
traffic signals behave as the drivers expect, one can think of either a few occasions
doing recording or extend the clearance phases a bit to accommodate green-waves.
With this, all the traffic signals will not be fully decentralized anymore. However,
since accommodating green waves is usually only feasible when one has a traffic
corridor, it may be worth implementing a centralized solution for this corridor.

One challenging problem within the field of distributed traffic signal control is
when the controllers should take into account that each lane can only accommodate
a limited number of vehicles. While attempts to enhance the MaxPressure controller
to handle finite storage capacities, e.g., in [Gregoire et al., 2015], formal guarantees
when the network is close to its maximal capacity seem still to be missing.

Two Tiered Traffic Assignment
For the moment, the routing assignment for the fleet is done in an open-loop setting.
It would, therefore, be of interest to develop local routing policies that can respond
to sudden changes in the network state, and still stay close to their global objective.
If the fleet is not operated in a centralized way, there will be a need of design
tolling system such that there are economic incentives to follow the fleet optimal
assignment. Ideally, the tolling system should be combined with a contract on how
to respond to disturbances along the way, to avoid that the price of the trip becomes
more expensive during the journey due to raised tolls when congestion occurs. The
contract on how to respond to perturbations should be such that cascade failures in
the network are avoided as well.
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Resilience of Multicommodity Flows
As we showed by example in Chapter 7, the routing policies are not robust to
perturbations when more than one commodity is present in the network. It would,
therefore, be desirable to find ways to construct routing policies that are robust for
the multicommodity setting as well. Also, a stability proof for the case when the
network contains cycles would be desirable.
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A
Additional Proofs

A.1 Proposition 2.1

Proof.

i) This fact has been proven before, for example in [Como and Fagnani, 2016],
but we give a proof here to make the presentation complete. Since R is a
non-negative matrix, it follows from the Perron-Frobenious theory [Horn and
Johnson, 2013][Theorem 8.3.1] that there exists an eigenvector w ≥ 0 with
all non-negative elements with corresponding eigenvalue ρ ≥ 0 such that all
other eigenvalues of RT are not larger than ρ in magnitude. Hence it holds
that

ρw = RTw . (A.1)

Let S be the support of w. Since every cell is connected to a sink cell it must
hold that minj∈S

∑
i∈S RT

ij < 1, since if this was not the case, then all cells in
S would not be connected to any sink cell, and the routing matrix would then
not be out-connected. Multiplying equation (A.1) with 1T from the left yields∑

i

ρwi =
∑
i

∑
j

RT
ijwj <

∑
i

wi .

Hence ρ < 1, and it implies that the spectral radius of RT and hence also R is
strictly less than 1.

ii) Since R has spectral radius strictly less than one, this is a consequence of [Horn
and Johnson, 2013][Lemma 5.6.10].

iii) A cell i ∈ I is either connected to a sink-cell in the set I or it is connected to
a sink-cell in E \ I. In the latter case, there must exist a cell j ∈ I such that∑

k∈I Rjk +
∑

k∈E\I Rjk = 1, where
∑

k∈E\I Rjk > 0.

iv) Follows from the fact that R has spectral radius strictly less than one. �
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B
Additional Simulation
Results

B.1 The Manhattan Grid
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Figure B.1 The total queue length over time in the Manhattan grid with the GPA
controller for different values of κ. The demand is δ = 0.05. To improve the readability
of the results, the queue lengths are averaged over 300 seconds intervals.
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Figure B.2 The total queue length over time in the Manhattan grid with the GPA
controller for different values of κ. The demand is δ = 0.10. To improve the readability
of the results, the queue lengths are averaged over 300 seconds intervals.

0 2,000 4,000 6,000101

102

103

104

Time [s]

To
ta

lQ
ue

ue
Le

ng
th

[m
]

GPA κ = 5
GPA κ = 10
GPA κ = 15
GPA κ = 20

Figure B.3 The total queue length over time in the Manhattan grid with the GPA
controller for different values of κ. For the value κ = 1 a grid lock situation occurs,
and because of that the trajectory is not included in the plot. The demand is δ = 0.15.
To improve the readability of the results, the queue lengths are averaged over 300
seconds intervals.
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B.1 The Manhattan Grid
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Figure B.4 The total queue length over time in the Manhattan grid with the Max-
Pressure controller with right turning ratios (solid) and wrong turning ratios (dashed).
The demand is δ = 0.05. To improve the readability of the results, the queue lengths
are averaged over 300 seconds intervals.

0 1,000 2,000 3,000 4,000 5,000

0

5 000

10 000

Time [s]

To
ta

lQ
ue

ue
Le

ng
th

[m
]

MP d = 5
MP d = 10
MP d = 20
MP d = 30

Figure B.5 The total queue length over time in the Manhattan grid with the Max-
Pressure controller with right turning ratios (solid) and wrong turning ratios (dashed).
The demand is δ = 0.10. To improve the readability of the results, the queue lengths
are averaged over 300 seconds intervals.
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Figure B.6 The total queue length over time in the Manhattan grid with the Max-
Pressure controller with right turning ratios (solid) and wrong turning ratios (dashed).
The demand is δ = 0.15. To improve the readability of the results, the queue lengths
are averaged over 300 seconds intervals.
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Figure B.7 A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.05. To improve the readability of the results, the queue
lengths are averaged over 300 seconds intervals.
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Figure B.8 A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.10. To improve the readability of the results, the queue
lengths are averaged over 300 seconds intervals.
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Figure B.9 A comparison between different control strategies for the Manhattan
grid with the demand δ = 0.15. Since the proportional fair controller (PF) creates
a gridlock, it is not included in the comparison. To improve the readability of the
results, the queue lengths are averaged over 300 seconds intervals.
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