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Abstract— We minimize the frequency and time occupancy of
multicarrier binary linear modulation based on two-dimensional
faster than Nyquist (FTN) signaling. FTN analysis provides
the asymptotic time–frequency consumption per bit and prolate
spheroidal wave analysis minimizes the side lobe occupancy. For
both problems, an excellent choice is a Gaussian pulse, with some
adjustment of the side lobes.

I. INTRODUCTION

This paper investigates how to minimize the main and side
lobe power of linear modulation, with and without faster-than-
Nyquist signaling. We will conclude that from either the main
or side lobe point of view, the Gaussian pulse shape is an
excellent choice.

Ordinary linear modulation signals have the baseband form

s(t) =
√

Es/T
∑

n

anh(t − nT ), (1)

in which an are M -ary independent and identically distributed
data values with zero mean and unit variance, and h(t) is a
unit-energy baseband pulse. This form underlies QAM, TCM,
and the subcarriers in orthogonal frequency division multiplex
(OFDM), as well as many other transmission systems. In these,
h(t) is a T -orthogonal pulse, that is,

∫
h(t−nT )h∗(t−mT )dt

is zero, m �= n. In 1975 Mazo[1] pointed out that binary
sinc(t/T ) pulses in (1) could be sent “faster”, with symbol
time T∆ < T , without loss of signal minimum distance
(d2

min = 2 for binary pulses). The asymptotic error probability
is thus unaffected, although the receiver is more complex. This
he called faster than Nyquist (FTN) signaling, because the
pulses appear faster than allowed by Nyquist’s orthogonality
limit.

FTN signaling has since been extended in many ways, and
this paper will use several. The modulation can be nonbinary
and the pulses need not be sinc(·). In fact, the pulse need
not be orthogonal at any T ; for reasonable pulses such as
the Gaussian there will be a least T∆ at which the minimum
distance first falls below the isolated pulse value. Furthermore,
the FTN concept can be applied simultaneously in time as
well as frequency: Many signals of form (1) can be stacked
in frequency to form the inphase and quadrature (I/Q) signal

given by the real part of

s(t) =
√

2Es/T

K−1∑
k=0

N−1∑
n=0

ak,nh(t − nT ) ej2π(f0+fk)t (2)

This is a superposition of 2K linear carrier modulations that
carries NK complex data values ak,n = aI

k,n + jaQ
k,n. If fk =

kf∆, k = 0, 1, . . .K−1, and f∆ is equal twice the single-sided
bandwidth of h(t), the cos((f0 +fk)t)/ sin((f0 +fk)t) carrier
signals are orthogonal; if h(t) is T -orthogonal, all 2NK pulses
are mutually orthogonal. In OFDM, both conditions hold at
least approximately. In FTN signaling of this type, there are
least combinations of f∆ and T∆ for which there is no loss of
signal minimum distance. Collectively these make up the Mazo
limit to signaling with this h(t) and alphabet. Of particular
interest in this paper is the least achievable product f∆T∆.
We have introduced these generalizations in [2], [3], [4], where
more details may be found.

With or without FTN, signals occupy a certain bandwidth
and time. A communication pulse has a main lobe and side
lobes in both frequency and time. A view that closely relates
to practice is that the symbols are carried by the main lobe and
will be detected correctly most of the time if the main lobe can
be observed; the side lobes, on the other hand, interfere with
other users, especially when the desired signal lies far and
an undesired signal lies near. The occupancy of the signal,
the time–frequency that it denies to others, is the product
of the time and frequency total widths. Figure 1 shows this
occupancy, together with the time and frequency of the main
lobe; the time–frequency centers of some pulses are shown
as dots. In this paper we seek pulses h(t) that minimize the
occupancy, when the side lobes count or when only the main
lobe counts.

One or both of this bandwidth and time is in theory infinite,
but in the practical world we only perceive signals above a
certain threshold. In this paper we define the bandwidth and
time frame in an energy out of band sense, namely, they are
widths inside which all but γ of the signal exists. γ will be
taken as a fraction of the pulse energy Es. For example, γ =
.01 leads to the 99% energy frequency and time frame, outside
which lies 1% of the signal energy in frequency or time. These
definitions are formally set in Section II.

The paper will first set up a time–frequency analysis frame-
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Fig. 1. Time–frequency occupancy of the main (solid) and side (dashed)
lobes for a signal with N pulses and K subcarriers.

work. Section III then optimizes the length of the pulse
sequence N against the number of subcarriers K . Section
IV sketches FTN results for these multicarrier modulations.
Numerical results for the time–frequency consumption of root
RC and more optimal pulse shapes appear in Section V.
Throughout, the channel will be subject to additive white
Gaussian noise (AWGN) with power spectral density N0/2
W/Hz, with no other disturbances.

II. MEASUREMENT OF FREQUENCY AND TIME

In what follows we take the standard signal space theoretical
view of signals in AWGN and measure signal bandwidth and
time. In this view, what matters about a signal is its time–
bandwidth product, in Hz-s.1 Suppose a s(t) is time-scaled by
a factor, keeping symbol energy constant; its Fourier transform
will be scaled in frequency by the inverse factor, and its
time–bandwidth product, by any reasonable measure, will be
unchanged. The detection properties of a set of signals so
scaled are also invariant (they depend only on Es/N0), as
is the Shannon capacity of such signals. The scaled sets are
the same set in the signal theory view. In practice, a time limit
is set by the latency allowed in the communication, and the
widest allowed bandwidth is set by limits of hardware and
electromagnetics. But latency and hardware are not part of
signal theory.

While pulses have time width and bandwidth, the signals
in (1)–(2) are stacked sequences of pulses driven by random
symbols, and we will describe their time and bandwidth in
terms of energy densities. For simplicity take both h(t) and
H(f) to be symmetric and real. Then the average energy
spectral density (ESD) of signal s(t) per symbol time is (take
positive f only)

SF (f) � 1
N

E
[
|F {s(t)}|2

]

=
1
N

K−1∑
k=0

|H(f − kf∆ − f0)|2, f0 � Kf∆ (3)

1The dimension Hz-s is in a sense dimensionless but we retain it is a
measure of the “changeability” of a signal; one Hz-s is the changeableness of
a signal per unit of the time–frequency product, asymptotically as time and
frequency occupancy grow.

The expectation is over the data symbols. Note that the average
energy in s(t) is 2NK and the integral of SF (f) is KEs.
Next define the average energy temporal density (ETD) per
subcarrier as

ST (t) � 1
K

E [|s(t)|2]

=
1
K

N−1∑
n=0

|h(t − nT∆)|2, all t (4)

Note that several pulses may contribute to the ETD in a
given symbol interval, and several subcarriers may contribute
to the ESD around a given subcarrier f0 + kf∆. For large
K and N , SF (f) and ST (t) settle into a steady-state region
about Kf∆ Hz wide located above f0 and about NT∆ s wide
around time 0. These we take to be the main lobe spectral and
temporal widths. On a per bit basis the asymptotic occupancy
is the product per bit, 1

2f∆T∆ Hz-s/bit. The factor 1/2 accounts
for the fact that there are sin and cos subcarriers.

A useful benchmark is orthogonal signaling with sinc(·)
pulses and no FTN, for which f∆ = 1/T , T∆ = T , and the
asymptotic occupancy is 1/2 Hz-s/bit.

The side lobes widths will be defined by the average energy
out of band, as a fraction of one pulse’s energy. This is
justified by the fact that interference is mostly “local”, in
the neighborhood of one pulse’s frequency and time. For
0 < γ < 1 let the extra upper side lobe frequency width
be the ε′F Hz that satisfies

1
Es

∫ ∞

ε′
F +f0+(K− 1

2 )f∆

SF (f) df = γ (5)

The spectrum [f0 − 1
2f∆, f0 +(K − 1

2 )f∆] is reserved for the
main lobe, and because of symmetry the total extra on both
sides is 2ε′F . Similarly, the right hand time side lobe extra
width is the ε′T s that satisfies

1
Es

∫ ∞

ε′
T +(N− 1

2 )T∆

ST (f) dt = γ (6)

The time [− 1
2T∆, (N − 1

2 )T∆] is reserved for the main lobe,
and the total extra on both sides is 2ε′

T . The total time–
frequency occupancy is taken as

1
2
(N + 2εT )(K + 2εF )f∆T∆ Hz-s (7)

where εF = ε′F /f∆ and εT = ε′T /T∆.

III. OPTIMAL SUBCARRIER AND SYMBOL NUMBERS

For a given packet of bits, it is necessary to optimize N
and K , the number of symbols in time and frequency, so as
to minimize occupancy per bit for the same product NK . This
is because each pulse shape h(t) leads to its own side lobe
expansions εT and εF ; if εT is longer than εF then a larger N
than K is needed, and vice versa. The best ratio N/K follows
from a simple derivation. Fix ρ = NK and f∆T∆ and then



minimize (7) over K to obtain that Eq. (7) takes minimum
value

1
2

(√
NK + 2

√
εT εF

)2

f∆T∆ (8)

when

N

K
=

εT

εF
or K =

√
ρεF /εT (9)

For extreme values of εF /εT , either N or K is simply 1. For
large packets any ratio N/K leads to the same occupancy per
bit, since only the main lobe matters; otherwise, the best ratio
is set by the side lobe expansion factors. Some typical values
will be given in Section V.

IV. PSWF ESTIMATION OF THE MINIMAL SIDE LOBES

For a single baseband pulse h(t) a well known method based
on the prolate spheroidal wave function (PSWF) exists to
minimize the energy outside given frequency and time widths
[−W, W ] Hz and [0, τ ] s. The method is described in a series
of five papers beginning in 1965 by Slepian and coauthors, the
most useful of which for our purposes are the first two [5].
Many papers have applied the PSWF method to pulse design
since 1965; an early example that treats finite pulses is [6].
The optimal solutions for our problem are allowed to have
infinite support. They are eigenfunctions of a certain integral
operator and depend only on the time–frequency product Wτ
[5, p. 45ff]. Suppose the same fraction γ of the pulse energy is
to lie outside both [−W, W ] and [0, τ ]; then there corresponds
a principal eigenvalue and PSWF eigenfunction that can be
used to construct the pulse with least Wτ product subject to
the double out of band constraint [5, pp. 65–80]. A further
useful property for us is that the solution tends to Gaussian
pulse as γ → 0, i.e., as Wτ grows.2

Figure 2 plots the least-Wτ solutions for γ =
.01, .001, .00001, which means that half these amounts lie on
each side of the time and frequency bands. The Wτ products
are, respectively, 0.859, 1.28, 2.84. A Gaussian pulse closely
fits the main part of the second two pulses.

The PSWF solution is not precisely the solution to the
side lobe problem in Section II because more than one pulse
contributes to the side lobe energy densities. But with rapidly
falling temporal and spectral densities, the ETD and ESD
are to a first approximation equal to the tails of |h(t)|2 and
|H(f)|2. Our main interest is pulses close to Gaussian, which
are particularly rapidly falling. In any case, we can calculate
the actual SF and ST for the PSWF solutions and compare
their out of band energies to those of other popular pulses.

V. GOOD FTN PARAMETERS AND NUMERICAL

CALCULATIONS

In this section we compute numerical values for the main
and side lobe occupancies of classic 10 and 30% root RC pulse

2This is because the eigenfunction of the basic PSWF operator with some
W > 0 tends to a Gaussian pulse as τ grows.
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Fig. 2. PSWF solutions for the pulse with least Wτ product, among those
with energy fraction 1

2
{.01, .001, .00001} outside each side of [−W, W ] and

[−τ/2, τ/2]. Symbol time is set to 1.

signaling systems, as well as a PSWF example and a simple
Gaussian pulse system than lies close to the PSWF example.

The main lobe calculation depends on an FTN analysis. It
has been taken up in our earlier papers [3], [4] and is not
repeated here for space reasons. In brief, for a given pulse
one computes the Euclidean minimum distance over a large
number of error events in order to obtain a tight distance
estimate. This is repeated for a number of combinations of f∆

and T∆, searching for the one with d2
min estimate 2 that has

the least product. Table I shows the outcome of this for the two
root RC pulses, the PSWF solution for γ = .0005 out of band
average energy in both time and frequency, and the Gaussian
pulse h(t) = 1/

√
2πσ2 exp(−t2σ2) with σ2 = .399.3 The f∆

and T∆ in the table are the best that we presently know for the
pulse. In terms of asymptotic main lobe occupancy, it can be
seen that 10% root RC is better than 30%, and both consume
about half the sinc pulse benchmark. The Gauss pulse is
chosen because it closely resembles the PSWF solution, and
the product f∆T∆ is close to 0.30 for both. This product is
somewhat worse than the 10% root RC case, but we will see
next that the root RC has very poor side lobe behavior.

Pulse h(t) f∆ T∆ .5f∆T∆

1 30% rtRC .674 .89 .300
2 10% rtRC .660 .843 .278
3 Gauss, .399 .706 .86 .303
4 PSWF, .0005 1.154 .52 .300

TABLE I

BEST KNOWN FTN PARAMETERS FOR FOUR PULSES.

In Table II is shown the outcome of the side lobe cal-
culations for the same pulses. First are shown the time and
frequency expansions ε for the four cases in units of f∆ and
T∆. These are very small for the two root RC pulses, which are
designed to have a narrow, finite bandwidth; their frequency

3This is the pulse whose Fourier transform is identical to itself; it thus has
balanced time and frequency spread. When scaled wider by 1.54, the PSWF
solution here is approximately this Gaussian pulse.



side lobes are only 0.81 and 0.61 f∆-units larger than their
main lobes. But this is bought at a huge price in the time side
lobes, which are 27T∆ in the 10% case. In order to achieve a
small occupancy, the time and frequency expansions must be
kept in balance; it is

√
εT εF in Eq. (8) that sets the occupancy

for a given packet size. The balance is performed much better
by the Gauss and PSWF pulses.

Opt. Wτ/100 Wτ/10000
Pulse 2εT 2εF N/K Opt. K = 1 Opt. K = 1

1 8.2 .82 10.0 .48 .59 .32 .55
2 27.0 .61 44.0 .55 .57 .30 .45
3 1.16 1.63 .71 .39 .81 .31 .80
4 .99 1.26 .79 .32 .68 .31 .68

TABLE II

SIDE LOBE WIDTHS, OPTIMAL N/K RATIOS, AND SIDE LOBE OCCUPANCY

(HZ-S/BIT) FOR 0.0005 FRACTIONAL ENERGY OUT OF BAND AND

SELECTED PULSES. NK IS 100 AND 10000.

Next shown in the table is the optimal pulse-to-subchannel
ratio N/K . It needs to be 44 in the 10% root RC case to
overcome the long time side lobes there. N/K is close to unity
in the Gauss and PSWF cases because of the excellent balance
of their side lobes. When the optimal ratio is employed the
side lobe occupancy in Hz-s/bit is the columns marked “Opt.”
in the table. One cannot of course have a fractional K or
N , but the optimum is quite flat, so that nearby integers that
multiply to ρ provide near-“Opt.” occupancy. There are two
such columns, one for packet size equal twice ρ = 100 bits and
one for ρ = 10000. Next to them is the occupancy for K = 1,
when there is only one carrier. Comparing the outcomes shows
the effect of optimal frequency/time allocation; without this,
the side lobe occupancy is in every case much larger.

With small packets, the Gauss and PSWF pulses are clearly
superior when an optimal N/K is used, and the PSWF is
nearly twice as efficient as the 10% root RC pulse. With very
large packets, the main lobe dominates, and with optimal N/K
all pulse have similar efficiency, reflecting the fact that their
FTN performance is similar.

When the energy out of band is restricted to a low value
like γ = .00001, the effects just reported are more extreme.
The root RC pulses especially have long time side lobes, so
long that the best allocation of N and K needs K = 1.

The FTN and minimal side lobe problems are distinct,
and the PSWF solution to the second is not necessarily
the least time–frequency solution to the FTN problem. It is
perhaps fortuitous that a Gaussian-like pulse nearly solves
both problems. However, a closer study of pulses with tight
two-dimensional FTN packing shows that FTN behavior is
strongly affected by the main temporal lobe of the pulse, and
the major pulse candidates all have roughly similar main lobes.
If the near side lobes are reasonably small in frequency and
time, they have little effect on minimum distance. The side
lobe optimization, on the other hand, has to do with small
modifications to the side lobe structure. The fortuitous aspect

is that the PSWF solution does not affect much the compact
main pulse shape.

Although we have not taken it up in this paper, receiver
design is a challenging and interesting problem. With one
subcarrier, FTN can be closely modeled as intersymbol inter-
ference, and a simple Viterbi algorithm is an effective solution.
With more than one, error patterns are two dimensional, in a
manner similar to what occurs in magnetic recording. We have
explored several iterative schemes. In general, as the f∆T∆

product moves toward the Mazo limit, decoding becomes
much harder.

VI. CONCLUSION

We have solved two problems in the time–frequency oc-
cupancy of binary multicarrier linear modulation. One, the
main lobe occupancy, was minimized by faster than Nyquist
analysis, that is, by seeking the closest packing in time and
frequency that retains asymptotically the error performance
of binary antipodal signaling. The second, the side lobe
occupancy, was solved by a classical prolate spheroidal wave
approach. Fortunately, the solution to each is close to a
Gaussian pulse, so that we can say that a prolate function is
close to optimal for FTN signaling from either point of view.
FTN signaling does require a more complex receiver, but if
this is accepted, the choice of pulse has a small effect on
hardware, as long as its side lobes are reasonable. The prolate
pulse is thus clearly the attractive one.

The result of this work is a binary modulation that runs
for reasonable packets at around 0.30 Hz-s/bit. With a prolate
pulse, packets as small as 200 bits do not much increase this
consumption. In future work we will extend the calculations
given here to nonbinary signaling and explore more fully the
receiver problem.
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