A Switch of Dialect as Disguise

Sjöström, Maria; Eriksson, Erik J.; Zetterholm, Elisabeth; Sullivan, K.P.H.

Published in:
Working Papers

2006

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A Switch of Dialect as Disguise

Maria Sjöström¹, Erik J. Eriksson¹, Elisabeth Zetterholm² and Kirk P. H. Sullivan¹

¹ Department of Philosophy and Linguistics, Umeå University
kv00msm@cs.umu.se, erik.eriksson@ling.umu.se, kirk.sullivan@ling.umu.se

² Centre for Languages and Literature, Lund University
elisabeth.zetterholm@ling.lu.se

Abstract
Criminals may purposely try to hide their identity by using a voice disguise such as imitating another dialect. This paper empirically investigates the power of dialect as an attribute that listeners use when identifying voices and how a switch of dialect affects voice identification. In order to delimit the magnitude of the perceptual significance of dialect and the possible impact of dialect imitation, a native bidialectal speaker was the target speaker in a set of four voice line-up experiments, two of which involved a dialect switch. Regardless of which dialect the bidialectal speaker spoke he was readily recognized. When the familiarization and target voices were of different dialects, it was found that the bidialectal speaker was significantly less well recognized. Dialect is thus a key feature for speaker identification that overrides many other features of the voice. Whether imitated dialect can be used for voice disguise to the same degree as native dialect switching demands further research.

1 Introduction
In the process of recognizing a voice, humans attend to particular features of the individual’s speech being heard. Some of the identifiable features that we listen to when recognizing a voice have been listed by, among others, Gibbons (2003) and Hollien (2002). The listed features include fundamental frequency (f0), articulation, voice quality, prosody, vocal intensity, dialect/sociolect, speech impediments and idiosyncratic pronunciation. The listener may use all, more, or only a few, of these features when trying to identify a person, depending on what information is available. Which of these features serve as the most important ones when recognizing a voice is unclear. Of note, however, is that, according to Hollien (2002), one of the first things forensic practitioners look at when trying to establish the speaker’s identity is dialect.

During a crime, however, criminals may purposely try to hide their identity by disguising their voices. Künzel (2000) reported that the statistics from the German Federal Police Office show that annually 15-25% of the cases involving speaker identification include at least one type of voice disguise: some of the perpetrators’ ‘favourites’ include: falsetto, pertinent creaky voice, whispering, faking a foreign accent and pinching one’s noise. Markham (1999) investigated another possible method of voice disguise, dialect imitation. He had native Swedish speakers attempt to produce readings in various Swedish dialects that were not their native dialects. Both the speaker’s ability to consistently keep a natural impression and to mask his or her native dialect were investigated. Markham found that some speakers are able to successfully mimic a dialect and hide their own identity. Markham also pointed out that to
avoid suspicion it is as important to create an impression of naturalness, as it is to hide one’s identity when using voice disguise.

In order to baseline and delimit the potential impact on speaker identification by voice alone due to dialect imitation a suite of experiments were constructed that used a native bidialectal speaker as the speaker to be identified. The use of a native bidialectal speaker facilitates natural and dialect consistent stimuli. The four perception tests presented here are excerpted from Sjöström (2005). The baselining of the potential problem is of central importance for forensic phonetics since, if listeners can be easily fooled it undermines earwitness identification of dialect and suggests that forensic practitioners who currently use dialect as a primary feature during analysis would need to reduce their reliance on this feature.

2 Method
Four perception tests were constructed. The first two tests investigated whether the bidialectal speaker was equally recognizable in both his dialects. The second two tests addressed whether listeners were distracted by a dialect shift between familiarization and the recognition task.

2.1 Speech material
The target bidialectal speaker is a male Swede who reports that he speaks Scanian and a variety of Stockholm dialect on a daily basis. He was born near Stockholm but moved to Scania as a five-year old. An acoustic analysis of the speaker’s dialect voices was performed, which confirmed that his two varieties of Swedish carry the typical characteristics of the two dialects and that he is consistent in his use of them.

Two recordings of *The Princess and the Pea* were made by the bidialectal speaker. In one of them he read the story using the Stockholm dialect, and in the other he read it using his Scanian dialect.

Four more recordings of *The Princess and the Pea* were made; two by two male mono-dialectal speakers of the Stockholm dialect (ST) and two by two male mono-dialectal speakers of the Scanian dialect (SC). These speakers (hereafter referred to as foils) were chosen with regard to their similarities with the target voice in dialect, age, and other voice features such as creakiness. For further details, see Sjöström (2005).

2.2 The identification tests
Four different earwitness identification tests were constructed for participants to listen to. Each test began with the entire recording of *The Princess and the Pea* as the familiarization voice, and was followed by a voice line-up of 45 stimuli. The 45 stimuli consisted of three phrases selected from each recording presented three times for each speaker (3x5x3=45). Each voice line-up contained the four foil voices and one of the target’s two dialect voices (see Table 1). For example, the test ‘SC-ST’ uses the target’s Scanian voice as the familiarization voice and the target’s Stockholm dialect voice in the line-up. Test SC-SC and Test ST-ST were created as control tests. They afford investigation of whether the target’s Stockholm and Scanian dialects can be recognized among the voices of the line-up, and to test if the two different dialects are recognized to the same degree. Tests ST-SC and SC-ST investigate if the target can be recognized even when a dialect shift between familiarization and recognition occurs.

80 participants, ten in each listener test, took part in this study. All were native speakers of Swedish and reported no known hearing impairment. Most of the listeners were students at either Lund University or Umeå University, and all spoke a dialect from the southern or northern part of Sweden.
Table 1. The composition of the voice identification tests showing which of the target’s voices was used as familiarization voice and which voices were included in the voice line-up for each of the four tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Familiarization voice</th>
<th>Line-up voices</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-SC</td>
<td>TargetSC</td>
<td>Foil 1-4 + TargetSC</td>
</tr>
<tr>
<td>ST-ST</td>
<td>TargetST</td>
<td>Foil 1-4 + TargetST</td>
</tr>
<tr>
<td>ST-SC</td>
<td>TargetST</td>
<td>Foil 1-4 + TargetSC</td>
</tr>
<tr>
<td>SC-ST</td>
<td>TargetSC</td>
<td>Foil 1-4 + TargetST</td>
</tr>
</tbody>
</table>

2.3 Data analysis
In this yes-no experimental design responses can be grouped into four different categories: hit (when the listener correctly responds ‘yes’ to the target stimulus), miss (when the listener responds ‘no’ to a target stimulus), false alarm (when the listener responds ‘yes’ to a non-target stimulus) and correct rejection (when the listener correctly responds ‘no’ to a non-target stimulus). By calculating the hit and false alarms rates as proportions of the maximum possible number of hits and false alarms, the listeners’ discrimination sensitivity can be determined, measured as d'. This measure is the difference between the hit rate (H) and the false alarm rate (F), after first being transformed into z-values. The d'-equation is: $d' = z(H) - z(F)$ (see Green & Swets, 1966).

3 Results and discussion
Participants of the control tests, SC-SC and ST-ST, show positive mean d'-values (1.87 and 1.93). It was shown through a two-tailed Student’s t-test that there was no significant difference in identification of the two dialects and they can therefore be considered equally recognizable ($t(38)=-0.28$, $p>0.05$). By conducting a one-sample t-test it was shown that the d'-values for both tests are highly distinct from 0 ($t(39)=18.45$, $p<0.001$) and therefore high degree of identification of both dialects can be concluded.

The responses for the dialect shifting test, ST-SC (mean $d' = 0.44$); SC-ST (mean $d' = -0.07$), did not significantly differ ($t(38)=1.93$, $p>0.05$). The target voice in these two tests can be considered equally difficult to identify. A one-sample t-test was conducted and showed that the mean d'-value of the two tests were not significantly separated from 0 ($t(39)=1.36$, $p>0.05$), indicating random response. Combining the responses for the ‘control tests’ (ST-ST; SC-SC) and the ‘dialect shifting tests’ (ST-SC; SC-ST) and comparing the results to each other revealed a significant difference between the two test groups ($t(78)=5.97$, $p<0.001$) (see Fig 2). Thus, dialect shift has a detrimental effect on speaker identification.

4 Conclusions
The results indicate that the attribute dialect is of high importance in the identification process. It is clear that listeners find it much more difficult to identify the target voice when a shift of dialect in the voice takes place. One possible reason for the results is that when making judgments about a person’s identity, dialect as an attribute is strong and has a higher priority than other features.

The baselining of the potential problem we have conducted here shows that a switch of dialect can easily fool listeners. This undermines earwitness identification of dialect and suggests that forensic practitioners who currently use dialect as a primary feature during analysis need to reduce their reliance on this feature and be aware that they can easily be mislead.
Figure 1. Mean discrimination sensitivity (d’) and standard error for Control tests (SC-SC and ST-ST combined) and Dialect shifting tests (ST-SC and SC-ST combined).

If used as a method of voice disguise, a perpetrator could use one native dialect at the time of an offence and use the other in the event of being forced to participate in a voice line-up as a suspect. Needless to say this method of voice disguise could have devastating effects on witness accuracy as they would not able to recognize the perpetrators voice when using different dialect, or yet worse, that the witness would make an incorrect identification and choose another person whose dialect is more similar to the voice heard in the crime setting.

In order to assess whether voice disguise using imitated dialect can have as drastic an impact upon speaker identification as voice disguise by switching between native dialects, research using imitated dialect as a means of disguise is required.

Acknowledgements
Funded by a grant from the Bank of Swedish Tercentenary Foundation Dnr K2002-1121:1-4 to Umeå University for the project ‘Imitated voices: A research project with applications for security and the law’.

References