
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Tableau system for a first-order hybrid logic

Hansen, Jens Ulrik

Published in:
Proceedings of the International Workshop on Hybrid Logic 2007 (HyLo 2007)

2007

Link to publication

Citation for published version (APA):
Hansen, J. U. (2007). A Tableau system for a first-order hybrid logic. In J. Villadsen, T. Bolander, & T. Braüner
(Eds.), Proceedings of the International Workshop on Hybrid Logic 2007 (HyLo 2007) (pp. 32-40). European
Summer School in Logic, Language and Information (ESSLLI).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/eadeecf2-98f1-4779-9c16-b54cb98a82fa

A TABLEAU SYSTEM FOR A FIRST-ORDER HYBRID LOGIC

JENS ULRIK HANSEN
INSTITUTE FOR MATHEMATICAL SCIENCES

UNIVERSITY OF COPENHAGEN

DENMARK
E-MAIL: M00JUH@MATH.KU.DK

Abstract. In this paper a first-order version of hybrid logic is presented. The language is obtained by

adding nominals, satisfaction operators and the down-arrow binder to classical first-order modal logic
(including constants and function symbols). The satisfaction operators are applied to both formulas

and terms. Moreover adding the universal modality is discussed.

This first-order hybrid language is interpreted over varying domains and a sound and complete, fully
internalized tableau system for this logic is given.

Keywords: Hybrid logic, first-order modal logic, first-order hybrid logic, tableau systems.

1. Introduction

First-order modal logic in philosophy is an old field of study and has been treated extensively. Propo-
sitional hybrid logic is also becoming a well-studied field. However the literature on hybrid logic versions
of first-order modal logic is still limited. Some few examples are [1, 2, 4, 6, 7].

Though it is known that hybrid versions of first-order modal logic have many advantages compared
to classical first-order modal logic. First of all many classical first-order modal logics lacks the interpo-
lations property, but it has been shown in [1] that a hybrid version of first-order modal logic containing
satisfaction operators and the down-arrow binder, fixes this problem.

When it comes to the expressiveness of first-order hybrid languages it may come as no surprise that
it is a great deal higher than the expressiveness of classical first-order modal languages. It has long
been known that first-order modal logic lacks the power to express certain properties related to natural
language semantics. See for instance [11]. That first-order hybrid logic is useful in relation to natural
language semantics is also well known and discussed in for instance [3]. A kind of a first-order hybrid
logic is also used in [8]. Thus from the viewpoint of natural language semantics first-order hybrid logic
is a very natural thing.

Furthermore adding predicate abstraction to first-order modal logic as done in [9] does not give any
new expressive powers compared to first-order hybrid logic. Since predicate abstraction easily can be
simulated in a first-order hybrid logic with the down-arrow binder and satisfaction operators on terms
(see for instance [7]).

Additionally as for propositional hybrid logic a wide range of general completeness results are possible,
as discussed in for instance [2] and [6], as well as completely internalized proof systems. This article
contains such an internalized proof system, namely a completely internalized tableau system for a first-
order hybrid logic.

The first-order hybrid language we will present is in a sense just classical first-order logic combined
with a propositional hybrid logic containing nominals, satisfaction operators, and the down-arrow binder.
However there is a bit more to it since we will also use satisfaction operators on terms. Furthermore we
will also discuss adding the universal modality to the language.

2. A first-order hybrid language

In this section a first-order hybrid language (denoted by FHL) is presented and a varying domain
semantics for the language is given. The language is obtained by combining classical first-order logic
with hybrid logic. First we will give the syntax of the language.

2.1. Syntax for FHL. As in classical first-order logic the language FHL contains a countable infinite
set of first-order variables FVAR, a countable infinite set of constants CON, a countable infinite set of
function symbols FSYM, and a countable infinite set of relation symbols RSYM. (For any n ∈ N there

might be function and relation symbols of arity n.) To get a first-order hybrid logic we further need
a countable infinite set of nominals NOM and a countable infinite set of state variables SVAR. (State
variables will vary over worlds and nominals will appear as world constants.) Besides the logical symbols
¬,∨,∃,=, (, and) of classical first-order logic, there will be the classical modal operator ♦, a down-arrow
binder ↓, and for every u ∈ NOM ∪ SVAR there will be two kinds of satisfaction operators @u and u: .1

The terms of FHL can now be defined.

Definition 1 (FHL-terms). The set of FHL-terms (denoted by TFHL) is given by the following gram-
mar:

t ::= x | c | u: t | f(t1, . . . , tn) ,

where x ∈ FVAR, c ∈ CON, u ∈ NOM ∪ SVAR, and f is an n-ary function symbol of FSYM.

(When no confusion can arise we will referrer to FHL-terms as just terms.) As in classical first-
order logic variables and constants are terms and function symbols can be used to recursively defining
more complex terms. Furthermore new terms can be constructed from a term t by prefixing it with the
satisfaction operator u: getting the term u: t. The intuition behind the term u: t is that it denotes what
t denotes at the world u. This is crucial since we will interpret our constants and function symbols (as
well as the relation symbols) non-rigidly, i.e. they might denote different things in different worlds.2

Now for the definition of FHL-formulas (or just formulas).

Definition 2 (FHL-formulas). The set of FHL-formulas (denoted by FFHL) is given by the following
grammar:

ϕ ::= R(t1, . . . , tn) | t1 = t2 | u | ¬ψ | (ψ1 ∨ ψ2) | ♦ψ | (∃x)ψ | @uψ | ↓v.ψ ,

where R ∈ RSYM is n-ary, t1, t2, . . . , tn ∈ TFHL, u ∈ NOM ∪ SVAR, x ∈ FVAR, and v ∈ SVAR.

When we in the following are talking about variables, and nothing else is mentioned, we will be talking
about elements of FVAR∪ SVAR. Free occurrences of first-order variables are defined as in classical first-
order logic and the free occurrences of state variables are defined in a similar manner, noting that only
the ↓-binder can bind state variables. A sentence is a formula in which all variables are bound.

2.2. Semantics for FHL. Only a varying domain semantics is presented for FHL, since constant
domain semantics can be seen as a special case of varying domain semantics. If 〈W,R〉 is an ordinary
modal frame, D a non-empty set, and D a function on W such that it assigns a non-empty set D(w) ⊆ D
to every w ∈W , then the tuple 〈W,R,D,D〉 is called a skeleton. A model is a tuple M = 〈W,R,D,D, `〉,
where 〈W,R,D,D〉 is a skeleton and ` = (`w)w∈W is an interpretation. The interpretation ` interprets
the constants, function symbols, and relation symbols non-rigidly, thus an interpretation ` = (`w)w∈W is
such that for all c ∈ CON: `w(c) ∈ D; for all n-ary f ∈ FSYM: `w(f) : Dn → D; for all n-ary R ∈ RSYM:
`w(R) ⊆ Dn (for all w ∈W). Given a model M = 〈W,R,D,D, `〉, we will denote `w(c) by cMw , `w(f) by
fMw , and `w(R) by RMw .3 For all nominals i ∈ NOM the interpretation ` assigns an element of W , i.e.
`(i) ∈W , thus the interpretation of nominals does not depend on worlds.

Given a model M, a valuation ν in M is a function ν : (FVAR∪SVAR) → (D∪W), such that ν(x) ∈ D
for all x ∈ FVAR, and ν(u) ∈ W for all u ∈ SVAR. Given valuations ν and ν′ and a variable z, we say
that ν′ is a z-variant of ν if ν′(y) = ν(y) for all y ∈ FVAR ∪ SVAR with y 6= z. For a w ∈ W and a
z ∈ FVAR, ν′ is a z-variant of ν in w if ν′ is a z-variant of ν and ν′(z) ∈ D(w).

1The reason for using two different satisfaction operators is that satisfaction operators will be applied both to terms

and formulas. So to avoid confusion two different operators will be used.
2The first-order hybrid logics of [1, 2, 4, 6, 7] all have a limited notion of terms. For instance taking terms only to

be first-order variables, constants (interpreted non-rigidly) and of the form u: c for a u ∈ NOM ∪ SVAR and c a constant.
However the author sees no reason not to allow terms of arbitrary complexity as given by definition 1. Of course some

tableau rules are needed to deal with these terms, however these rules are not that complicated.
3Note that for a constant c, cMw does not need to be in the domain of the world w, i.e. in D(w). Furthermore there

might be an object a ∈ D that does not exists in any domain for any world in W . In other words it is not required that
D = ∪w∈WD(w) as is done in for instance [9].

Now given a model M and a valuation ν in M, a term evaluation function (·)M,ν
(·) : TFHL → D is

defined by

− If x is a variable and w ∈W , then (x)M,ν
w = ν(x).

− If c is a constant and w ∈W , then (c)M,ν
w = cMw .

− If i is a nominal, t a term, and w ∈W , then (i: t)M,ν
w = (t)M,ν

`(i) .

− If u is a state variable, t a term, and w ∈W , then (u: t)M,ν
w = (t)M,ν

ν(u) .

− If f is an n-ary function symbol, t1, . . . , tn are terms, and w ∈W,

then
(
f(t1, . . . , tn)

)M,ν

w
= fMw

(
(t1)M,ν

w , . . . , (tn)M,ν
w

)
.

The definition of the semantic relation M, w |=ν ϕ can now be defined by

M, w |=ν R(t1, . . . , tn) iff
(
(t1)M,ν

w , . . . , (tn)M,ν
w

)
∈ RMw

M, w |=ν t1 = t2 iff (t1)M,ν
w = (t2)M,ν

w

M, w |=ν i iff `(i) = w

M, w |=ν u iff ν(u) = w

M, w |=ν ¬ϕ iff M, w 6|=ν ϕ

M, w |=ν ϕ ∨ ψ iff M, w |=ν ϕ or M, w |=ν ψ

M, w |=ν ♦ϕ iff there is a w′ ∈W s.t. R(w,w′) and M, w′ |=ν ϕ

M, w |=ν (∃x)ϕ iff there is an x-variant ν′ of ν in w s.t. M, w |=ν′ ϕ

M, w |=ν @iϕ iff M, `(i) |=ν ϕ.

M, w |=ν @uϕ iff M, ν(u) |=ν ϕ.

M, w |=ν↓u.ϕ iff there is an u-variant ν′ of ν s.t. ν′(u) = w and M, w |=ν′ ϕ.

The notion of satisfiability and validity is defined in the usual manner. Note that if ϕ is a sentence,
wherever M, w |=ν ϕ does not depend on the valuation ν.

3. A tableau system for FHL

In this section a tableau system for FHL interpreted over varying domains is presented. Tableau proofs
will only be of FHL-sentences. The tableau system here given is inspired by [9], however introducing
hybrid machinery into the language makes it possible to internalise the tableau system completely. The
@i operators will play the role of prefixes and the term operators i: will be used instead of the grounding
mechanism on terms need for varying domain tableaux in [9].4

When doing tableaux for first-order logic, we need something to instantiate quantifiers as in (∃x)ϕ.
To make things simpler a new countable infinite set PAR = {p, q, ...} of parameters is introduced. These
will behave like constants and is only used to instantiate quantifiers.5 The language obtained by adding
the new set PAR of constants to the language FHL will be referred to as the extended language. Hence a
extended term or a formula of the extended language is just like a FHL-term or a FHL-formula except
that they might contain parameters. Note that since parameters appears as constants they cannot be
bound by quantifies.

The tableau rules are given in figure 1. If t is a term of the extended language, t is called closed if it
contains no first-order or state variables. A tableau branch is closed if it contains both @iϕ and @i¬ϕ for
some i ∈ NOM and some extended formula ϕ. A tableau is called closed if all its branches are closed. A
tableau proof of a FHL-sentence ϕ is a closed tableau starting with the formula @i¬ϕ for some nominal
i not occurring in ϕ.

4The only other tableau system for a hybrid version of first-order modal logic, know to the author, is the system
introduced in [4], where only rules for constant domains are given, and some limitation on terms are imposed.

5In [9], [10], and other literature on first-order tableau systems, parameters are a new kind of variables. This is essential

in [9] where variables are assigned values rigidly and constants non-rigidly. However this problem is here dealt with by
instantiating the quantified variable x by i: p instead of just p, for a parameter p. This works since i: p is a rigid term,
which at the same time carries the information of which domain there has been quantified over, in the sense that we will
think of i:p as belonging to the domain of the world i. This will become much clearer in the completeness proof.

Propositional rules:

@i(ϕ ∨ ψ)
(∨)

@iϕ | @iψ

@i¬(ϕ ∨ ψ)
(¬∨)

@i¬ϕ
@i¬ψ

@i¬¬ϕ
(¬¬)

@iϕ

Modal rules:

@i♦ϕ
(♦)1

@i♦j
@jϕ

@i¬♦ϕ @i♦j
(¬♦)

@j¬ϕ

Quantifier rules:

@i(∃x)ϕ
(∃)2

@iϕ[i:p/x]

@i¬(∃x)ϕ
(¬∃)3

@i¬ϕ[i:p/x]

Equality rules:

(ref)4

@ij: t = j: t

@ij: t = k:s @iϕ
(sub)5

@iϕ[k:s//j: t]

@ rules:

@i@jϕ
(@)

@jϕ

@i¬@jϕ
(¬ @)

@j¬ϕ

(nom ref)
@ii

@ij @iϕ
(nom)

@jϕ

@ij @k♦i
(bridge)

@k♦j

Downarrow rules:

@i ↓w.ϕ
(↓)

@iϕ[i/w]

@i¬ ↓w.ϕ
(¬ ↓)

@i¬ϕ[i/w]

Term rules:

@ik1: t = k2:s
(:1)

@jk1: t = k2:s

@ij
(:2)4

@ki: t = j: t
(:3)4

@ik:j: t = j: t

@iR(t1, ..., tn)
(:fix 1)

@iR(i: t1, ..., i: tn)

@i¬R(t1, ..., tn)
(:fix 2)

@i¬R(i: t1, ..., i: tn)

@it = s
(:fix 3)

@ii: t = i:s

@i¬t = s
(:fix 4)

@i¬i: t = i:s
(:func)7

@if(t1, ..., tn) = f(i: t1, ..., i: tn)

1 The nominal j is new to the branch. 2 Where p is a parameter and i:p is new to the branch. 3 Where
p is any parameter. 4 Where t is a closed term. 5 ϕ[k : s//j : t] is the formula ϕ where some of the
occurrences of j: t have been replaced by k:s. 7 Where f is a n-ary function symbol and t1, ..., tn are all
closed terms.

Figure 1. Tableau rules for FHL.

The classical rules are standard rules that can be found in many texts on first-order modal logic. The
hybrid rules for @ and down-arrow are also standard and can for instance be found in [4]. The term
rules are new rules added to deal with the : operator on terms.6

A @-formula (or @-sentence) is a formula (or sentence) in the extended language on the form @iϕ, for
some formula (or sentence) ϕ of the extended language and some nominal i. Note that since quantifiers are
instantiated by parameters prefix a nominal, no free first-order variables will occurs after an application
of the rules (∃) or (¬∃). Similar no new free state variables occurs after applications of the rules (↓)
or (¬ ↓). These considerations and the restriction on the rules (ref), (: 2), and (: 3), ensures that all
formulas occurring on a tableau for a FHL-sentence, will all be @-sentences. At the same time the use
of parameters and nominals in the rules (∃), (¬∃), (↓), and (¬ ↓) ensures that no accidental binding of
any free variables happens. Note also that if the formula @it = s occurs on a branch, t and s will be
closed terms, and thus no accidental binding of free variables can happen in the use of the rule (sub).

3.1. Soundness and completeness. Soundness is not hard to prove. It is done in the same way as in
[9]. The proof of the tableau system being complete is in a sense also standard. It is shown that if a
FHL-sentence ϕ does not have a tableau proof then ¬ϕ is satisfiable, and thus ϕ is not valid. The idea
behind the proof is taken from [10] and uses a variant of a standard Lindenbaum-Henkin construction.

Before the proof of completeness some terminology is needed. If S is a finite set of @-sentences we
may construct a tableau for this set by simply putting all the sentences of S on one tableau branch,
and then use the given tableau rules on this branch.7 Note that if a finite set S of @-sentences has a
closed tableau, then any finite set S′ ⊇ S also has a closed tableau. Now the notion of consistency can
be defined. A set S of @-sentences is inconsistent if there is a closed tableau for some finite subset of S.
A set of @-sentences is consistent if it is not inconsistent. A set S of @-formulas is ♦-complete if;

@i♦ϕ ∈ S =⇒ @i♦j,@jϕ ∈ S, for some nominal j,

and S is ∃-complete if;

@i(∃x)ϕ ∈ S =⇒ @iϕ[i:p/x] ∈ S, for some parameter p.

Further a set S of @-formulas omits infinitely many nominals if there are infinitely many nominals in
NOM that does not occur in S, and similar S omits infinitely many parameters if there infinitely many
parameters not in S.

Lemma 3. If S is a consistent set of @-sentences that omits infinitely many nominals and parameters,
then S can be extended to a maximally consistent set S′ of @-sentences that is both ♦-complete and
∃-complete.

Proof: First enumerate the countable many @-sentences of the extended language: @i1ϕi,@i2ϕ2, ...
Then for all n ∈ N define Sn recursively by:

S1 = S,

Sn+1 =

Sn ∪ {@in
ϕn}, if ϕn is not of the form ♦ψ or (∃x)ψ,

and the set Sn ∪ {@in
ϕn} is consistent.

Sn ∪ {@in
ϕn,@in

♦j,@jψ}, if ϕn is of the form ♦ψ, j is a new nominal not occurring
in Sn or @in

ϕn, and the set Sn ∪ {@in
ϕn} is consistent.

Sn ∪ {@inϕn,@inψ[i:p/x]}, if ϕn is of the form (∃x)ψ, p a new parameter not occurring
in Sn or @in

ϕn, and the set Sn ∪ {@in
ϕn} is consistent.

Sn, otherwise.

This definition works since by the assumption on S, Sn will omits infinitely many nominals and para-
meters, for all n ∈ N.

6The term rules are inspired by the @ rules. For instance (:2) plays the role of (nom) and (:3) plays the roles of (@)

and (¬ @). The rules (:fix1) - (:fix4) and (:func) are included to the deal with the semantics of i: t. Note that a general
substitution rule of the form

@iϕ

@iϕ[i: t//t]

is not sound. The term i: t cannot be substituted for t in the formula @jk: t = k: t in a sound way. Thus all the rules

(:fix1) - (:fix4) and (:func) are needed to secure that the substitution only take place at the top level.
7So if ϕ is a FHL-sentence, then a tableau proof for ϕ is the same as a closed tableau for the finite set {@i¬ϕ} (for

some nominal i not occurring in ϕ).

Each Sn is consistent. This is easily proven by induction on n ∈ N, using the fact that if ϕn

is on the form ♦ψ or (∃x)ψ, then the consistency of Sn ∪ {@inϕn} implies the consistency of Sn ∪
{@inϕn,@in♦j,@jψ} and Sn ∪ {@inϕn,@inψ[i:p/x]}, where j and p are new.

Now define S′ by

S′ =
⋃
n∈N

Sn.

Since Sn is consistent for all n ∈ N it easily follows that also S′ is consistent.
To show that S′ is ♦-complete, assume that @i♦ϕ ∈ S′. Let n ∈ N be such that @inϕn is the formula

@i♦ϕ. Then since @inϕn ∈ S′ and S′ is consistent, Sn ∪ {@inϕn} is also consistent. But then, by the
construction of Sn+1, @in

♦j,@jψ ∈ Sn+1 ⊆ S′, for some new nominal j. That S′ also is ∃-complete is
proved in the same way.

That S′ is maximal consistent is clear, since all formulas that can be added without destroying
consistency have been added in the construction of S′. �

Lemma 4. Let S be a maximal consistent set of @-sentences, which is ♦-complete and ∃-complete. Then
S obeys the tableau rules, i.e. if the premises of a rule are in S then the conclusion is also in S.

For instance if the @-sentences @ij and @iϕ are in S then so is @jϕ.8

To prove completeness assume that the FHL-sentence ϕ does not have a tableau proof, i.e. there is
no closed tableau starting with @i¬ϕ (for a i ∈ NOM not in ϕ). But then {@i¬ϕ} is consistent. Since
ϕ only contains finitely many nominals and no parameters, ϕ also omits infinitely many nominals and
parameters. Thus by lemma 3 there is a maximal consistent set S of @-sentences that contains @i¬ϕ
and is ♦-complete and ∃-complete. Using this maximal consistent set S a model M = 〈W,R,D,D, `〉
can be constructed such that it satisfies @i¬ϕ. Now for the construction of the model M:

First define the relation ∼ on the set NOM by:

i ∼ j ⇐⇒ @ji ∈ S.
∼ is a equivalence relation on the set NOM, which is seen using lemma 4 and the rules (nom ref) and
(nom).

The set of worlds W is then defined as the set of ∼-equivalence classes:

W = NOM/∼.

The members of W will be denoted by [i]. The accessibility relation R on W is defined by

[i]R[j] ⇐⇒ @i♦j ∈ S.
That this is well-defined follows from lemma 4 and the rules (nom) and (bridge).

To define the domain D of the model, first let D be the set defined by

D = {i: t | for some i ∈ NOM and some closed extended term t}.
Now define a relation ≡ on D by

i: t ≡ j:s ⇐⇒ @ki: t = j:s ∈ S for some k ∈ NOM.

This relation is also easily seen to be a equivalence relation on the set D. It follows by lemma 4 applied
to the rules (ref), (sub), and (:1). The domain of the model is now defined by

D = D/≡.

The elements of D will be denoted by i: t. For all [i] ∈W define

D([i]) = {j:p | j ∈ [i] and p is a parameter}.
Note that D([i]) ⊆ D for all i ∈ NOM, since p is a closed term.

Now for the definition of the interpretation `. For all constants a ∈ CON ∪ PAR and [i] ∈W define

aM[i] = i:a,

8That this is so can be seen the following way: Assume that @ij, @iϕ ∈ S. Now if @jϕ /∈ S then S ∪ {@jϕ} must be

inconsistent by the maximallity of S. So there is a finite subset A ⊆ S ∪{@jϕ} such that A has a closed tableau. Then we

can construct a closed tableau for the finite set (A \ {@jϕ})∪ {@ij, @iϕ} (⊆ S) using the (nom) rule. But this contradict
the consistency of S, hence @jϕ ∈ S. The other cases, except the rules (♦) and (∃), are similar. For the rules (♦) and

(∃), the lemma follows from the ♦-completeness and ∃-completeness of S.

which is well-defined by lemma 4 and (:2). For a n-ary relation symbol R and [i] ∈W , define RM[i] by

RM[i] (i1: t1, ..., in: tn) ⇐⇒ @iR(i1: t1, ..., in: tn) ∈ S,(1)

for all i1: t1, ..., in: tn ∈ D. This is well-defined by lemma 4 and the rules (nom), (sub), and (:1). For a
n-ary function symbol f and [i] ∈W , define fM[i] : Dn → D by

fM[i] (i1: t1, ..., in: tn) = i:f(i1: t1, ..., in: tn)(2)

for all i1: t1, ..., in: tn ∈ D. That this is well-defined follows from lemma 4 and the rules (:1), (:2), and
(sub). Finally for nominals i ∈ NOM let `(i) = [i]. Now for the central lemma:

Lemma 5 (Truth lemma). For all @-sentences @iϕ,

@iϕ ∈ S =⇒ M, [i] |=ν ϕ , for some (all) valuations ν.

@i¬ϕ ∈ S =⇒ M, [i] 6|=ν ϕ , for some (all) valuations ν.

The completeness of the tableau system follows from this lemma. Since @i¬ϕ ∈ S by the definition
of S, M, [i] 6|=ν ϕ. Thus M is a model that falsifies the sentence ϕ at the world [i], and it follows that
ϕ cannot be a valid sentence. Now the proof of the Truth lemma requires the following extra lemma:

Lemma 6. If t is a term of the extended language that contains no variables, and i is a nominal, then

tM,ν
[i] = i: t,

for all valuations ν in M.

Proof: The proof goes by induction on the construction of t. t cannot be a first-order variable by
assumption, and if t is a constant a ∈ CON ∪ PAR, then aM,ν

[i] = aM[i] = i:a. If t is on the form u:s, then
u ∈ NOM since t contains no variables. Further s cannot contain any variables either, and thus

(u:s)M,ν
[i] = sM,ν

`(u) = sM,ν
[u]

(∗)
= u:s

(∗∗)
= i:u:s,

where (∗) follows by the induction hypothesis, and (∗∗) from lemma 4 and the rule (:3).
Finally assume that t is on the form f(t1, ..., tn), and that t contains no variables. Then t1, ..., tn

contains no variables either. Then by the induction hypothesis

f(t1, ..., tn)M,ν
[i] = fM[i] ((t1)

M,ν
[i] , ..., (tn)M,ν

[i]) = fM[i] (i: t1, ..., i: tn) = i:f(i: t1, ..., i: tn) = i:f(t1, ..., tn),

where the last equality follows from lemma 4 and the rules (:func) and (:fix3). �

Proof of lemma 5: The proof goes by induction on the complexity of ϕ. If ϕ is R(t1, ..., tn), Then

@iR(t1, ..., tn) ∈ S =⇒ @iR(i: t1, ..., i: tn) ∈ S
=⇒ RM[i] (i: t1, ..., i: tn)

=⇒ RM[i] ((t1)
M,ν
[i] , ..., (tn)M,ν

[i])

=⇒ M, [i] |=ν R(t1, ..., tn),

for all valuations ν. Here the first implication follows from lemma 4 and (:fix1), the second by the
definition (1), and the third by lemma 6 (because R(t1, ..., tn) is assumed to be a @-sentence it cannot
contain any variables). Furthermore if @i¬R(t1, ..., tn) ∈ S then by lemma 4 and (:fix2) @i¬R(i: t1, ..., i:
tn) ∈ S, and since S is consistent @iR(i: t1, ..., i: tn) /∈ S. Thus by definition RM[i] (i: t1, ..., i: tn) does not

hold, and so neither does RM[i] ((t1)
M,ν
[i] , ..., (tn)M,ν

[i]). It then follows that

M, [i] 6|=ν R(t1, ..., tn),

as required.
The case where ϕ is on the form t1 = t2 is similar.
ϕ cannot be u for a u ∈ SVAR, since then @iϕ is not a @-sentence. If ϕ is j for j ∈ NOM, `(j) = [j].

But then

M, [i] |=ν j ⇐⇒ [j] = [i] ⇐⇒ j ∼ i ⇐⇒ @ij ∈ S,
and the claim follows, since @i¬j ∈ S implies that @ij /∈ S.

The cases where ϕ is ψ1 ∨ ψ2 or ¬ψ are easy.

Now assume that ϕ is on the form ♦ψ. If @i♦ψ ∈ S, then by ♦-completeness, @i♦j,@jψ ∈ S, for some
nominal j. Thus by the induction hypothesis it follows that M, [j] |=ν ψ. But since @i♦j ∈ S, [i]R[j],
and thus M, [i] |=ν ♦ψ. Assume now that @i¬♦ψ ∈ S. If M, [i] |=ν ♦ψ then there is a j ∈ NOM such
that [i]R[j] and M, [j] |=ν ψ. But then @i♦j ∈ S by the definition of R, and thus using lemma 4 and
(¬♦) it follows that @j¬ψ ∈ S. But by induction this implies that M, [j] 6|=ν ψ, which is a contradiction,
and thus M, [i] 6|=ν ♦ψ must be the case.

Assume now that ϕ is on the form (∃x)ψ. If @i(∃x)ψ ∈ S it follows by the ∃-completeness of S
that also @iψ[i: p/x] ∈ S, for some parameter p. By the induction hypothesis M, [i] |=ν ψ[i: p/x]. But
then also M, [i] |=ν′ ψ, where ν′ is a x-variant of ν in [i] such that ν′(x) = (i: p)M,ν

[i] = i:p (note that
i:p ∈ D([i])). But then M, [i] |=ν (∃x)ψ follows. Assume now that @i¬(∃x)ψ ∈ S. If M, [i] |=ν (∃x)ψ,
then there is an x-variant ν′ of ν in [i] such that M, [i] |=ν′ ψ. But by the definition of D([i]) this implies
that there is a parameter p such that ν′(x) = i:p = (i: p)M,ν

[i] . It thus follows that M, [i] |=ν ψ[i: p/x].
But on the other hand using lemma 4 on (¬∃) it also follows that @i¬ψ[i:p/x] ∈ S and further by the
induction hypothesis that M, [i] 6|=ν ψ[i:p/x]. This is a contradiction and thus M, [i] 6|=ν (∃x)ψ must be
the case.

In the case ϕ is on the form @jψ, it first follows that

@i@jψ ∈ S =⇒ @jψ ∈ S =⇒ M, [j] |=ν ψ =⇒ M, [i] |=ν @jψ,

using lemma 4 on (@) and the induction hypothesis. If @i¬@jψ ∈ S it follows from lemma 4 and (¬@)
that @j¬ψ ∈ S, which further by the induction hypothesis implies that M, [j] 6|=ν ψ. But then

M, [i] 6|=ν @jψ.

Finally assume that ϕ is ↓v.ψ. Then @i↓v.ψ ∈ S implies that @iψ[i/v] ∈ S by lemma 4 and (↓),
which further by the induction hypothesis implies that M, [i] |=ν ψ[i/v]. But from this follows that
M, [i] |=ν′ ψ, where ν′ is a v-variant of ν such that ν′(v) = (i)M,ν

[i] = `(i) = [i]. Finally this implies
that M, [i] |=ν↓v.ψ. Now assume that @i¬ ↓v.ψ ∈ S. Then from lemma 4 and (¬ ↓) it follows that
@i¬ψ[i/v] ∈ S and further by induction that M, [i] 6|=ν ψ[i/v]. As before it follows that M, [i] 6|=ν′ ψ,
whenever ν′ is a v-variant of ν such that ν′(v) = (i)M,ν

[i] = [i], and thus that M, [i] 6|=ν↓v.ψ. �

Before ending this section a remark is in its place. If one is interested in a first-order hybrid language
just containing nominals and satisfaction operators (on both formulas and terms) and not the down-
arrow binder, one can simply remove the rules (↓) and (¬ ↓) from the tableau system without destroying
the completeness proof. Thus getting a sound and complete tableau system for the weaker language. In
the next section we will see that if one is interested in a more expressive language than FHL a tableau
system for such a language is easily obtainable.

4. Adding the universal modality

Even though the language FHL is very expressive, there are things it cannot express. However it is
easy to extend the language even further by adding the universal modality E to FHL. Let FHLU be
the language obtained by adding the unary operator E to the language of FHL. Terms are as before and
the definition of formulas is extended with the clause that if ϕ is a formula then Eϕ is also a formula.
The semantics for Eϕ is given by

M, w |=ν Eϕ iff there is a w′ ∈W s.t. M, w′ |=ν ϕ .

The dual operator A to E is defined by

Aϕ
df
= ¬E¬ϕ.

A tableau system for FHLU is obtained by adding the rules of figure 2 to the tableau system of FHL.
The soundness of the new tableau system is trivial. For the completeness proof we first add the notion
of a set of @-formulas being E-complete if;

@iEϕ ∈ S =⇒ @jϕ ∈ S, for some nominal j.

To lemma 3 we add the further conclusion that S′ can assumed to be E-complete. In the proof of the
lemma we then need to add a new clause in the construction of Sn+1, namely that:

Sn+1 = Sn ∪ {@inϕn,@jψ}, if ϕn is of the form Eψ, j is a new nominal not occurring
in Sn or @in

ϕn, and the set Sn ∪ {@in
ϕn} is consistent.

E rules:

@iEϕ
(E)1

@jϕ

@i¬Eϕ
(¬E)2

@j¬ϕ

1 The nominal j is new to the branch. 2 Where j is any nominal.

Figure 2. The extra tableau rules for FHLU.

The rest of the proof of lemma 3 goes through as before. In the proof of the truth lemma we also need
to add the case where ϕ is Eψ: Assume that ϕ is on the form Eψ. Then if @iEψ ∈ S, @jψ ∈ S for
some nominal j, by the E-completeness of S. But then by the induction hypothesis M, [j] |=ν ψ and it
follows that M, [i] |=ν Eψ. Assume now that @i¬Eψ ∈ S. Now if M, [i] |=ν Eψ then there is a nominal
j such that M, [j] |=ν ψ. On the other hand it follows from lemma 4 and (¬E) that @j¬ψ ∈ S. But by
the induction hypothesis this implies that M, [j] 6|=ν ψ, which is a contradiction and thus M, [i] 6|=ν Eψ
must be the case. The rest of the completeness proof goes through as before. Thus a sound and complete
tableau system for FHLU has been presented.

5. Concluding remarks and further perspectives

This paper contains a fully internalized tableau system for a first-order hybrid logic that is both
sound and complete. The language presented (FHL) contains nominals, a down-arrow binder as well as
satisfaction operators on both formulas and terms. The notions of terms are as general as in classical
first-order logic. Furthermore the tableau system it made to deal with varying domains. It turns out that
tableau systems for FHL behave nicely, even when dealing with varying domain semantics. In [9] this
requires an amount of meta notions, such as prefixes, parameters associated with prefixes, and grounding
of terms. This is completely internalised in the tableau system for FHL. The only thing that might not
look that nice for this tableau system is all the term rules needed. However it might be possible to find
simpler rules.

Moreover as in [2] and [6] it would be interesting to see how automatic completeness proofs looks
in the case of the presented tableau system. Besides automatic completeness results for different frame
conditions given by pure formulas, first-order hybrid logic also allows for automatic completeness results
for different domain conditions as discussed in for instance [2].

References

[1] Carlos Areces, Patrick Blackburn, and Maarten Marx, Repairing the interpolation theorem in quantified modal logic.
Annals of Pure and Applied Logic 124: 287-299, 2003.

[2] Patrick Blackburn and Balder ten Cate. Pure Extensions, Proof Rules, and Hybrid Axiomatics. Studia Logica 84:

277-322, 2006.
[3] Patrick Blackburn and Maarten Marx. Quantified Hybrid Logic and Natural Language. R. van Rooy and M. Stokhof

(eds.), Proceedings of the Thirteenth Amsterdam Colloquium, December 17-19, ILLC Amsterdam, 2001, pages 43-48,
2001.

[4] Patrick Blackburn and Maarten Marx. Tableaux for Quantified Hybrid Logic. In U. Egly and C. Fernmller (eds.),

Automated Reasoning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX 2002,
Copenhagen Denmark, July/August, Proceedings, pages 38-52, 2002.

[5] Patrick Blackburn, Johan van Benthem, and Frank Wolter (eds.). Handbook of Modal Logic. Elsevier, Amsterdam,
2007.

[6] Torben Brauner. Natural deduction for first-order hybrid. Journal of Logic, Language and Information 14: 173-198,
2005.

[7] Torben Brauner and Silcio Ghilardi. First-Order Modal Logic. Chapter 9 in [5].
[8] M. J. Cresswell. Entities and Indices. Kluwer Academic Publishers, 1990.

[9] Melvin C. Fitting and Richard Mendelsohn. First-Order Modal Logic. Kluwer Academic Publishers, 1998.
[10] Melvin C. Fitting. Modal Proof Theory. Chapter 2 in [5].
[11] Kai Frederick Wehmeier. World travelling and mood swings. In B. Lwe, W.Malzornm T. Rsch, (eds.), Foundations of

the Formal Sciences II, Klwer Academic Publishers, Dordecht, pages 257-260, 2003.

