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“或生而知之，或学而知之，或困而知之，及其知之，一也。 

或安而行之，或利而行之，或勉强而行之，及其成功，一也。” 

《中庸》 

"Some are born with the knowledge; some know them by study; and some 
acquire the knowledge after a painful feeling of their ignorance. But the 

knowledge being possessed, it comes to the same thing.  

Some do it with a natural ease; some from a desire for their advantages; 
and some by strenuous effort. But the achievement being made, it comes to 

the same thing." 

-Doctrine of the Mean 
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Abstract  

Using satellite remote sensing data for observing vegetation seasonality is an 
important approach to estimate phenology and carbon uptake of land vegetation. 
The successful launch of Sentinel-2B in 2017 initiated full operation of the Sentinel-
2 twin satellites, and they now provide 10 - 60 m spatial resolution satellite data at 
5 days temporal resolution worldwide, releasing approximately 3.2 TB of image 
data per day. With Sentinel-2's huge amount of high spatial resolution and high 
temporal resolution data, Earth observation is facing new opportunities and 
challenges.  

To adapt to the characteristics of Sentinel-2 MSI data, the existing time-series 
analysis methods used for vegetation seasonality studies with regular time step data 
(e.g., from the MODIS sensor) require modification and improvements. In this 
thesis, a new time-series analysis method, based on the currently available methods, 
was developed for estimating vegetation seasonality from high spatial resolution 
Sentinel-2 data. The new method is applied to Sentinel-2 data to estimate vegetation 
phenology and photosynthetic carbon uptake, and the outputs are evaluated based 
on ground reference data and compared to MODIS products.  

By comparing with ground reference data (in-situ NDVI time-series, flux tower 
GPP time-series, and elevation), function fitting methods (e.g., double logistic 
function fitting) provide the most robust description of the seasonal dynamics for 
MODIS NDVI time-series among five tested smoothing methods. Based on this 
finding, we developed box constrained separable least squares fits to double logistic 
functions with seasonal shape priors, and tested the robustness of the method on six 
years of simulated Sentinel-2 data by use of MODIS data. The results show that the 
new method is flexible enough to simulate interannual variations and robust enough 
when data are sparse.  

The box constrained function fitting method applied to Sentinel-2 MSI 2-band 
Enhanced Vegetation Index (EVI2) data was further used to estimate vegetation 
phenology and gross primary productivity (GPP) across diverse Nordic vegetation 
types. The results indicate that daily EVI2 time-series derived from Sentinel-2 is 
more accurate than from MODIS, with an RMSE of 0.08 for Sentinel-2 and 0.13 for 
MODIS versus the ground spectral data. With reference to the dates of greenness 
rising estimated from digital cameras, the dates estimated from Sentinel-2 (RMSE: 
8.1 days) are closer than those from MODIS (RMSE: 14.4 days). Sentinel-2 data 
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also generate more phenological details along elevation gradients and land cover 
variations than MODIS. However, Sentinel-2 does not show any advantage in 
estimating GPP, when comparing with data from flux towers. The average error 
between the modelled GPP from Sentinel-2 EVI2 and the GPP derived from flux 
tower data was similar to that from MODIS. This result partly reflects inabilities in 
the flux tower data to resolve variation at the same high resolution as Sentinel-2, 
and further studies will be required to fully evaluate the capability of the sensor in 
this respect. 

In conclusion, the new method, box constrained separable least squares fits to 
double logistic functions with seasonal shape priors, is useful and computationally 
efficient for robustly reconstructing daily vegetation index time-series and 
estimating vegetation phenology from Sentinel-2 data. In addition, by applying the 
new method to Sentinel-2 data is useful for describing the spatial variation of GPP 
in the footprint area, although Sentinel-2 did not show improvements in estimating 
GPP compared with MODIS data. The developed time-series methods will be 
implemented in a subsequent version of the TIMESAT software package for 
processing of irregular time step data. 
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1 Introduction 

1.1 Motivation 

Land vegetation plays a crucial role in the Earth's ecosystems due to its major 
influences on the cycles of carbon, energy, and hydrology between atmosphere and 
ecosystems (IPCC 2014). Satellite remote sensing technology provides an efficient 
and economical platform for global land vegetation observation.  

The first Landsat satellite was launched in 1972, and since then, humans have begun 
to observe global vegetation from space data. This also led to a revolution in 
vegetation observation: the observations were no longer random spatial samples but 
covered the entire land surface. In a broad sense, vegetation observations have 
entered the era of big data since then. Although Landsat data can cover the whole 
earth, its low revisit frequency (about 15 days) limits its performance in estimating 
vegetation seasonality (e.g. Fisher et al. 2006, Melaas et al. 2013). Since the 
Advanced Very High-Resolution Radiometer (AVHRR) and the Moderate 
Resolution Imaging Spectroradiometer (MODIS) data were later available, seasonal 
observations of vegetation on a global scale began. AVHRR and MODIS provide 
daily images covering all the land surface in the temporal domain.  

Scientists have established a variety of methods to analyse the growth curve of 
vegetation based on these daily data (Menenti et al. 1993, Olsson and Eklundh 1994, 
Jönsson and Eklundh 2002, Chen et al. 2004, Beck et al. 2006), and the products 
from these methods have been used for studying the vegetation phenology and 
carbon cycle of vegetation (Turner et al. 2006, Zhang et al. 2006). However, the low 
spatial resolution of AVHRR and MODIS with over hundreds of meters limits the 
observation of vegetation, especially the fact that each pixel contains a mixture of 
signals and noise, such as different vegetation types, different land types, clouds and 
cloud shadows, etc., affecting the comparison with ground reference data. 

Sentinel-2 is an Earth Observation mission in the European Union’s Copernicus 
programme. The European Space Agency (ESA) launched the Sentinel-2A and 
Sentinel-2B satellites in 2015 and 2017 respectively, equipped with the 
Multispectral Instrument (MSI) on-board (Drusch et al. 2012), providing global 
coverage of 10 – 60 m spatial resolution, 5 days temporal resolution, and 13 spectral 
bands of terrestrial observations, and they currently distribute an average of 3.2 TB 
of satellite image data per day. This combination allows for the development of a 
range of new applications and products which are invaluable for vegetation 
observation. Differently from the AVHRR and MODIS data, the Sentinel-2 MSI 
data are not regular time-step data and in a lower frequency. Therefore, how to 
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efficiently and accurately extract seasonal information of vegetation from Sentinel-
2 data will be the key to effective use of these data in the future. 

In this context, this thesis, funded by the Swedish National Space Agency (SNSA) 
and Lund University, plans to develop and test a methodology for estimating 
seasonality of vegetation using Sentinel-2 high spatial resolution data and to 
evaluate the scientific value of the product regarding vegetation phenology and 
photosynthetic carbon uptake. 

1.2 Vegetation seasonality from satellite data 

1.2.1 Radiative properties of vegetation 

Central to the development of remote sensing for monitoring vegetation is an 
understanding of the interaction of radiation with vegetation. The radiative 
properties of vegetation are mainly described from the canopy as a whole and its 
other components, including leaves, stems, soil, or water (Jones and Vaughan 2010). 
Among these components, the leaves, essentially the chlorophyll contained therein, 
are considered as the most crucial components in phenology and carbon studies, 
since they indicate vegetation growing season and vegetation carbon uptake ability. 
While radiation from the sun hits a leaf, the magnitudes of spectral reflectance, 
spectral absorptance and spectral transmittance depend not only on the wavelength 
but also on a range of chemical and structural characteristics, such as chemical 
composition, leaf water content, and leaf structure (Curran 1989, Slaton et al. 2001).  

The sensors on-board satellites, e.g., AVHRR and MODIS, are not yet able to 
observe reflection of radiation from leaves of the vegetation only, but always record 
combined spectral reflection from canopies in a pixel which consist of a number of 
components, such as green leaves, stems, background soils, background water, etc. 
Therefore, we need quantitative indices to extract information about the green leaves 
from the mixed components. 

Due to the influence of the atmosphere, what we obtain from the remote sensing 
satellite sensor is the top-of-atmosphere reflectance. Atmospheric correction is 
required to obtain surface reflection that carries vegetation information. The 
correction of the impacts of oxygen and ozone is relatively easy to perform since 
oxygen and ozone are stable on both spatial and temporal scale. The remaining 
components, aerosol and water vapour, are more varying and thus the main 
challenge of atmospheric correction (Liang 2005). 
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1.2.2 Vegetation indices 

Vegetation indices are commonly used in vegetation observation, especially in 
assessing biophysical and biochemical variables, such as canopy chlorophyll 
content (Gitelson et al. 2005), leaf area index (LAI) (Tillack et al. 2014), fraction of 
photosynthetically active radiation absorbed by the vegetation (fAPAR) (Gitelson 
et al. 2014), and gross primary productivity (GPP) (Xiao et al. 2004). The 
establishment of most vegetation indices is based on two facts: (1) the chlorophyll 
accounts for almost all the absorption in the red band and much of that in the blue 
band, and (2) there is high reflectance in near-infrared band due to leaf scattering.  

The most widely used vegetation index is the Normalized Difference Vegetation 
Index (NDVI, Tucker, 1979): 

,    (1) 

where NIR and R are reflectance in the near infrared and red wavelength bands 
respectively. NDVI can enhance the difference of reflectance information between 
vegetation and other background information, and it is used as a variable to estimate 
fAPAR in the light use efficiency (LUE) model (Monteith 1972, 1977). However, 
in the past thirty years of use, some problems have been observed in using NDVI, 
such as the saturation in dense vegetation (Jackson et al. 2004) and the sensitivity 
to background reflectance (Huete 1988, van Leeuwen and Huete 1996, Rocha et al. 
2008).  

The Enhanced Vegetation Index (EVI, Huete et al. 2002): 

,  (2) 

where B is reflectance in the blue wavelength band. EVI avoids some of the 
problems of NDVI, for example, it does not become saturated as quickly as NDVI.  

The 2-band Enhance Vegetation Index (EVI2, Jiang et al. 2008):  

,  (3)  

was specifically designed for MODIS, does not require the blue band, and it is close 
to EVI.  

A novel development, the physically-based plant phenology index (PPI, Jin and 
Eklundh 2015), showed a linear relationship with canopy LAI and strong correlation 
with GPP. Snow influence on PPI is much smaller than on NDVI and EVI.  
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1.2.3 Time-series smoothing methods 

Vegetation seasonality can be observed by establishing a time-series of vegetation 
indices. However, the accuracy and continuity of the time-series of vegetation 
indices are affected by noise in the signal received by the satellite sensor due to 
geometric misregistration, anisotropic reflectance effects, electronic errors, artefacts 
due to data resampling, clouds, cloud shadows, snow, and aerosols (Goward et al. 
1991).  

In order to reduce the impacts of noise and to reconstruct continuously seasonal 
curves, a multitude of time-series processing methods have been used, e.g. Fourier 
transforms (Menenti et al. 1993, Olsson and Eklundh 1994), wavelet smoothing 
(Galford et al. 2008), statistical filters (Reed et al. 1994), Savitzky-Golay filtering 
(Chen et al. 2004), least-squares fits to asymmetric Gaussian functions (Jönsson and 
Eklundh 2002) and double logistic functions (Zhang et al. 2003, Beck et al. 2006, 
Fisher et al. 2006), and variations of spline smoothing (Bradley et al. 2007, 
Hermance et al. 2007, Atzberger and Eilers 2011). However, there is no final 
conclusion about which method is always the best (Hird and McDermid 2009, White 
et al. 2009,  Atkinson et al. 2012, Geng et al. 2014). 

1.2.4 TIMESAT 

TIMESAT is a software program developed by P. Jönsson and L. Eklundh (2002, 
2004) for time-series analyses of satellite data. The latest TIMESAT version 3.3 
includes trend analysis, time-series smoothing and extraction of seasonality 
parameters. These analyses can only be used for regular time step data, e.g., products 
from AVHRR and MODIS. The method used for trend analysis in TIMESAT is the 
seasonal-trend decomposition procedure based on Loess (STL) (Cleveland et al. 
1990), which decomposes trends, seasons and noise in the time series. TIMESAT 
includes Savitzky-Golay filtering (SG), asymmetric Gaussian functions (AG), and 
double logistic functions (DL). To improve the accuracy of data fitting, a weighting 
system and upper envelope adaptation are available. The weighting system allows 
assigning a weight to each data point so that the smoothing curve prefers to follow 
the high-quality data values and decreases the influence from low-quality data 
values. The upper envelope adaptation adds a positive bias to the fits and has been 
used with many smoothing algorithms to minimise the effects of cloud 
contamination that generally decreases the estimations of vegetation indices such as 
NDVI (Chen et al. 2004, Jönsson and Eklundh 2004). The last step of the TIMESAT 
processing is extracting key time points or key values from smoothed time-series, 
i.e. seasonality parameters (Figure 1). Start-of-season (SOS) and end-of-season 
(EOS) dates are generally specified as the point in time when a defined fraction (e.g. 
20%) of the seasonal amplitude has been reached. 
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Figure 1. Some of the seasonality parameters generated by TIMESAT: (a) beginning of season, (b) end of 
season, (c) length of season, (d) base value, (e) time of middle of season, (f) maximum value, (g) amplitude, (h) 
small integrated value, (h+i) large integrated value. The red and blue lines represent the filtered and the original 
data, respectively (Eklundh and Jönsson 2017).   

1.2.5 Applications of vegetation seasonality 

1.2.5.1 Mapping phenology 

‘Phenology is the study of timing of recurring biological events, the causes of their 

timing with regard to biotic and abiotic forces, and the interrelation among phases 

of the same or different species.’ (Lieth 1974) 

Seasonality parameters extracted by time series of vegetation index is an important 
and widely used approach of large-scale phenological mapping (Schwartz 2003, 
Delbart et al. 2006, Fisher et al. 2007), and it has also been used to produce a global 
phenology product, e.g., MODIS MCD12Q2 product (https://lpdaac.usgs.gov) 
(Zhang et al. 2003). Phenology estimated from satellite remote sensing is generally 
called land surface phenology (de Beurs and Henebry 2004). The concept of land 
surface phenology is widely used to study global climate, large-scale ecosystem, 
and forest management (Heumann et al. 2007, Lioubimtseva and Henebry 2009, de 
Beurs and Henebry 2010). Due to seasonality parameters are normally estimated 
from the coarse resolution satellite remote sensing data, one pixel usually describes 
the aggregate temporal behaviours of multiple vegetation species and land cover 
types. 
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1.2.5.2 Estimation of gross primary productivity 

Gross primary productivity (GPP) stands for the overall rates of photosynthetic 
uptake of carbon by leaves (Bonan 2015). GPP is an important variable for studying 
the global carbon cycle (Prince 1991, Running et al. 2004). Vegetation index time-
series from satellite data is a crucial variable for modelling regional and global GPP 
because the content of chlorophyll is directly related to GPP and the vegetation 
index responds to radiation absorption of chlorophyll. The accuracy of GPP 
modelling is related to the spatial and temporal resolution of satellite data. There are 
two main types of top-down models commonly used to estimate GPP in remote 
sensing: simple statistic models (e.g., Schubert et al. 2010, Schubert et al. 2012) and 
light use efficiency (LUE) models (Monteith 1972, Monteith John et al. 1977). Both 
statistic and LUE models have been used in many studies to estimate GPP (e.g., 
Prince 1991, Ruimy et al. 1994, Running et al. 2004, Xiao et al. 2004, Olofsson et 
al. 2008, Wu et al. 2010, Sjöström et al. 2011, McCallum et al. 2013). The 
vegetation index is the key driving variable in both models. Statistic and LUE GPP 
models are all empirical models, acting as useful complementary to the process-
based GPP models, like modelling GPP bottom-up in DGVM (Smith et al. 2001) 
using Farquhar photosynthesis model (Farquhar et al. 1980). 

1.3 Ground reference data 

Ground-based measurements using multispectral sensors provide an efficient 
approach for more precise observation of vegetation reflectance (Fensholt et al. 
2004, Gamon et al. 2006, Eklundh et al. 2011, Lange et al. 2017). After regular 
sensor calibration following Jin and Eklundh (2015), the vegetation reflectance of 
each spectral band can be accurately measured. Lange et al. (2017) used ground-
based multispectral sensor data to validate Sentinel-2 data at a temperate deciduous 
forest site. 

Phenological cameras (PhenoCams) have been widely used for the observation of 
vegetation phenology, and consequently to evaluate the accuracy of satellite 
estimated vegetation phenology (Richardson et al. 2007, Sonnentag et al. 2012, 
Melaas et al. 2016, Baumann et al. 2017, Richardson et al. 2018b, Vrieling et al. 
2018). Red-Green-Blue (RGB) images from PhenoCams provide detailed 
information of overstorey and understorey seasonal development, species 
distribution, and weather conditions, e.g., sunny, cloudy, snowy. To compare with 
the satellite NDVI, Petach et al. (2014) used an infrared-enabled security camera to 
capture ground-based NDVI time-series. However, the difference in viewing angles 
between satellites and PhenoCams may cause non-negligible differences in 
phenological parameters estimation (Vrieling et al. 2018).  
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1.4 Sentinel-2 

ESA's Sentinel-2 MSI data have been used in monitoring vegetation phenology 
(Vrieling et al. 2018) and vegetation species classification (Immitzer et al. 2016, 
Persson et al. 2018). Sentinel-2 MSI data are significantly different from AVHRR 
and MODIS data regarding space, time and spectral resolution. First, Sentinel-2’s 
spatial resolution of 10 – 60 meters enables clearly observing the contours of land 
cover, clouds and cloud shadow, allows more accurate matching of ground 
observation footprint areas, and enables more precise classification of land cover. 
Second, the lower return interval (5 days at the equator) means that reliable cloud 
free maximum value composites of 8-10 days, similar to AVHRR and MODIS 
products, cannot be generated. Using all available cloud-free observations of 
Sentinel-2 generates irregular and sometimes wide time-steps, which means that to 
obtain a smooth vegetation index time series it is necessary to improve the previous 
smoothing methods or explore new methods. Third, Sentinel-2 MSI provide 
observations in red edge bands that adds new opportunities for capturing the spectral 
characteristics of the vegetation. Due to the huge volume of data and the 
spatial/temporal characteristics of Sentinel-2, the use of Sentinel-2 data to observe 
vegetation at global or regional scale requires consideration of data processing, data 
management and data application methods (Figure 2). 

1.5 Objectives 

The overall aim of the thesis is to explore the utilisation of Sentinel-2 data in science 
as well as in applied fields. More specifically, the project aims at developing and 
testing methodology for estimating terrestrial vegetation seasonality at high spatial 
resolution based on Sentinel-2 data and assessing the scientific value of these high-
resolution products within the fields of phenology and photosynthetic carbon 
uptake. The dynamic capabilities of Sentinel-2 data will be assessed and compared 
with similar products based on coarse-resolution data. Specific aims are: 

• To evaluate the performance of smoothing algorithms in representing 
seasonal vegetation growth with regular time-step satellite vegetation index 
time-series data by employing a variety of reference data sets. 

• To present a data processing method feasible for generating seasonal data 
from sparse and irregular time-step data. 

• To investigate if vegetation phenology estimated from Sentinel-2 data by 
the new method improves the agreement with in-situ observed vegetation 
phenology in comparison to MODIS data for Nordic vegetation types. 
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• To investigate if the spatial and temporal resolution of Sentinel-2 data are 
sufficient for estimating GPP and if they can improve the estimation of GPP 
in comparison to MODIS data. 

 

 
Figure 2. Mind map of vegetation observation in the Big Data Era: Sentinel-2 data for mapping the seasonality 
of land vegetation. Created with iMindMap (www.iMindMap.com). 
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2 Material and Methods 

2.1 Satellite data 

2.1.1 Sentinel-2 MSI data 

The Sentinel-2A and 2B MSI level-1C top of atmosphere reflectance data (Drusch 
et al. 2012) were used in this thesis. The study sites in the thesis were covered by 
eight 100km×100km tiles (Paper II, Paper III, and Paper IV). A total of 1,489 
available Sentinel-2A and -2B MSI images (978 GB) from 2016 to 2017 were 
downloaded from the ESA Copernicus Sentinels Scientific Data Hub. The data 
volume has been doubled since June 16, 2017, when the Sentinel-2B became fully 
operational. These images were atmospherically corrected using the Sen2Cor 
processor (2.4.0) (Louis et al. 2016) to obtain level-2A land surface reflectance. We 
finally generated 1.1 TB of level-2A data since Sen2Cor processor can only process 
entire tiles.  

For observing vegetation greenness, we applied Normalized Difference Vegetation 
Index (NDVI, Tucker 1979) in Paper II and 2-band Enhanced Vegetation Index 
(EVI2, Jiang et al. 2008) in Paper III and Paper IV. In paper II, we developed a 
robust vegetation time-series fitting method based on NDVI. We used EVI2 in Paper 
III to evaluate whether the developed fitting method for processing Sentinel-2 MSI 
data improved the phenology retrieval. In addition to EVI2 being superior to NDVI 
in less sensitive to background reflectance and presenting more details over dense 
vegetation (Rocha and Shaver 2009), another reason for using EVI2 in Paper III was 
that EVI2 had been widely used in phenological studies (Zhang et al. 2018). In Paper 
IV, we continued to use EVI2 to estimate GPP, since Enhanced Vegetation Index 
(EVI), which is similar to EVI2, has been proven to be superior to NDVI in 
estimating GPP (Xiao et al. 2005). 

We calculated each pixel’s vegetation index value in Paper II and Paper IV and 
vegetation index values of ground observations footprints in Paper III. Since each 
footprint of ground observations in Paper III covered more than one 10 m resolution 
Sentinel-2 MSI pixel, we calculated the vegetation index value of the footprint area 
by averaging the red reflectance and the NIR reflectance at the footprint pixels 
respectively. 

In addition to generating land surface reflectance through the processing of 
Sen2Cor, this process generates 20 m resolution scene classification information. 
The processed pixels were divided into 12 categories: no data, saturated or defective, 
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dark area pixels, cloud shadow, vegetation, bare soil/desert, water, cloud (low 
probability), cloud (medium probability), cloud (high probability), thin cirrus, and 
snow or ice (Louis et al. 2016). In this thesis, the pixels from the scene classification 
were resampled down to 10 m resolution to match the spatial resolution of red and 
NIR bands. Only pixels classified as vegetation and bare soil/desert were considered 
as high-/good-quality pixels. The proportion of high-quality pixels of the total 
footprint’s pixels were used to represent the quality of the footprint vegetation index 
in Paper III. 

2.1.2 Landsat data 

Images from Landsat satellites were used in the development and testing of the new 
fitting method in Paper II, since its long historical time-series records. The main 
reason for using these images was that they had long historical records and 
irregularly temporal samples similar to Sentinel-2. A side-lap area of a Landsat tile 
in the Norunda region was used to build up a relatively dense observation data set. 
We used Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic 
Mapper Plus (ETM+) surface reflectance data from 2000 to 2014 in the 
development, and used Landsat-8 Operational Land Imager (OLI) NBAR data from 
the Harmonized Landsat Sentinel-2 (HLS) surface reflectance product (Claverie et 
al. 2018) during 2013 to 2017 in the testing. These data were atmospherically 
corrected by using the LEDAPS algorithm (Masek et al. 2006) and the LaSRC 
algorithm (Vermote et al. 2016) respectively. Quality assessment (QA) information 
was generated by FMASK (function of mask), which marked per-pixel land, cloud, 
cloud shadow, snow, and water (Zhu and Woodcock 2014).  

NDVI was calculated for each Landsat 30 m pixel in keeping with the data 
processing of Sentinel-2. The quality label of each pixel was created from the 
outputs from FMASK. To exclude some unrealistically high NDVI values in winter, 
the Landsat 8 OLI data recorded at solar zenith angle larger > 75° was marked as 
low-quality data. 

2.1.3 MODIS data 

We used MODIS data in this thesis for the following three purposes: first, they were 
used to evaluate the performance of the fitting methods in the past studies on the 
smoothing vegetation index time-series in Paper I; second, they were used for 
testing the performance of the newly developed fitting method in Paper II; and third, 
they were used for comparing to Sentinel-2 MSI data in Paper III and Paper IV.  
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In Paper I, the MOD09Q1 V005 MODIS/Terra 8-day interval 250 m land surface 
reflectance dataset (Vermote 2015b) was used to generate NDVI in order to evaluate 
the performance of most commonly used fitting methods. It is the highest spatial 
resolution MODIS product, which can maximise correspondence with ground 
observations. The 8-day interval product has less noise than daily MODIS products, 
and it expresses more seasonal detail than the 16-day interval and monthly products. 
The choice also aimed to minimise the impact of the quality and quantity of satellite 
data on the results when comparing different smoothing methods. The quality 
weights for each observation were generated from binary MODIS quality flags. 

In Paper II, the MOD09GA V006 MODIS/Terra daily 500 m land surface 
reflectance product (Vermote and Wolfe 2015) from 2011 to 2016 was used to 
evaluate the performance of the newly developed fitting method. Since ground 
observations were not used in this paper, fine spatial resolution was not required. 
The key task in the evaluation procedure was to evaluate the robustness of the 
method in fitting irregular time step data. MOD09GA was used as a reference 
dataset, and it was also used for generating a simulated Sentinel-2 dataset from 
2011-2016. The simulated dataset only included the MODIS observations that 
corresponded exactly in date with the observations from Sentinel-2 observed in 
2016. The quality weights were created from binary MODIS quality flags for 
excluding low-quality observations. 

Since ground observation data were used to evaluate and compare satellite data of 
different spatial resolution in Paper III and Paper IV, we used two different spatial 
resolution MODIS datasets: the MOD09Q1 V006 MODIS/Terra 8-day interval 
250m land surface reflectance dataset (Vermote 2015b) and the MOD09A1 
MODIS/Terra 8-day interval 500m land surface reflectance dataset (Vermote 
2015a). We applied the same pre-processing method as in Paper I for these two 
datasets. 

2.2 Analysing the seasonality 

2.2.1 Smoothing methods on regular time step data 

Among the many time-series smoothing methods applied on analysing vegetation 
seasonality from regular time step data, we selected five common methods in Paper 
I: adaptive Savitzky-Golay filtering (SG) (Savitzky and Golay 1964, Chen et al. 
2004), adaptive LOESS filtering (LO) (Cleveland and Devlin 1988), spline 
smoothing (SP) (Craven and Wahba 1979, Woltring 1986), least-squares fits to 
asymmetric Gaussian functions (AG) (Jönsson and Eklundh 2002) and double 
logistic functions (DL) (Zhang et al. 2003, Beck et al. 2006). These five methods 
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can be generally characterised as belonging to two broad categories: local methods 
(SG and LO) and global methods (AG and DL). SP, according to different settings, 
can be characterised as local or global. Each method has different combinations of 
parameter setting. We tested all these settings and used ground observation data to 
evaluate the methods (see 2.3). The result of these experiments in Paper I guided 
the direction of the method development in the following papers.  

2.2.2 Method development 

Based on the results of Paper I and the characteristics of irregular time step satellite 
data, we chose double logistic functions (Fischer 1994) as the basis in Paper II to 
develop a new smoothing method, box constrained separable least squares fitting to 
double logistic model functions with shape priors, for reconstructing continuous 
time-series. A shape prior is a general average shape over all growing seasons, and 
it was computed per pixel. The method was implemented in the TIMESAT platform 
(Jönsson and Eklundh 2004, Eklundh and Jönsson 2017), and applied to process 
Sentinel-2 MSI, MODIS, and ground data in Papers III and IV. 

In this method the output time-series  is a sum of  basis functions, one for each 
season 

, (4) 

where  is the base level,  is the amplitude factor for season , and basis functions 
are taken as double logistic functions (Fischer 1994) 

��
�
��

��
�

��
�
��

��
�

, (5)         

where , ,  and  are the four parameters for determining double logistic 
functions’ left inflexion points, the time period of increase, the right inflexion points 
and the time period of falling for season  respectively. 

The detailed process for estimating these parameters in TIMESAT is shown in 
Figure 3:  

1. extract single time-series from the image stack, including vegetation index 
values, weights, and dates; 

2. keep only good quality data for the following processes; end if the number 
of remaining data lower than a certain value, e.g., at least 5 data points are 
required to fit a double logistic function (Equation 5); 

3. determine the base level , using a low percentile of the clear observation 
histogram for the fall time period, e.g., 5%; 
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4. apply sinusoidal functions to detect the seasons’ rising and falling positions, 
as the initial values of  and ; 

5. determine a shape prior as a common shape for all seasons, with initial 
values for  and ; 

6. divide the shape prior for each season into seven regions and then detect if 
there are sufficient points in the regions to determine function parameters 
in the season (Paper II Table 2); 

a. if no, lock the parameter to those from the shape prior; 
b. if yes, set upper and lower boundaries for the parameters, defining 

a ‘box’ (Coleman and Li 1996);  
7. determine double logistic functions for each season based on the 

constrained boundaries in step 6, and reconstruct daily vegetation index.  

 

 
Figure 3. Flowchart of the shape prior and box constrained least squares fit in TIMESAT. 
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Using the new method to process two years of full size (10980×10980 pixels) 
Sentinel-2 images at one tile (186 images on average) requires an average of 10 core 
hours. 

2.3 Ground reference data 

Use of reliable ground data is critical for the validation and evaluation of satellite 
data and products. We used various ground data in this thesis to evaluate satellite 
driven vegetation index time-series, phenology, and GPP.  

2.3.1 Ground spectral data 

The continuously measured multispectral data at ten sites were used in Paper I and 
III, in comparison with vegetation index time-series reconstructed from MODIS and 
Sentinel-2 data. The sensors used to measure these multispectral data were 
calibrated following the method by Jin and Eklundh (2015), and their footprint areas 
were estimated based on the sensor height above the canopy, view azimuth angle, 
field of view (FOV), and off-nadir angle (Eklundh et al. 2011). These multispectral 
data were converted to red and NIR reflectance, and then NDVI and EVI2 were 
calculated for comparing to the satellite data. Since the comparison between ground 
spectral data and satellite data was direct, we did not apply any smoothing method 
to the ground spectral data. The comparison of ground spectral data and satellite 
data was limited to the growing seasons for reducing background noise effects, 
particularly snow, on the results. 

2.3.2 PhenoCam 

The PhenoCam data in 2016 and 2017 from five Swedish ecosystem stations 
belonging to ICOS Sweden (Integrated Carbon Observation System) (ICOS Sweden 
2018) were used in Paper III as reference data to evaluate greenness rising dates and 
greenness falling dates. We extracted Green Chromatic Coordinates (GCC) time-
series from the PhenoCam images, a similar approach used by Sonnentag et al. 
(2012) and Richardson et al. (2018a) to process the PhenoCam images. The GCC 
time-series were further processed using the shape prior and box constrained fitting 
method for extracting the greenness rising dates and greenness falling dates. 
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2.3.3 In-situ environment data and flux-tower derived GPP 

In Paper IV, we used daily EVI2 estimated from Sentinel-2 MSI, MODIS and in-
situ environmental variables (photosynthetic photon flux density or air temperature) 
to drive empirical linear regression GPP models at eight flux tower sites located in 
Nordic countries and belonging to the ICOS infrastructure (https://www.icos-ri.eu/). 
The outcomes were compared to flux data derived daily GPP, which was estimated  
from partitioning net ecosystem exchange (NEE) with in-situ measured 
environmental variables, e.g., global radiation, air and soil temperature, and vapour 
pressure deficit by using the REddyProc tool (Reichstein et al. 2005, Wutzler et al. 
2018). The footprint area of flux data was defined as a static circle from the centre 
of the flux tower with a radius of 10 times the altitude of the measurement, which 
approximately reflected flux footprint under strong convection (Weil and Horst 
1992). 

2.3.4 Elevation 

Elevation data, at 50 m spatial resolution in Paper I and at 2 m spatial resolution in 
Paper III, were used to evaluate phenology parameters derived from smoothed 
vegetation index data. The elevation data were obtained from the Swedish mapping, 
cadastral and land registration authority, Lantmäteriet. In the analysis, these 
elevation data were resampled to match MODIS 250 m spatial resolution and 
Sentinel-2 10 m spatial resolution respectively. 
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3 Results: Research paper summaries 

3.1 Summary of paper I 

Title: Performance of smoothing methods for reconstructing NDVI time-series and 
estimating vegetation phenology from MODIS data 

Introduction: In this study, we investigated the performance of five commonly 
used smoothing methods, Savitzky-Golay filtering (SG), locally weighted 
regression scatterplot smoothing (LO), spline smoothing (SP), least-squares fitting 
to asymmetric Gaussian functions (AG), and least-squares fitting to double logistic 
functions (DL), with all 1092 possible parameter settings (simulations) in smoothing 
MODIS derived NDVI. We used ground spectral tower measured NDVI at 10 sites 
and carbon flux tower estimated GPP at 4 sites to evaluate the smoothed satellite-
derived NDVI time-series, and the elevation data over the mountainous Ammar area 
was used to evaluate phenology parameters estimated from smoothed NDVI.  

Research highlights: 

• The smoothing methods reduced the error between MODIS NDVI and ground-
measured NDVI in 89% of the simulations, with the average root mean square 
error (RMSE) decreasing from 0.14 to 0.08.  

• All the smoothing methods increased the average Spearman’s rank correlation 
coefficient (ρ) between GPP and NDVI from 0.34 to 0.51 and up to 0.64 with 
optimal parameters.  

• Generally, differences between methods were small and no single method 
always performed better than the others.  

• Cross-validation was useful for selecting parameters for SG, LO, and SP. It 
improved the fits and gave fairly good results; however, in some cases the 
method failed.  

• The function fitting methods (AG and DL) derived phenological parameters that 
always showed the strongest and most robust relationships with elevation across 
a topographical gradient.  

• The function fitting methods were found to generally reduce the risk of 
achieving very poor results, making them safer than the other methods to be 
used when it is not possible to carry out any calibration against ground 
measurements. 
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3.2 Summary of paper II 

Title: A method for robust estimation of vegetation seasonality from Landsat and 
Sentinel-2 time series data 

Introduction: The developed method was based on the finding in paper I that 
double logistic fitting function was more robust than other methods. We presented 
a data processing method based on double logistic functions, shape prior, and box 
constrained separable least squares fits to logistic model functions. The design and 
initial testing of this method was done on 15 years of Landsat TM/ETM+ NDVI 
time-series data. The method aimed to fit continuous seasonal functions to time-
series of irregular satellite remote sensing data, e.g. Landsat and Sentinel-2, and to 
be robust in handling data gaps. For a detailed description of the method, see 2.2.2. 
Once the method was developed, we tested it for extracting phenological parameters 
from Landsat OLI and Sentinel-2 MSI data. In addition, we tested the robustness of 
the method by using simulated Sentinel-2 data from MODIS data for the period 
2011-2016 (data description in 2.1.3). We generated two sets of data: one fitted from 
simulated data in 2016 with shape priors, and the other fitted from simulated data in 
2016 without shape priors. These two output data sets were compared to daily 
MODIS data as a reference.     

Research highlights: 

• We developed a flexible and robust method, the shape prior and box constrained 
separable least squares fitting to logistic model functions, for modelling the 
phenology of growing seasons with data from optical satellites like Landsat and 
Sentinel-2 at irregular time step.  

• Using the shape prior can add robustness to the function fitting. With shape 
prior, the RMSE between simulated start of season (SOS) and reference SOS 
was reduced from 24.5 days to 8.5 days, and the RMSE between simulated end 
of season (EOS) and reference EOS was reduced from 18.4 days to 13.2 days. 

• The method relies on accurate labelling of pixel quality and the availability of 
data from long time series in order to obtain stable parameters. 

• For Sentinel-2, the proposed method allows extending the time series 
backwards using the Landsat records for the first years of operation.  

• This method requires testing in different biomes to better understand how to 
choose parameters for base level determination and parameter constraints.  

• The proposed method is implemented in the TIMESAT software package and 
available for parallel processing. 
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3.3 Summary of paper III 

Title: Estimating vegetation phenology from Sentinel-2 MSI data across diverse 
Nordic vegetation types 

Introduction: Based on the proposed method in the previous study (paper II), we 
aimed to further investigate if vegetation phenology estimated from Sentinel-2 data 
by this method improves the agreement with ground observed vegetation phenology 
in comparison to MODIS data. We compared the reconstructed daily time-series of 
EVI2 and phenology estimations from Sentinel-2 MSI and MODIS datasets to 
ground measured EVI2 at five sites and phenology estimations from PhenoCam 
GCC at six sites. Elevation and land cover map data were used to demonstrate the 
ability of Sentinel-2 data to represent the spatial details of phenology. At the same 
time, the above experiments also tested the ability of the proposed method in 
precisely extracting vegetation phenological information from satellite data.  

Research highlights:  

• The method produced satisfactory results across all the vegetation types, and 
due to the higher spatial resolution, Sentinel-2 generated data that more 
accurately matched ground measurements of EVI2 than what was achieved with 
MODIS data, with an RMSE of 0.08 for Sentinel-2 and 0.13 for MODIS versus 
the ground spectral data.  

• With PhenoCam GCC estimations as the reference, Sentinel-2 generated 
smaller RMSEs for greenness rising (8.1 days) than for greenness falling (17.3 
days). Sentinel-2 greenness rising had smaller RMSE than MODIS greenness 
rising, but the result of greenness falling did not show that Sentinel-2 was better 
than MODIS.   

• This study could not verify if PhenoCam GCC data as reference data was 
accurate enough for estimating phenological dates.  

• The 10 m resolution of Sentinel-2 could effectively present phenological 
variations along an elevation gradient. The rates of greenness rising and falling 
changes along rising elevation for deciduous forest were 0.22 day m-1 and -0.11 
day m-1 (p < 0.00), and for heath were 0.29 day m-1 and -0.29 day m-1 (p < 0.00). 

• Sentinel-2 generated clear phenological details in land cover variations. Each 
vegetation type showed different characteristics of greenness rising dates. 

• Processing of Sentinel-2 data with the box constrained data smoothing method 
for producing 10 m vegetation phenology maps and other dynamic vegetation 
products was successful in the different Nordic ecosystems. 
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3.4 Summary of paper IV 

Title: Modelling daily GPP with Sentinel-2 data in the Nordic region – comparison 
with data from MODIS 

Introduction: In this study, we evaluated the performance of the proposed box-
constrained function fitting method and Sentinel-2 MSI data for modelling GPP. 
Empirical linear regression GPP models driven by daily EVI2 and environmental 
variables (air temperature/photosynthetic photon flux density) were created at eight 
Nordic ecosystem stations for simulating daily GPP. We used flux tower estimated 
GPP as ground reference data. As a continuation of the previous studies, we 
compared Sentinel-2 to MODIS and investigated if Sentinel-2 MSI data can 
improve the accuracy of GPP estimation.  

Research highlights:   

• The errors between the satellites estimated GPP and the flux towers estimated 
GPP varied among sites (RMSE: 0.63 - 2.69 g C m-2 d-1). 

• In comparison to flux towers GPP, there were small differences between 
Sentinel-2 MSI GPP (RMSE: 1.60 g C m-2 d-1) and MODIS GPP (RMSE: 1.61 
g C m-2 d-1). 

• The usage of static footprint area significantly limited the accuracy of GPP 
estimation from satellite data. 

• The quantitative differences of GPP estimation due to different spatial 
resolution EVI2 inputs were smaller than due to the different GPP model 
formulations used. 

• Sentinel-2 MSI 10 m data can reveal strong spatial differences within the flux 
footprint area. 

• A combination of improved processing methodology and input data preparation 
is required to improve the accuracy and precision of GPP estimations.  
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4 Discussion 

By summarizing results from the four papers of this thesis, the advantages of the 
high spatial resolution exhibited by the Sentinel-2 MSI are obvious for extracting 
seasonality of vegetation compared to MODIS. This advantage allows Sentinel-2 
data and its products to show more surface detail and more accurately match the 
footprint area of ground reference data. We developed the 'box constrained 
separable least squares fit to double logic function with shape priors' to effectively 
reconstruct the continuous vegetation index time-series from Sentinel-2 irregular 
time step observations. In this section, the results of the four papers will be discussed 
in the context of vegetation observations in the big data era (Figure 2), which will 
focus on the contribution and limitation of the new fitting method and the approach 
of satellite-ground evaluation.  

4.1 Data processing 

Data processing is the core of the field of vegetation observation in the big data era. 
It is a key step in the use of Sentinel-2 satellite data to provide products to 
downstream studies. The Sentinel-2 data processing flow used in papers II, III, and 
IV approximately follows the processing flow of AVHRR and MODIS data: 
atmospheric correction, extracting pixel-wise vegetation index, and time-series 
analysis. However, the differences of Sentinel-2 MSI data from MODIS and 
AVHRR data in temporal and spatial resolution lead differences in each processing 
step. 

4.1.1 Processing of spectral data 

Atmospheric correction and pixel quality labelling are important pre-processing 
steps before time-series analysis of vegetation index can be performed. For Sentinel-
2 data, Sen2Cor is used for correcting atmospheric effects and labelling pixel 
qualities (Louis et al. 2016). The main difference of pixel quality labelling between 
fine spatial resolution and coarse spatial resolution is that more details, e.g., cloud 
shadow, can be labelled by in fine spatial resolution pixel qualities (Zhu et al. 2015). 
Although cloud shadows are much clearer seen in Sentinel-2 and Landsat images 
than in MODIS images, automatically identifying cloud shadows is still difficult 
(Zhu and Woodcock 2012). The cloud fundamentally changes the spectral 
properties of the pixel, since it is essentially composed of aerosols and water 
droplets. The cloud shadow weakens the light intensity. When estimating the 
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reflectance, all the bands are underestimated, but the relationships between the 
bands do not change much, so the spectral characteristics of the pixel are largely 
retained. For this reason, we can still distinguish the land surface features under the 
cloud shadows, resulting in some difficulty to identify the shadow. This difficulty 
causes some error in the outputs. As the example in Figure 4 shows, the 
classification scene generated from Sen2Cor did not accurately identify the cloud 
shadow. The pixels that should have been marked as cloud shadows are labelled as 
vegetation, which leads to a reduction in the accuracy of the results. Cloud shadows 
add noise to the time-series analysis and may affect the detection of phenological 
parameters.  

 

 
Figure 4. An example of vegetation indices and data quality from 33VUE area, taken at 10:30 am on June 29, 
2017. The top left image shows Sentinel-2 false-colour composite (FCC), where the white part is the top of the 
cloud and the black part is the shadow of the cloud. The top right image is the preliminary classification result 
generated by the Sen2Cor atmospheric calibration program, which represents the quality of the data. The lower 
left and lower right maps represent the EVI2 and NDVI vegetation indices (EVI2 and NDVI); high values are 
bright shades, while the lower values are dark shades. 

 

In addition, we can see that the impacts of cloud shadows on EVI2 and NDVI are 
different. EVI2 has a significantly lower value under the shadow, while NDVI 
shows little effect that is hard to see from the images (Figure 4).  
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4.1.2 Time-series processing 

One of the difficulties in smoothing satellite remote sensing time-series data is that 
the noise in the vegetation index time-series does not conform to any distribution, 
but it is normally a negative bias. From the example in 4.1.1. (Figure 4), the cloud 
layer causes an underestimation of the vegetation index, but the cloud shadow 
makes the NDVI overestimated. The original intention of the upper envelope 
function was to reduce the effects of atmospheric interference (Chen et al. 2004), 
and the upper envelope function needs to be cautious on Sentinel-2 or Landsat data 
due to possible cloud shadow effects. Due to the low spatial resolution of MODIS 
and AVHRR, cloud shadows are difficult to distinguish; therefore errors caused by 
cloud shadows are difficult to quantify. Using 10 m resolution Sentinel-2 satellite 
data, cloud shadows can be identified, although the quality labels are not completely 
correct but still can help identifying noise to a certain extent.  

The development of the new fitting method takes into account the uncertainty of the 
data quality and the inherent error of the vegetation index time series. Paper I 
showed that smoothing the vegetation index by the function fitting methods (e.g., 
double logistic function fitting) was more reliable than other smoothing methods. 
This conclusion is supported by the findings of Hird and McDermid (2009) and 
Atkinson et al. (2012). The function in the function fitting can be seen as a shape 
prior. The expression of the fitted function is designed in advance, and each 
parameter in the expression is then estimated by the least squares method. This is 
the reason for the function fitting method being more robust than other smoothing 
methods. When the data quality is high and the data time interval is very small, a 
local fitting method (such as SG and LO in paper I) can be used to achieve good 
results. However, at an evergreen forest site, e.g., Norunda site, the ground 
vegetation index time-series shows relatively small amplitude and large noise, and 
the noise fluctuations even exceed the amplitude variation (e.g., PhenoCam GCC in 
Figure 4 in paper III). In this case, the data smoothing needs to be constrained in a 
way that determines the shape of the function in advance. This is one of the reasons 
that we chose function fitting method as the basis of our new method (paper II). 

The development and initial testing of the new fitting method are based on data from 
Norunda, which is located at high latitude with large solar zenith angles and snow 
cover from November to January and, in consequence, most of or all observations 
are lost during this time. The loss of observations affects the estimation of the 
baseline of the vegetation index time-series. A 180-day data gap between two 
seasons is difficult for interpolation. Therefore, the new method determines the base 
value in a statistical way (paper II). In the Norunda region between 2016 and 2017, 
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low-quality data such as clouds, cloud shadows, and snow observed by Sentinel-2 
accounted for 84.4% of the overall observations (Table 3 in paper III). There are 
only 28 high-quality observations available for smoothing in these two years, and 
the time distribution of these data is uneven. Therefore a priori shape and box 
constraints are used to further limit the impact of noise or gaps to the final result. In 
addition, this method is useful for estimating the parameters of common seasonal 
shapes (e.g., Olsson et al. 2016, Baumann et al. 2017). 

4.1.3 Spatial processing 

Spatial aggregation was applied to Sentinel-2 EVI2 pixels in paper III and IV from 
smaller to larger spatial scales to capture the footprint of ground observations. In 
the case of spatially aggregated satellite remote sensing data, the uncertainties from 
non-linearity and heterogeneity are easily overlooked (Jones and Vaughan 2010). 
There are three different scenarios of dealing with land surface reflectance to 
regional average daily vegetation index: (1) averaging the reflectance for the region 
– calculating EVI2 – smoothing; (2) calculating each pixel’s EVI2 – averaging EVI2 
– smoothing; and (3) calculating each pixel’s EVI2 – smoothing each pixel’s EVI2 
time-series – averaging. Since both EVI2 and double logistic are nonlinear 
functions, the results from these three scenarios are different from each other unless 
the region is completely homogeneous. The choice of scenario depends on the 
purpose of the processing.  

We used two different approaches in these two papers respectively. Scenario (1) 
was used in paper III to compare satellite-derived vegetation seasonality and ground 
multispectral derived vegetation seasonality because the outputs of ground-based 
multispectral sensor observation are the overall reflectance of the R band and the 
overall reflectance of the NIR band in the footprint area. In addition, the pixels from 
PhenoCam images are difficult to match with the corresponding Sentinel-2 pixels, 
so using the average reflectance for the region of interest is more reasonable for 
comparing PhenoCam and satellite data. Scenario (3) was used in paper IV for 
developing empirical linear GPP models because the purpose of the processing was 
to keep the original spatial resolution so that each pixel’s GPP could be estimated.  

4.1.4 Ground validation 

Ground reference data were used in papers I, III, and IV. The site observation data 
included ground-based multispectral sensor data, PhenoCam data, and GPP derived 
from flux towers. These data were used to evaluate the time-series and phenological 
parameters from the smoothing methods. Ground-based multispectral sensors 
provide the same or similar wavelength to the bands of satellite sensors (Eklundh et 
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al. 2011, Jin and Eklundh 2015), so the same vegetation index could be applied in 
the comparisons. We emphasize in papers I and III that ground-based multispectral 
sensor data are the most direct reference data in comparison with ground data from 
PhenoCams and flux towers. PhenoCam is a low-cost and convenient equipment 
compared to the other techniques. However, the phenological camera usually 
estimates the plant phenology, while the satellite data estimates the land surface 
phenology. In paper III, the end of season values estimated by PhenoCams are 
considerably different from those estimated by the satellite (RMSE: 16.7 – 28.4 
days, Table 6 in paper III). We give five explanations that may cause this difference: 
1) different observation angles; 2) difficulty in capturing the region of interest of 
PhenoCam data; 3) different vegetation indices lead to different time-series shape; 
4) the double logic function does not well fit the GCC time series; and 5) the 
amplitude of GCC data is too small in some vegetation types. The flux data derived 
GPP is a variable that directly expresses the rate of photosynthesis. However, it is 
sometimes difficult to use for evaluating satellite data because the variations of GPP 
are affected by not only the leaf chlorophyll contents but also by many environment 
variables, i.e. temperature, light, and humidity (Monteith 1972). Furthermore, rapid 
variation in the flux footprint area adds uncertainty to the comparisons (Gelybó 
2013). 

4.2 Data management 

The size of a Sentinel-2 MSI image is large, approximate 600 Mb for 1 tile L1C 
image. The L2A surface reflectance image is even larger, over 900 Mb for 1 tile. To 
store all the daily EVI2 time-series outputs from the processing requires extremely 
large space. To facilitate data storage and data transfer, we have implemented a 
method in the new TIMESAT software whereby only five function parameters, i.e., 
the base level and the parameters of the double logistic functions, are stored, instead 
of 365 layers for one year’s data. This improvement saves a lot of resource in data 
storage and data transfer. The process of reconstructing the time-series from these 
parameters is also efficient, and the user can choose to output values corresponding 
to any date or at any given time step. 

4.3 Data application 

The application of data in Figure 2 is divided into two parts: scientific applications 
and societal applications. These two part are closely related to each other since many 
of these technologies and data are common. While the thesis focuses only phenology 
and carbon cycling, the importance and usefulness of the methodology in generating 
data for a large number of societal and other science applications is recognized.  
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4.3.1 Monitoring of vegetation phenology 

The concept of vegetation phenology was used in paper I, II, and III. In fact, 
vegetation phenology here all belongs to the concept of land surface phenology 
(LSP, de Beurs and Henebry 2004). Helman (2018) raised three questions about 
monitoring land surface phenology by time-series smoothing method using satellite 
remote sensing data: (1) What do we really detect? (2) Could methods impact the 
results? (3) Are observed phenology changes caused by climate or the used method? 
These questions can help us to thoroughly evaluate whether the new method is 
competent for vegetation phenology estimates. 

The difference between LSP and plant phenology (PP) is that PP describes the 
phenology of plants, while LSP describes the overall phenology of satellite pixels. 
The satellite is located above the vegetation, so also non-vegetation, e.g., soil or 
water bodies, is inevitably observed. Furthermore, the seasonal profile of different 
plant communities become mixed when coarse-resolution data are used. The ground 
multispectral observations in this thesis focus particular vegetation types, thus they 
show vegetation phenology. The viewing angles of PhenoCams are usually close to 
parallel to the ground. For example in a forest, the ROI is usually defined to include 
mainly the canopy, and this prevents much of the ground from being viewed. In this 
way, PhenoCam and satellite phenology do not represent the same target areas.  

The selection of a specific smoothing method indeed impacts the results (paper I). 
However, the final result depends on not only the smoothing method but also the 
selection of atmospheric correction and the chosen vegetation index. In addition to 
the time-series smoothing method, there are other aspects of the estimation of the 
phenological parameters, e.g. using thresholds (Piao et al. 2006, Philippon et al. 
2007) or derivatives (Tateishi and Ebata 2004) of the seasonal curve. de Beurs and 
Henebry (2010) mentioned the number of data points and the temporal resolutions 
as general limitations to the parameter estimations. The shortcomings mentioned 
above can be compensated to some extent by shape prior and box constrained 
method. Helman (2018) suggested to use several methods in the analysis and then 
present a range in phenological changes. However, this neglects the fact that certain 
methods may be less suitable for certain types of data or in specific geographical 
areas.  

Another important factor is the ability of the vegetation index to separate between 
canopy reflection and reflection from the ground. Use of efficient vegetation indices 
may radically improve the ability to model phenology. For example, the recently 
developed plant phenology index (PPI, Jin and Eklundh 2014) was developed from 
radiative transfer theory to be linear with green leaf area index and to reduce the 
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influence of background colour variations. This index has shown to be efficient for 
regional phenology mapping based on MODIS NBAR data (Jin et al. 2017, 
Karkauskaite et al. 2017). However, the degree to which this index is sensitive to 
viewing geometry variations in Sentinel-2 data has not yet been evaluated, which 
precluded its use in this thesis.  

The results in this thesis support the observation that different fitting methodology 
may generate different results, but that there is strong sensitivity to variations in the 
data. With sparse data from Sentinel-2 and Landsat, it is important that the chosen 
method is robust enough to handle data gaps and irregularity in the data. 

4.3.2 GPP estimation 

The empirical linear regression GPP model used in paper IV is similar to that used 
in the study by Schubert et al. (2012), and the research areas are all located in 
northern Europe. The obtained results are also similar between our study (RMSE: 
0.63 – 2.69 g C m-2 d-1) and the study by Schubert et al. (2012) (RMSE: 0.63 – 2.38 
g C m-2 d-1). The similarity of the results indicates that the choice of satellite data 
may have limited impact on the accuracy of GPP estimates. Robinson et al. (2018) 
showed that by using a LUE model Landsat 30 m improved the accuracy of GPP 
estimation in comparison with MODIS 250 m, however, MODIS 250 m data 
performed better at deciduous forest, shrubland, and grassland.  

Results from paper IV suggest that the improvement in using high-resolution 
satellite data from Sentinel-2 may be marginal for GPP estimation.  However, this 
conclusion is strongly dependent on the choice of flux tower GPP as the modelling 
target. These data aggregate fluxes over a rather large footprint area and are not able 
to resolve the variation observed in the high-resolution Sentinel-2 data. Footprint 
models (Kljun et al. 2015) may enable separation of the flux components for better 
matching with the satellite data (Gelybó et al. 2013). Thus, it cannot be precluded 
that the high resolution of Sentinel-2 will give us a better understanding of the 
spatial variations of CO2 fluxes. 
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5 Conclusions  

This thesis presents four papers that demonstrate two major findings: (1) the 
progress of developing a new time-series analysis method, box constrained 
separable least squares fitting to logistic model functions with shape prior for 
reconstructing continuous Sentinel-2 vegetation index time-series; (2) and the 
abilities of Sentinel-2 with the new method to estimate vegetation phenology and 
GPP. The thesis contributes to Sentinel-2 data processing, data management, and 
data application of vegetation seasonality in the context of vegetation observation 
in the big data era. 

Before developing the new method, the performance of existing time-series analysis 
methods in reconstructing NDVI time-series and extracting land surface phenology 
from MODIS data was investigated. Comparing with the ground observation data, 
it was found that these methods performed very well after precisely adjusting the 
parameters, and the function fitting methods (e.g., fits to double logistic function) 
were safer and more robust than other methods when ground calibration was not 
available. Based on this finding, we used double logistic function as the base model 
for the new method, and added box constraints and shape prior operations to 
improve the robustness of the new method in processing irregular time step data, 
e.g., Landsat and Sentinel-2. This new method improves the processing of Sentinel-
2 from level-2 surface reflectance to level-3 vegetation seasonality products.  

Ground reference data are necessary for evaluating the performance of Sentinel-2 
and the new method in estimating vegetation phenology and GPP. The EVI2 time-
series generated by the new method satisfactorily matched the ground measured 
EVI2. Sentinel-2 with its higher spatial resolution is, therefore, able to better capture 
footprint areas of in-situ measurement and better present spatial variations in 
comparison to MODIS. PhenoCams are more economical than multispectral sensors 
but are difficult to match to satellite observations. Both Sentinel-2 EVI2 and 
MODIS EVI2 processed by the new method can fairly accurately simulate daily 
GPP. While aggregated results do not differ much, Sentinel-2 data enables the 
spatial variation of GPP in the footprint area to be presented. 

The processing scheme developed for Sentinel-2 time-series data in this thesis is 
general in nature and can thus be extended to other biomes or climate regions.  
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6 Outlook 

In the past year, 2018, the Sentinel-2 satellites provided approximately 1.25 PB of 
global terrestrial imagery data (Soille et al. 2018). Despite the advances in automatic 
and efficient extraction of the seasonality of land vegetation from Sentinel-2 MSI 
data, the new fitting method in this thesis still needs further development. Important 
room for improvement is to enable processing of complex seasonal changes, e.g., 
shifting cultivation; disturbance, e.g., insect defoliation (Olsson et al. 2012); and 
vegetation trends (Jamali et al. 2014). DBEST by Jamali et al. (2015) and Kalman 
filter with seasonal prior by Olsson et al. (2016) raise the possibility to improve the 
method developed in this thesis or integrate these methods together for analysis of 
trends and disturbances. In addition, there is no mature technology to robustly detect 
strongly varying annual seasonality from Sentinel-2 data. I am particularly 
interested in developing a season scanner, which is able to automatically detect the 
positions of irregularly placed season, such as in rotation cropland areas, from 
Sentinel-2 or Landsat time series data.     

Having the red edge bands is a main difference between Sentinel-2 MSI and other 
satellite remote sensing sensors. The red edge bands have been shown to be valuable 
for assessment of vegetation chlorophyll status and early stress detection (Horler et 
al. 2007). This is a valuable research direction, especially for the study of vegetation 
changes under extreme drought. 

Ground reference data are important for assessing the capability of satellite data and 
fitting methods. I plan to test the new method in other environments, such as 
temperate region and tropic; therefore ground reference data will be indispensable.   
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