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THEORY OF MICROCAPILLARITY

I. EQUILIBRIUM AND STABILITY

JoHAN CLAESSON






PREFACE

This study is intended to be the first part of an investi-
gation of capillary and in. particular microcapillary phenomena
in porous materials. Further studies will concern, among other
things, the thermodynamical character of the instabilities, the
motion of water menisci in the pores, a classification of irre-
versibilities, sorption hysteresis, the relation between pore
structure and microcapillary phenomena, the flow of moisture
through the pore system, the interaction between solid and pore
water in swelling and shrinking, and the extension of the thermo-
dynamical analysis to the case of freezing.

Moisture, salts, and freezing cause great damage to building
materials. Combined actions of these agents are often especially
detrimental. I think that capillary-osmotic effects are a main
cause of these damages. Further studies will be devoted to

this topic.

I am deeply indebted to Professor Sven G8sta Nilsson for his
unfailing support and guidance during this work. I would also
like to express my gratitude to Ingmar Oldberg, Jaak Peetre, and
Nils Olof Wallin, who have been very helpful, and to Margareta
Bergsten for her excellent typing. I have co-operated with a
group of people in Lund concerned in moisture problems in
buildings. Discussions with members of this group have been a
great stimulus. This study is sponsored by the Swedish Council

for Building Research. Their support is gratefully acknowledged.
Lund, April, 1977
Johan Claessan

Department of Mathematical Physics
University of Lund ’
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1. CAPILLARY-POROUS SYSTEMS.

Consider a piece of porous material. It consists of solid material
and of a pore system, which penetrates the solid. The pore space is filled
by moisture or more generally by some substance in different phases. At
the pore walls there may be an adsorbed thin layer of the substance. Through
capillary condensation some parts of the pore space may be occupied by
liquid phases of the substance. The remaining parts of the pore space are
filled with gas phases of the substance. Some of these may be totally
enclosed by the pore walls and liquid phases. See figure 1:1 below. The
pore wall will have corners and edges, when the solid contains crystals.

Apart from these corners and edges the pore wall will be smooth.

Figure 1:1. Cross-section through a porous material showing solid
material (XX}, capillary condensed liquid phases (==), gas phases (3%},

and adsorbed surface layers (=).



We will also consider cases where there are one or several other kinds
of molecules in the pore space. Then the gas phases in the pore system
consist of a mixture of various kinds of molecules. The condensed liquid
phases consist of a solution where the primary substance is the solvent
and other substances are solutes.

The piece of porous material may be in contact with various other
thermodynamical systems with which it may be able to exchange molecules of
the various substances. Thus it may be in contact with a gas phase. It
may'also be in contact with other porous materials of the same kind or of
some other kind. Finally, it may be in contact with a liquid phase of the
capillary condensed substance.

For example the considered system may consist of activated carbon
surrounded by nitrogen gas at the temperature -185° C. Another example is
a piece of a porous building material surrounded by water vapor or by humid
air at a temperature above 0° C. In the latter case there are in the pores
except water molecules also the various kinds of molecules of air. Still
ancther example is a piece of brick which isdipped in water or brine.

In order to simplify the terminology it is assumed from now on that
the capillary condensing substance is water. With this terminology this
study will concern the case, when there are only water molecules in the
pores, as well as the more general case, when there also are other kinds
of substances present in the pores. Expecially the case when the pores
contaih water and air will be studied. We will also study cases where the
liquid phases contain salts. The temperature is always above the freezing
point, sao that there is not any ice in the pores.

Natural and monufactured materials an. very often more or less porous.
Uspecially Luilding materials, which L have had in mind in this work, are

practically all porous. The pore systems are very complicatud. it i



difficult to give proper characterizations. Consider as an illustration
concrete. In the cement paste there are two types of fine pores. When the
concrete hydrates, crystal needles grow out from the cement grains 1].

The grains, each surrounded by a forest of protruding needles, look like

a heap of hedgehogs. In the space between the needles there are pores with
linear dimensions of the order of 30 A. In the space between different
grains there are pores with linear dimensions of the order of 1 000 A or
more. The pore volume, defined as the free space in the material accessible
from the outside to the water molecules, occupies about 15 % of the total
volume of concrete. For brick and cellular concrete corresponding order
of magnitude figures are 40 % respectively 75 %.

In spite of the complexity of pore systems and the various gas, liquid,
and adsorbed phases that fill them there is an astonishing amount of con-
clusions that can be drawn from thermodynamical considerations. These
conclusions will be valid irrespective of the character and complexity of
the pore system.

The more pronounced capillary effects require pores with very small
linear dimensions. It is pores with dimensions below 1 000 to 10 000 A
that are of primary interest. Thus it is not visible pores but far smaller
ones that cause more marked capillary effects. It is appropriate in this
context to talk about microcapillary phenomena and to call this subject
microcapillarity. Materials which contain these minute pores, and which
are exposed to moisture or some other capillary condensing substance,
appear in many natural and industrial processes of physical, chemical, and
perhaps even biological character. Therefore microcapillarity has a very
large and diverse range of applications.

Lapillarity was a lively and much studied subject in the nineteenth

century. But the existence and importance of microcapillary effects were



mostly overlooked. Considering the wide range of applications, there is
even today surprisingly little dore on the fundamentals of microcapillarity.
Especially on the theoretical side there is a great need of systematic,
fundamental studies of microcapillarity. This work is an attempt to con-

tribute to this aim.



2. THERMODYNAMICAL EQUILIBRIUM.

The conditions for thermodynamical equilibrium between different gas
phases and liquid phases are studied in this chapter. More specifically
we will study the conditions for diffusional equilibrium, when the boundary
between liquid and gas is fixed, and water and air molecules may diffuse
between the phases. The conditions for force equilibrium at the movable
boundary surfaces between liguid and gas are considered in the next section
2.2. The effects of gravity are studied in section 2.3. Finally the results

are surmarized in section 2.4.

2,1, Thermodynamical conditions for equilibrium.

Suppose that the piece of porous material together with its sur-
roundings is in thermodynamical egquilibrium. Then there is a constant
temperature T throughout the whole system. The porous material is assumed
rigid, so that the solid parts can stand any forces without deformation.
Thus in this analysis there is no need to consider any pressure-volume
relations for the solid material.

If two phases, which can exhange molecules of some substance, are in
thermodynamical equilibrium, then the chemical potential for this substance
must have the same value in the two phases. Thus the chemical potential for
water W must have a constant value throughout the various phases in the
pores and in the surroundings. It is here assumed that any two phases in
the pores and in the surroundings can exchange water molecules through
some chain of phases. If the system contains some other volatile and soluble
substance a (air), then the chemical potential for this substance u must
also have a constant value throughout the phases of the system. The liquid
phases may contain a salt or other solved substance b. If the salt can

move from one liquid phase to another through diffusion along the adsorbed



water layer on the pore walls, then the chemical potential y for the
solved salt must have the same value for all liquid phases. Utherwise the
chemical potential M will vary from one liquid phase to another. It is
important to observe that the pressures in a gas phase and in a neigh-
bouring liquid phase in the pores need not be the same. The pressure equi-
librium conditions are discussed in the next section.

Let us first consider the case, when there is not any other substance
but water in the pores. Dencte by W the value of the chemical potential
for the water.

Consider any gas phase a in the pores or in the surroundings. The
phase will behave as an undisturbed water-vapor phase, if it is large
enough. Uenote by ui (T,pu] the chemical potential for free water-vapor
as a function of the temperature T and the vapor pressure P, * Then we
must have:

g - .
10 (T,pa) My (2.1:A)

Thus all gas phases, which are large encugh to behave as a free water-vapor
phase, will have the same vapor pressure, which will be denoted p. This is
of course also true for a large phase even when all neighbouring water
phases are quite small. A natural limit between these large gas phases and
smaller ones is the mean free path of a gas molecule. The state of smaller
gas phases is not completely determined by T and o It will also depend
on the shape of the pore and of the neighbouring solid walls and liquid
phases.

Let us next consider any capillary condensed liquid phase 8 in the
pores. If the phase is large enough, it behaves as a free liguid phase
except. for thin layers at the boundaries against the solid and against
gas phases. Uenote by u& (T,pEJ the chemical potential for free liquic

water as a function of the temperature 1 and the pressure p, . Ihen for



the phase B:
L By _ : > 4.
uy (T’pll =M, (2.1:B)

Thus all liquid phases that are large enough to behave as an undisturbed
liquid phase will have the same pressure, which is denoted Py - The
criterion for a free liquid phase is that its linear dimensions are larger
than the range of the forces between water molecules and between the solid
wall and water molecules. It seems safe to state that this limit is well
below 100 A. Below the limit the state of the water phase also depends on
the shape of the solid walls and on the forces between the wall and the
water molecules.

The above discussion shows that it is important to distinguish between
these smaller and larger phases in the pores. The words macrophase and
microphase seem appropriate. The limit between microphases and macrophases
is of course not very precise. Anyhow a macrophase in the pores is defined
as a phase, where the thermodynamical relations are identical with those
of the free bulk phase. Then the analysis of the macrophases requires only
ordinary thermodynamics. The situation in a microphase is more complicated.
In order to completely specify the state of a microphase it is not suffi-
cient to know the values of thermodynamical variables such as temperature
and chemical potentials. It is also necessary to know the precise shape of
the phase and the nature of neighbouring phases. It would be necessary to
use statistical mechanics. The use of a single hydrostatic pressure may be
insufficient. Instead it may be necessary to use a pressure tensor, which
varies through the phase, in order to describe the pressure situation.

A specific capillary phenomenon is that the value oF_pl may be
negative. This means that the liquid does not experience a pressure but
a tensile force. It will be discussed in the next section, how these forces

are brought about by the surface tension, and how they are balanced by the
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solid.

The pressures p and'p2 can be calculated from (2.1:A) and (2.1:B),
when the value of the chemical potential W is given. The equations also
give a well-known relation between p and Py - Let pS(T) denote the satura-
tion pressure of pure water at the temperature T. Equilibrium between

liquid and vapor at the saturation pressure requires:
€ (T,p_(T)) = u *(T,p_(T)) (2.1:0)
w, (Thpg u o hpg W
Thus from (2.1:A-C):
& (T,p) - w8 (Tup) = w* (T.p,) - w* (T,p ) (2.1:D)
wy U wo Tspg v, ey w ToPg :

The partial derivative of the chemical potential with respect to the
pressure p' at fixed temperature equals the mole volume v(T,p’) Z]. Thus

(2.1:0) may be written:

P Py

J v, (O,pidp’ = { v_(T.p")dp’ (2.1:E)
P g L

Ps

s
The gas is assumed to be ideal so that it obeys the gas law:

v_ = RT . (2.1:F)
PV

Here R = 8.314 J n01—1K—1 is the gas constant and the temperature T is inKelvin.

The mole volume 7} of liquid water is equal to Mw/pl , where Mw = 0.018
kg mol_1 is the mole weight of water and P, = Py (T,p') is the density.
The density oy does not vary much with temperature and pressure. Putting

=1 000 kg m—3 we get with rather good accuracy:

Py
v, = v, (Tp') = 18:107% w0 mo1”" (2.1:6)
Formulas (2.1:E-G) now give the following relation between Py and
p
RT ]
p, - p.=-— = 1n By . (o o1:H)
L s Ve Py
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For example for T = 290 K we have:

RT _ 8.314-290
Ve o 18.1070

-2

Py = 0.02 bar Nm = = 1340 bar (2.1:1)

Thus Py is negative and numerically much larger than Py - except when p
is extremely close to Pg * Figure 2.1:1 below shows the relation between
pore water pressure Py and relative humidity p/pS for water at the

temperature of 17° c.

pl(bar)
0.6 0.7 0.8 0.9 1 b 5
A A A A
p, (bar)
Py Pg 2
-200 4 5
0.8 -300
400 + i 0.9 -140
-600 - 0.99 - 13
-800 4 L/ I 0.998 | -1.3
7/
’ 1 +0.02
r —

Figure 2.1:1. Relation between relative humidity p/pS and pore water

pressure p, at 17° C.

The equilibrium pore water pressure Py must according to the table
above change drastically, when the relative humidity p/pS falls below
100 %. When for example the relative humidity falls from 100 % to 90 %,
the equilibrium pressure Py must fall from +0.02 bar to -140 bar, that is
to a tension of 140 bar. These conspicuous facts require some comments.
Liquid water at normal pressures can not be in equilibrium with water
vapor at a relative humidity below saturation. The water would eventually
evaporate completely. The equilibrium at say 90 % relative humidity requires
that a tension of 140 bar is established in the water. There must exist a
mechanism that is able to create and maintain these high tensions. This

mechanism, which is peculiar to capillary-porous systems, is described in
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the next section. It is impossible to maintain these tensions in an
ordinary bulk of water.

There is a lot of confusion regarding these water tensions. It is
seldom realized that they must exist. This is due to the fact that they
lack the support of commonplace experience. But they are a therwmdynamical
necessity.

The high values for these tensions also require some comments. At
the liquid surface there is a continual exchange of molecules between the
liquid and the vapor. In equilibrium the transfer rates are the same in
both directions. The transfer rate from vabor to liquid ought to be pro-
portional to the number of molecules hitting the surface. When the relative
humidity is lowered from 100 % to 90 %, the number of hits and the transfer
rate are lowered by roughly 10 %. In order to pass in the other direction
from liquid to vapor a molecule must overcome the restoring Coercive
forces from the surrounding molecules in the liguid. The molecule must get
a vigorous kick due to thermal agitation in order to be able to overcome
the energy barrier at the surface. A moderate change of the pressure in
the liguid will have very little effect on the transfer rate. The pressure
must fall 140 bar in order to diminish the transfer rate with the above

10

o\

Let us now consider the case when there are water and air in_the
pores. The air will be considered as a pure substance. The analysis of the
more true situation, when the air is regarded as a mixture of nitrogen,
oxygen, and so on,would offer no additional difficulties and the conclu-
sions below would have been the same.

In thermodynamical equilibrium the chemical potentials for water and

air are constant throughout the various phases of the pores and of the

surroundings.
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Consider any gas phase in the pores or in the surroundings. The state
is determined by the temperature T, the water-vapor pressure p, and the
total gas pressure pg . Note that pg and p will be the same values for all these
gas phases, since the two chemical petentials for water and air have the
same values throughout.

Consider next any capillary condensed liquid macrophase in the pores.
It consists of liquid water with a temperature T and a pressure Py -+ It
has a mole fraction X, of solved air. Since the temperature and the two
chemical potentials have the same values for all these phases, then the
water pressure Py and the mole fraction of air X, will have the same
values for all phases.

We have arrived at the important but perhaps rather obvious conclu-
sion, that all gas phases are in exactly the same state, when the system
is in equilibrium. A gas bubble deep inside the pore system, shielded from
an outside surrounding gas phase by chains of liquid phases in the pores,
must still have the same pressure pg and vapor pressure p as the outside
surrounding phase. It may take very long time to establish air equilibrium,
since, due to the minute amounts of dissolved air in the water, the air
diffusion rate will be very small. Similarly all liquid phases must be in
exactly the same state in equilibrium. When the system is in contact with
an outside liquid phase with a pressure Py > then this pressure must in
equilibrium prevail throughout all liquid phases. The modifications
necessary, when effects of salts are included in the analysis, are dis-
cussed below.

The exact relation between p and Py when air is present, is more
complicated. The chemical potential u& for the water in liquid phase will

L 2

now depend also on the mole fraction of solved air X, oM M [T,pg,an.

The solution is ideal, if it is sufficiently dilute, that is if X, is
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2a)

sufficiently small. Then from the chemical potential u& is given by:

2 I 2 . _ - .
W (T,pl,xa) =y, (T,pQ.D) + RT-1n (1 xa) (2.1:J)

For air of atmospheric pressure and room temperature g is of the order

0.5-107°

. The solution is extremely dilute and (2.1:3) is a very good

approximation. The gas phases are with good accuracy ideal so that (2.1:F)
and the left sides 6? (2.1:D and E) are unchanged. This will be true even
in the special case of high gas pressures well above atmospheric pressure.

In formulas (2.1:D and E)} we shall only add RT-1n [1—xa) on the right

side. Then we get instead of (2.1:H):

p, - b, = ot dn B - BLan (1) (2.1:K)
% Ps I}
Now X, is of the order 0.5-10—6. Thus we still have with very good
accuracy:
p. - p. = R n &y (2.1:1)
L S Ve pS

At ordinary temperaturss Pq is neplipible compared to Py - except when
B s extremely close to unity.

° The assumptions behind (2.1:L) were the Following. The gas was
assumed ideal. The compressibility of the liquid was neglected. Finally
the solution of air in the water was ideal and the mole fraction X, was

neglected compared to 1. Formula (2.1:L) will also be valid when there are

other substances with very small solubility in the water.

Many building materials contain or are exposed to salts. These salts
may dissolve in the water in the pores. It is therefore important to con-
denote the molality (that is the number of moles of solute per kilogram
solvent) for the salt in a liquid phase a . We assume that the salt cannot
diffuse from one phase to another. Then the molality m* will in general

he different from phase to phase.
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The liquid phases will now be in different thermodynamical states
even in perfect equilibrium. Formula (2.1:L) is no longer valid. But still
the chemical potentials for water and air must be the same throughout the
whole system. Thus all gas phases will still have the same total pressure
pg and Vapor pressure p .

The chemical potential u& for the water in a liquid phase o« will now
depend also on the melality m* of dissolved salt. The influence of the
minute amounts of dissolved air is of course again negligible . Chemical
equilibrium for water gives a relation between p, p; , and m* . Instead
of (2.1:0) we may now write:

L

" (T.ps.ma) +

ué (T.p) - ug (T.pg) = ué (T,pg,m™) - u

sd (p®) -k (1, 0) ' (2.1:M)

The partial derivate of a chemical potential with respect to the
pressure at fixed temperature and molality equals the corresponding so
called partial molar volume 2b). The partial molar volume for water Vi
gives the increase in volume, when, at fixed temperature and pressure, one
mole of pure water is added to a very large water phase that has the
molality in question. V& is then a function of T, P, - and m. But it will

differ very little from the mole volume v, of pure water given by (2.1:G).

2
In order to evaluate (2.1:M) we must also know how the chemical poten-

tial varies with the molality m . The chemical potential of the solvent in

salt solutions is often expressed in terms of the so-called molal osmotic

coefficient ¢ 36). The guantity ¢ is defined by the equation

u, (Topgm) = wt (T,p,0) - RTey M gm (2.1:N)

Here u

L
w
i (I,pﬁ,ﬂ) is the chemical potential for pure water and v denotes the

number of ions of a salt molecule. ¢ is a function of T, Py » and m and

(2.1:N) is merely another way to express the chemical potential. But the
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point is that normally ¢ is not very far from unity. Reference ) gives
measured values of ¢ as a function of molality for many salts.

Take as an example sodium chloride Na Cl. There are two ions per
salt molecule: v = 2. Figure 2.49:II below shows ¢ as a function of the

3b)

molality "™a C1 at 25° ¢ . The values refer to normal pressures or

more precisely to the corresponding vapor pressure. But the pressure depen-

dence for ¢ is very small. The variation of ¢ with the temperature is
3b)

rather insignificant

¢
1.3

0.8 Y T T T T nNaCl
0 1 2 3 4 5 6

Figure 2.1:1I. Molal osmotic coefficient ¢ as a function of the

molality m for sodium chloride at 25° C.

Now (2.1:M) may be transformed to:

p Py
f v (T,pYdp' = f Vé (T,p’,m*)dp’ - RT v Mw ¢ m* (2.1:0)
pq & Pg

With formula (2.1:F) and using Vé = v, we get with good accuracy the

L

important formula:

QT RT M
pz -p. - — In By Yy ¢* m” (2.1:1)
s v, P, vy
Usually p_  is neyligil!v compared to pz . The secand term on the right

may be termed an osmotic pressure m:

RT M
7 o= Yo em (2.1:4)

Ve




- 17 ~

Formula (2.1:P) differs from (2.1:L) only by the additional osmotic pressure
term due to the presence of a salt. Figure 2.1:1 is still applicable if
p, 1is replaced by p% - =%
2 L
Numerically we have for T = 290 K neglecting Pg

Py = 1340 1n (%‘] + 241 v ¢ (bar) (2.1:R)

S

The formula gives the pressure in bar. The factor v is a small natural number and
¢ is close to 1.
Figure 2.1:1II below shows relation (2,1:P) for sodium chloride at

room temperature and gives the osmotic pressure w for different molalities

m
pl(bar)
400 1 n N N
m m(bar)
200
1 45
0 B
Pg 2 95
-200 3 150
4 220
-400 5 290
-600 ) 370
-800
0.5 0.6 0.7 0.80.9 1.0
Figure 2.1:I1II. Relation between pore water pressure Py and relative

humidity E_ for different molalities m of sodium chloride at room
S
temperature.

The table shows the osmotic pressure n at different molalites m .
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These numerical examples show that the effects on the pore water
pressure from salts may become very large. Let us consider two liquid
phases for which the molalities differ by 1. Then the equilibrium difference
in pore water pressure or tension will be in the order of 50 bar. I sus-
pect that these osmotically caused differénces in pore-water tension are a
main cause of damage of building materials. This is discussed in a sub-

sequent chapter.

2.2. Force equilibrium conditions.

The pressure in the gas phases is pg and the pressure in a liquid
phase is P, - These two pressures will mostly be different. [ et us consider
any of the boundary surfaces between a liquid phase and a gas phase in the

pores. See figure 2.2:I. Denote the surface by S.

-

Figure 2.2:I. Cross-section of a pore showing a water meniscus S

between a ligquid phase with pressure Py and a gas phase with pressure pg

Such a surface between a gas phase and a liquid phase will be ecalled
a water meniscus. A liguid phase in the pores is bounded by pore walls
and by a water meniscus or by a number of water menisci. The unit normal
at a point of a water meniscus pointing in the direction from liquid to

gas will be denoted n . The boundary curve to a meniscus S will te denoted T .
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where T is a closed curve along the walls. Let m denote the unit vector
at the boundary I' , which is tangential to S, perpendicular to I' and
directed outwards from the surface S. We will call m the outward tangent
vector to S at T . These notations will be used throughout this work. They

are illustrated in figure 2.2:I1I below.

Figure 2.2:1I. Water meniscus S with unit normal n and boundary T .

m denotes “the outward tangent vector to S at T .

Consider now any part 81 of the meniscus S. The boundary curve to

S1 is denoted T1 , and m is the outward tangent vector to S1 at F1 . The

forces acting on S, must balance. There is a pressure pg acting on 51

1
from the gas and a pressure Py acting on S1 from the liquid. Let Ylg
dencte the surface tension of the liquid-gas interface. This surface

tension of the water meniscus acts on 81 along the boundary r, . It will

act in the direction of m . These forces acting on 81 are illustrated in

figure 2.2:I1I1 below.
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r
)
!
N
S
L
v
S1 ? -
1p,n
12
Figure 2.2:11I. Forces acting on a part S1 of a water meniscus.

Using a surface integral over ST and a line integral along r,
the total force acting on 81 may be Qritten:

é{ (pg - DR](-n]dS + £1Ylg w ds (2.2:A)
The net force from the pressures oﬁ an infinitesimal part of S1 with
the area dS is (pg - pl)dS. This force is acting in éhe direction of -n .
Thus the surface integral gives the force on S1 from the pressures pg
and Py The force from the surface tension acting on an infinitesimal
art of T1 with the length ds is Ylgds . This force is acting in the
direction of m . Thus the line integral along r, gives the total force on
S1 from the surface tension.

The line integral along the closed curve T, in (2.2:A) may be trans-
formed into a surface integral over the surface 51 , which has F1 as

boundary. From appendix A on differential geometry we have the general

formula, valid for any surface 81 with boundary curve T,

$mds = [[ 2« ndS (2.2:B)

r1 5

Here k is the so-called mean curvature of the surface at each point on it.
1
The mean curvature is a basic concept in the theory of surFacesH

We will briefly explain the meaning of it. Let P be a point on any surface

and let t denote a direction in the tangent plane of the surface at P .
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Consider those circles, which have their centres on the straight line
passing through P in the normal direction to the surface, and which are
tangent to the surface at P with tangent direction t . There is a certain
circle among these that fits best to the surface near the tangent point P .
The inverted value of the radius of this be;t fitting circle is the curva-
ture of the surface at P for the direction t . The radius is counted posi-
tive, if the centre lies on the positive side of the surface, and it is
counted negative, when the centre lies on the other side. The positive side
of S is defined as the side into which n is pointing. Thus the positive
side is the gas side of the water meniscus. The mean curvature « is equal
to the mean value of the curvatures for two perpendicular directions in
the tangent plane. The value of « is not changed when these two perpendi-
cular directions are rotated around the normel to the surface at P. A
sphere with radius R and with the normal pointing inwards has the mean
curvature 0.5(1/R + 1/R) = 1/R . The curvature is zero in any direction
for a plane, since the centre of the best fitting circle now lies at
infinity. Take as a last example a cylinder with radius R and with the nor-
mal pointing outwards. Let the two directions be perpendicular and parallel
to the axis of the cylinder. Then we get the mean curvature 0.5(1/-R + 1/=)
= - 1/2 R. The mean curvature « is positive if the surface is concave
viewed from the gas side. Conversely k is negative, if the surface is
convex.

Since Y, is a constant, we have from (2.2:A and B} the total force
on S

1
éf (2Y£gK - pg + pl)n ds (2.2:0)

-

This force must be equal to zero for any part 51 of S . Then the inte-
grand must vanish at all points of S :

pg Py, /YEgK (2.2:D)
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This fundamental equation originates from lLaplace.
Consider,in order to further clarify the effect of the surface tension

Yy, ,a very small part 81 of the meniscus. The mean curvature « and the

1924
normal n wil{ vary very little over S1 . For the total force from the sur-
face tension on 81 we have again:

f Yig mds = é[ Yo 2 nds = 2yg ‘151'“51‘9 ds (2.2:E)

1 1 1

The last double integral gives the area of 51 . The resulting force from
the surface tension on a very small part of the meniscus points in the
normal direction n of the surface. Zng « , where k is the curvature in
the point of the surface, gives the magnitude of this resulting force per
unit area.

We have an immediate interpretation of (2.2:D). See figure 2.2:IV.
pg TPy is the net force per unit area from the pressures. It points in

the direction -n . This force is balanced by the force 2ylg k n per unit

area due to the surface tension of the curved surface.

Figure 2.2:1IV. Force balance for a curved water meniscus according to
(2.2:0).
The Laplace equation (2.2:0) ensures force equilibrium at all points

of the water menisci. It was shown In Lhe previous section that the gas
pressure pg was the same throughout the entire system in equilibrium. In

the case without salts also the pore water pressure was constant throughout.
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Then thé mean curvature k will have the same value at all points on all =
menisci. The pore water pressure p: will be different for different liquid
phases a , when the water contain salts. But the mean curvature «x will
be the same at all points on the water menisci which belong to the same
phase o . Anyhow the mean curvature is constant throughout each single
meniscus in equilibrium.

The inverted value of k may be called the mean redius of curvature
for the meniscus. It is an important quantity, since it provides informa-
tion on the linear dimensions of the pores. We will use the symbol RS for

this mean radius of curvature of a water meniscus S :

2y
Ry LAty (2.2:F)
K P, TR

The linear dimensions of a pore in the region around a meniscus S will
normally or at least in many cases be of the order of the mean radius of

curvature, R

-

The formulas (2.2:D) and (2.1:L) give RS as a function of the rela-
tive humidity in the salt-free case:

2y
Ry = —rr ‘g (2.2:6)
v In (&) + P, ~ Pg
3 Ps g
Here p, and p_ are negligible , when &= is not too close to 1. Formulas
s

a
S

salt with molality m* in the water phase a . It should in this case be

(2.2:D) and (2.1:P} give an analogous formula for R, , when there is a

observed that the surface tension ng has a minor dependence on the molali-
ty of the salt.

As a numerical example we get-in the salt-free case for T=290 K and

= 3 = = _1 .
pg = 1 bar (with RT/vl = 1340 bar and Ylg =0.074 Nm ):

R, = 10.9 (A) (2.2:H)

S 1n (B « 0.00073
pS
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The second term in the denominator gives the small effect of the gas

pressure pg due to the air. The radius RS is in A (10_10 m). Table 2.2:1

below gives this relation and also the corresponding pore water pressures.

%— 0.5/ 0.6| 0.7| 0.8| 0.9 0.95/0.98{0.99|0.995{0.999| 1 1.00073
s

RS(A) 16 | 21 31 | 49 | 100 | 210 |520 |1000}1S00 }6300 |15000 o

D£ -930(-680-480]-300|-140 | -69 }{-27 {-13 |-6.7 {-1.3 |+0.02 1
(bar)

Table 2.2:I. Corresponding values of relative humidity E— , mean radius
s
of curvature RS , and pore water pressure Py in the salt-free case at the

temperature 290 K and atmospheric pressure.

As a second numerical example we take the case when the water contains

sodium chloride with a molality m=2. We take again T=290 K and pg = 1 bar.
5)

The surface tension Ylg will increase slightly with m . From we get
for m=2 that oo = 0.076 N m-1. Numerically we have with formulas (2.2:F)
and (2.1:P) using the table of figure 2.1:III:

R = 1.3 (A) (2.2:1)

S - 1n (B9 - 0.070
pS

The second term in the denominator gives the effect of the salt. The

radius RS is in A. Tahle 2.2:1I below shows this relation and the corre-

sponding pore water pressures.
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%— 0.5] 0.6} 0.7{ 0.8 0.85| 0.9)0.92} 0.9324} 0.95 1
s

RS(A) 18 26 39 74 120 | 320 | 840 *oo -600 | -160

Pe -830{ -590 | -380| -200 | -120 | -46 | -17 +1 +26 | +95
(bar)
Table 2,2:11. Corresponding values of relative humidity p/pS » mean

radius of curvature RS , and pore water pressure at the temperature of
290 K and at atmospheric pressure, when the water contains sodium chloride

with a molality m=2.

The water meniscus is convex viewed from the gas side, when R is
negative. Then the pore water pressure Py is greater than the gas pressure
(=1 bar).
Pg
The tables 2.2:I and II show that high water tensions Py require

very small values on R. . For exanmple in order to get the water tension

S
Py = 140 *bar corresponding to a relative humidity of 90 % in the salt-free
case, RS must equal 100 A. The pronounced capillary effects with water
tensions above say 10 bar require radii RS below 1000 A.

The above formulas and tables refer to macrophases, that is to = liquid
phases, where the formulas of ordinary thermodynamics are valid. This has
been discussed in section 2.1. But the deductions of thi§ section do not
require that an adjacent gas phase is a gas macrophase. The formulas will
lose their validity and even meaning, when the mean radius of curvature
RS becomes extremely small. The surface tension and the forces between
the liquid water molecules at and near the meniscus will be influenced by
the curvatures of the meniscus. But, because of the short range of the
forces between water molecules in the liquid, the meniscus must be heavily

curved, if these effects are to be noticeable. The deviations from macro-

phase thermodynamics will increase gradually, when the phase becomes smaller
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and smaller. But drastic changes are not to be expected, and the liquid
phase cught to retain most of its macrophase behaviour even for very sméll
values an R8 . I would venture to state that down to a radius RS = 20 A,

the formulas ought to be at least approximately valid. Accepting this limit
the formulas will be valid down to a relative humidity of 60 % corresponding
to a pore water tension of 700 bar. Below this 1limit the bulk liquid water
phase will gradually vanish. There will be left only adsorbed water layers
and zones on the pore walls and in minute crevices and constrictions in

the pore system.

In the preceding section 2.1 we found that the liguid water in the
pores must be under high tension in order to be in thermal equilibrium for
relative humidities below 100 %. In the ordinary macroscopic world there
is not any mechanism available to create and maintain these high tensions
in the water.

We have shown above that the surface tension of a curved water menis-

cus creates a force ZYng per unit area of the meniscus. See figure 2.2:V.

Figure 2.2:V. Cross-section of a liquid phase in a pore. the left figure
illustrates the force 2Kylg (per unit area) from the surface fension Ylg
of the meniscus with mean curvature « . Thic force is the origin of Lhe

high tensions in the pore water. fhe right figure shows the forces, Jue to
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the tension in the liquid phase Py and the surface tension Yog ? that

act on the pore walls.

This is the needed cause of high tensions in the pore water. The force
ZYng per unit area act; in the normal diréﬁtion of the meniscus and
induces, according to (2.2:D), a pore water tension ;pz = Zyxgx - pg .
Coersive forces between the water molecules will keep the liquid together
and prevent rupture. The curved meniscus S needs the support of the pore
walls at the boundary curve I for its maintenance. The pore must be very
small in order to be able to support the small and very curved water menis-
cus. Attractive forces between the liquid water and the pore wall will keep
the water phase attached to the pore wall. The pore walls must counteract
the pore water tension and the surface tension of the water meniscus. These
forces from the liquid phase on the pore walls are shown in the right

figure of 2.2:V. We have demonstrated that these forces may become very

large. They are a main cause of damage in porous building materials.

meniscus S, where gas, ligquid, and solid meet. Between any two bulk phases
there is an extremely thin transition zone. These zones may be treated as
additional surface phases. This will be discussed in section 3.2. There is
a surface phase at the meniscus S between liquid and gas. %he quantity
Ylg associated with the surface phase may be interpreted as a surface
tension acting along the surface perpendicular to any cut in the surface.
At the boundary between the pore wall and the gas there is also a surface
phase containing the adsorbed layers of water molecules at the pore wall.
The thermodynamical analogue to Ylg for this surface phase is denoted
Ysg . See section 3.7. The subscript sg stands for solid - gas. The
corresponding quantity for the surface phase between solid and liquid is

denoted YSQ . These three surface phases meet at I' . See figure 2.2:VI.
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Figure 2.2:VI. Cross-section perpendicular to the boundary curve T where
the three surface phases liquid-gas, solid-gas, and solid-liquid meet. The
forces that act on the boundary curve per unit length are shown to the

right. 0 is the contact angle.

It is demonstrated in section 3.4.1. that the difference Ysg Y
may be interpreted as a forece per unit length acting on the boundary curve
I in the direction of m' . Throughout this work m' denotes the unit vector
at T', which is tangential to the pore wall, perpendicular to r and points
into the gas side. See figure 2.2:VI. Force equilibrium along the pore wall

gives the well-known equation due to Young for the contact angle g:

Ylg Ccos (6) = YSg - YS!L (2.2:3)

The contact angle @ is the angle on the liquid side between the water
meniscus and the pore wall in a plane perpendicular to r . The remaining
force Yeg sin (@) acting perpendicular to the wall is balanced by forces
from the éolid wall. The contact angle ¢ is a function of the thermodynami-
cal state of the system. The contact angle will be different for different

types of pore wall.

The pore walls are smooth surfaces except for comers and edges duc
to crystal structures in the solid. The force halance at points, where the

boundary T meets or crosses corners and edges of the pore wall, requires

a closer examination. [he naorma! to vhe por wall has a discontinuity In
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such a point. Near these points of discontinuity the pore wall consists of
two plane surfaces, denoted 1 and 2, which meet along a straight line. Let

the straight line be the x-axis according to figure 2.2:VII.

Figure 2.2:VII. Cross-section through the pore wall at a corner (O<ac<w)

or an edge (0>a>-u).

Surface 1 is given by the half-plane z=0, y>0. Surface 2 is tilted an
angle a from the plane z=0. The angle a may have any value between -t
and +7 . A ﬁositive a gives a corner and a negative a givBs an edge. The
unit normals to the two surfaces pointing into the pore space are denoted

ny and n,

61 = (0,0,1) 62 = (0,sin a, cos a) (2.2:K)

Different surfaces of a crystal often have different thermodynamical
properties. We therefore allow the two surfaces to have different contact

angles 61 and 92 .

Suppose now that the boundary I of a water meniscus crosses a corner
or edge on the pore wall. Along the portion of T that lies on surface 1

the contact angle is 6, » OT COS B, - 51-5 . Along the other portion on

1

or cos 6., = n,*n . We postulate for

surface 2 the contact angle is @ 5

2
physical reasons that the normal n to L varies smoothly even up to the
critical point on the x-axis, where T crosses the corner. Then both contact

angle conditions must te satisfied at this point of discontinuity. Let ﬁ
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denote the normal to 5 at the critical point. The two contact engle condi

tions NNy - cos 61,and nc'n2 - CoSs 02 give with n. expressed in polar

coordinates:
n, = (sin 0, " cos ¢_, sin 6, * sin ¢_, cos 81) (2.2:L)
cos 92 - €C0S a * COS 8,l
sin (¢ ) = - - (2.2:M)
o} sin a » Sin 6,l

We get solutions, when the right hand of (2.2:M) lies between -1 and +1.

The condition for this is precisely:

le, - 92| < fa] < - |n—e,l—92| (2.2:N)

1
Then we get two solutions which only differ in the sign of the x-component

of n_ .
c

In conclusion we have found that the boundary curve ' of a water
meniscus may pass a corner or edge on the pore well precisely when (2.2:N)

is fulfilled. There are only two (symmetric) possible orientations of the

meniscus at the point of discontinuity given by (2.2:L and M).

2. Suppose first that the liquid covers surface 1. Let ec denote the angle
between the water meniscus S and surface 1 in a plane perpendicular to T .
ec may be any value between zero and 7 - a , where -w<a<m . See figure
2.2:VIII.
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Figure 2.2:VIII. Cross-section perpendicular to the boundary curve T of
a water meniscus S, when T follows an edge of the pore wall. 91 and 6,

are the contact angles at the wall on each side of the edge.

The surface tension Ylg gives a force ng'COS(ec] which tries to pull

the boundary T' back into surface 1. On surface 1 the force yS; - Ys; =
= ng 005[61) acts in the opposite direction. The meniscus and the boundary

curve T' will be pulled back into surface 1, when Ylg cos(ec) > ykg Cos(eq),
that is when 8, > 68, » Thus we must have that 6, > 8, , when the boundary
I follows a corner or edge on the pore wall.

An analogous argument applies to surface 2. The angle of contact
between surface 2 and the meniscus (on the liquid side) is equal to b, * @

2

The force 752 T Yy T Ylg cos(ez) tries to pull the boundagy r out on sur-

g

face 2. The force Yig cos(ec*a) from the surface tension opposes this. This

latter force must be the stronger one: Vg cos(ec+a) > Tog cos 6, . Thus

we must have that 6+ o < 6, .
c - 2

In conclusion we have that the boundary curve T' of a water meniscus

may lie along a corner or edge on the pore wall, while the liquid covers

surface 1, precisely when:

S a (2.2:0)
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Here ec is the angle of contact between the meniscus and surface 1. See

figure 2.2:VIII. We note that (2.2:0) requires that
@< 0,6, (2.2:P)

Consider next the other possibility, when the liquid phase covers
surface 2 instead. Let eé denote the angle of contact between S and sur-

face 2 (on the liquid side). Then instead of (2.2:0) we have the condition:

6., <8

5 <8 "« (2.2:Q)

c
We note that (2.2:Q) requires that:
a <8, - 6 (2.2:R)

Let us summarize the obtained results when the boundary curve follows
an edge or a corner. Suppose first that o > IB,l - 62| . Then from (2.2:P
and R} we have that the boundary of the meniscus cannot follow the corner.

Suppose next that IS - 92[ > a>- ]01 - 6?| . Then a meniscus may lie

1
along the corner or edge with the liguid side covering the surface with
smallest contact angle. The angle of contact ec or eé must satisfy
(2.2:0) or (2.2:Q). This situation is illustrated in figure 2.2:IX(a).
Finally, when a<- Ie1 - 62[ , the liguid side may cover either surface 1

or surface 2. The angle of contact must satisfy (2.2:0) and (2.2:Q), respect-

ively . These two cases are illustrated in figure 2.2:IX(b) and (c).




_33_.

(c)

Figure 2.2:IX. Cross-section perpendicular to the boundary curve T
of a water meniscus S, when I' follows a corner or an edge on the pore wall.
The figures show the possible positions for S.

(a): -|e1»ezl<a<|e -0

1 2l

(b), (c): o < - IO -0

17 %l
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Let us finally sutmarize the obtained results, when the boundary
curve of a water meniscus passes or follows an edge or a corner on the pore
wall. o may assume any value between -m and +w . From (2.2:N), (2.2:P and
R) we get the following different cases.
(1) -nm<a<-m+ |n- 6, - 62|

while the liquid covers either surface 1 or surface 2.

. The boundary T may follow the edge

(2) - =+ In -8, - 92[ <a < - [9 -0

1 2| :

edge, while the liquid covers either surface 1 or surface 2. There exist

1 The boundary T' may follow the

also two (symmetric) orientations of S where the boundary T' of the menis-
cus passes the edge.

(3) - |8, - 92| <a< ]e1 - 62| . The boundary T may follow the edge while

1

the liquid side covers the surface with the smallest contact angle.

(4) e, - 92] <a<m-|m-86, -6, . There exist two orientations of

Y

S, where the boundary T of the meniscus passes the corner.

1

(5) m~-{wr-9o, - 62| < a < m . The boundary T of a meniscus can neither

1

pass nor follow the corner.

One might ask what happens in the last case (5), when there are not
any possibilities. This lies outside the scope of the present chaper, so
we will only briefly indicate what happens. We will restrict the discussion
to the more important casewhen 7 - 61 - 62 > 0 . We have to contemplate
what will happen when 6, + 6, < a < m . Let us first consider the limit,

1 2

when 6, + 6, = a . Then there is a plane meniscus, parallel to the corner-

1 2

line with the liguid phase in the corner, which fits to the pore walls

with the prescribed contact angles 81 and 67 . See figure 2.2:X.
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Figure 2.2:X. The figure shows a liquid phase with a plane meniscus

fitting to the pore walls for o = By * 0,

Suppose now that the angle 92 is diminished so that 91 + ez

changing the plane meniscus into an appropriate cylindrical surface we

< a . By

get a meniscus with the new prescribed contact angle 05 - (The broken line
in Figuré 2.2:X indicates a possible position for the cylindrical surface.)
The radius of the appropriate cylinder will become smaller and smaller,
when the liquid phase is diminished. The mean curvature can be made as
large as we choaose. But in chapter 2.1. we have shown that high mean curva-
tures correspond to small relative humidities p/p5 . When there is a
certain positive relative humidity, water will condensafe in the crevice
at the corner. We will get a growing liquid phase, where the menisci have
the cylindrical form. This capillary condensation will continue, until

the radius of the cylindrical meniscus has decreased to the value given

by formula (2.2:G) corresponding to the given relative humidity. In con-
clusion we have that the corner of any crevice with 6y * 8, <a will be
fi1fed by capillary condensed water. An equilibrium situation, where a

boundary curve passes or follows the corner-line will never arise.



2.3. The effects of ‘a gravitational field.

The effects of gravity are much discussed in the classical theory of
capillarity. But a gravitational field is usually of minor importance in
a capillary-porous system, since the water menisci have very small exten-
sion. A standard method when studying the behaviour of moisture in a piece
of a porous material is to expose it to a strong gravitationel field in
a centrifugal machine. In this situation gravity will be of importance. We
will in this section briefly indicate the effects of a grayitational field.
The local equilibrium conditions at a point will not be changed by a
gravitational field. But the therwndyﬁamical state will change from point
to point. Thus the local equilibrium conditions in the previous sections |
are still valid. But for example the pore water pressure Py in a liquid
phase will vary in the usual hydrostatic way in the gravitational field.
Let ¢ denote the gravitational potential per unit mass (J/kg). Then
VR is the work required in order to move a unit mass from point 2
to point 1. For the ordinary gravitation on the earth we have ¢ = gz ,
where g is the acceleration due to gravity and z is the altitude. In a

centrifugal machine the gravitational potential is:

p = - 2K (2.3:A)

Here w is the angular velocity and r is the distance from the axis of
rotation.

The-only change now compared with the preceding sections is that the
chemical potentials s for the different components i (water, air, and
salts) are to be replaced by the sum of the chemical potential and gravi-
tational potential. The gravitational potential per mole of component i
is Mi¢ , where Mi is the weight of one mole of component i. Thus we shall

ha)
e

replace s by . + Mi¢ . Se . For the water component we then have
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that u + MW¢ is constant throughout the entire system in equilibrium.
In the same way we have for air that uy Ma¢ is constant throughout the
system. Finally for a salt b in a liquid phase o we have that ug + Mh®
is constant throughout the phase o . This means that p, pg s X and
ng will vary through the gravitaional field. But these variations will be
very small.

In comparison to these variations the changes in pére—water pressure
will be much greater. Let us only consider the case without air and salts.

Then we have for two points 1 and 2 lying in liquid phases:

wy (Topyy) + Moy = b (Tip ) v Mo, (2.3:B)
The difference in chemical potentials may be written vy (p21 - plZ]’
where Vg = Mw/p2 is the volume of one mole of liquid water and Py is
the density. Compare with formulas (2.1:D and E). Thus we get:

Pe1 TPa2 T Py 1

(@2 - %,) (2.3:0)
This is the usual hydrostatic pressure change.

It is important to note that this hydrostatic pressure difference must
exist even between two separate liquid phases in thermodynamical equilibrium,
The pore-water pressure in two liquid phases at different heights in a
gravitational field must increase from one phase to the gther in the usual
hydrostatic way even though there is not any liquid connection between
them. In an intermediate gas phase the vapor pressure p also changes
according to a hydrostatic pressure change in a gas. This change is very
small due to the low density of the vapor compared to the ligquid. But we
have seen in section 2.1. that a small change in vapor pressure corresponds
to a large change in pore-water pressure. Then the cowpafatively large

changes in pore-water pressure will be induced by the small changes in

vapor pressure.
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2.4. Summary of equilibrium conditions.

Summarizing the results of the preceding sections we have in the case,
All gas macrophases in the pores and in the surroundings will be in the
same state specified by a temperature T, a gas pressure pg , and a water-
vapor pressure p . All liquid macrophases will be in the same state charac-
terized by the temperature T, the pressure Py and a certain mole fraction
of solved air. The pressure p, may assume negative values; then the liguid
experiences a tension. We have with good accuracy:

Py " Pg = %I in (%—) (2.4:A)

2 5]
where P, = Pg (T) is the saturation vapor pressure, R the gas constant,
and Ve the volume of one mole of liquid water. The temperature T is in
Kelvin. At the temperature T=290 K we get RT/vl = 1340 bar.

When the liquid phases also contain a salt, all gas phases will still
be in the same state. But the molality m of the salt and thereby the state
will in general be different for different liquid phases. We now have at
thermodynamical equilibrium for a liquid phase « with pore-water pressure

p: and molality m*  of the salt:

p‘Z'D;-@l'l” (%_)+ oy % (2.4:B)
L s L

Here Mw is the weight of one mole of water, v the number of ions per salt
molecule, and ¢* the molal osmotic coefficient. Normally ¢a is not very
far from unity.

Force equilibrium at the water menisci requires that

- N . . .4
pg Py 2 Yeg T ¥ (2.4:C)

Here Ylg is the surface tension for the liquid-gas interface. k is the
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mean curvature at a point of a water meniscus. This equation is due to
Laplace. Thus the mean curvature « is constant over a water meniscus. The
mean curvature k will be constant throughout the whole system in the salt-
free case.

The contact angle 6 at the boundary I between a water meniscus S and
the pore wall will have a constant value along I' , as long as the type of
pore wall is the same.

Formulas (2.4:A and C) give for the salt-free case a relation due to

Kelvin:
2y
Ry = —rr 28 (2.4:D)
- By vp-p
vy Pg g s

Here R5 = 1/k 1is the mean radius of curvature for the water meniscus S.
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3.  THERMODYNAMICAL STABILITY.

3.1. Introduction.

The equilibrium of our capillary system must be thermodynamically
stable. There are two equivalent formulations of the criterion for stabili-

ty 7)

. Stability requires that the entropy of the system is maximal relative
to any conceivable small internal change or variation in the system such
that the total energy is constant. Alternatively stability requires that

the energy of the system is minimal relative to any conceivable small inter-
nal variation in the system such that the total entropy is held constant.

We shall use energy minimum as stability criterion.

By an internal variation we mean any possible change within the iso-
lated system. Small amounts of heat or entropy, water, and air may be
transferred between various parts and phases of the system. The water menis-
ci in the pores may be deformed and displaced to new positions. This latter
possibility gives an important type of internal variation peculiar to
capillary systems. Stability requires that, for any small internal varia-
tion of these types, the virtual state of the system after the variaticn
has a higher total energy.

The main object of this chapter is to study the stability, when water
menisci are displaced. It is assumed that there is no freezing. Effects of
salts or gravity will not be considered. Finally, the solid is treated as
completely rigid.

The tﬁerﬂodynamics of the different phases and the mathematics of
second-order variations in the energy of a phase are discussed in sections
3.2. and 3.3. This is a prerequisite for section 3.4., where the stability
of a water meniscus together with a sufrounding region is studied. A
mathematical theory of stability for a water meniscus is developed in sec-

tioe *.5. The thecrv is applied in some cases, where the water menisci have
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cylindrical and spherical shapes. The results on stability are summarized in
section 3.6. The extension to the case, when the region contains more than
one meniscus, and a discussion of the thermodynamical character of the in-

stabilities are left to a planned continuation of this book.

3.2 Thermodynamics of the different phases.

Apart from the solid material there are five types of regions or
phases in the pore system. These are gas phases, liquid phases, and three
types of surface phases.

The fundamental thermodynamical equation for the energy Ug of a gas
phase is:

= - g 14 :
dUg Tng pg dVg U, de Yy dNa . (3.2:A)

Here Sg is the entropy, Vg the volume, N& the number of moles of water

and Ng the number of moles of air. For the energy U, of a liquid phase

L
we have:

L

; (3.2:B)

- _ 2
dU2 = TdSQ Py dVl + H, de oy dn

The energy Us of a given material part of the solid structure is a function
of the entfopy Ss and of the strain tensor throughout the solid. We treat
the solid as rigid. Then the energy U5 is a function oan of the entropy.
We thus have:

dUS =T dSS . (3.2:C)

At the boundary between two bulk phases there is a transition region.
We have transition regions at the solid pore walls between solid and gas
and between solid and liquid. At the water menisci we have a transition
region between liquid and gas. The geometrical variables néeded to specify
the state of our thermodynamical system are now not only the volumes Vg

and V2 of bulk phases but also the areas A A and A of solid-

s ’ "'sg g
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liquid, solid-gas and liquid-gas surfaces.
In the treatment of boundary regions we shall follow the method of

Gb). A geometrical

Gibbs. The procedure is described in more detail in
boundary plane is imagined somewhere in the extremely thin transition region
between the two bulk phases. The original system is replaced by a new
thermodynamical system. In this new system the two homogeneous bulk phases
are extended into the transition zone up to the imagined geometrical
boundary. The new system consists of the two extended bulk phases plus a
surface phase at the geometrical boundary. The surface phase is chosen so
that the original system and our new system behave thermodynamically in
exactly the same way. The system of two bulk phases and a transition region
in between is replaced by two bulk phases meeting at a boundary surface

plus a surface phase.

A bulk phase is determined by the entropy, the volume and the amounts
of the different components. A surface phase is determined by the entropy,
the area and the amounts of the different components. The fundamental
thermodynamical equation for the surface phase between liquid and gas is

in the formulation of Gibbs:

= . g g .
[s(8] TdSRg + Ylg dA, _ + v, de * oy, dNa (3.2:D)

Lg g

Ulg is the energy of the surface phase. Alg is the area of the surface

and Ylg is the surface tension. This formula is not strictly valid for a
curved water surface. The energy also depends on the curvatures of the sur-
face. This dependence will be neglectable, if the radii of curvature of the
surface are much greater than the range of the forces between the molecules
in the surface transition region. The range of these forces are of the order
of the diameter of a molecule. Thus the above formula may be approximately

applicable even for surfaces, where the radii of curvature are as small

as say 20 A .
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For the surface phases between solid and gas and between solid and

liquid we have in the same way:

. sg sg .
dUgg = TdS, + vgg dA * w, NGB« o] (3.2:E)

- S S .
dUsl = TdSSE + Yoy dAsl + M, de *ug dNa (3.2:F)

The coefficients Ysg and¢ysl have often caused a lot of confusion. They
are sometimes called surface tensions. The measurement of Ysg requires
that the area Asg could be varied independently. This is not possible for
our rigid solid. (The problem remains also for an elastic solid.) But for
the combined system of a solid-gas phase and an adjacent solid-liquid phase
we can in principle vary Asg by moving the bulk liquid phase along the
solid. In this variation we have that dAsl = -d/—\Sg . It is then possible

to measure

Yop pAsg * Yeq dAsl = (Ysg - Ysl) . dASg (3.2:6)

Thus only Ysg T Yo is a well defined thermodynamical quantity. Only

this difference will turn up in the formulas.

3.3. The second-order variation of the energy of a phase.

Consider any phase o in our pore system. The energy Ua is a function
of the entropy Sa » the extension Ya of the phase, and the number of

moles NS and N: of water respectively air:
U =U (S ,Y LN* ,N%) (3.3:A)

Ya is the volume, when o is a gas phase or a liquid phase (a = 2,g),
and it is the area when o 1is a surface phase (o = s, sg, %g). Uu is a

function only of the entropy, when the phase « is a part of the solid:
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From (3.2:A-F) we have for Ua :
= + a + a H
dUa = TdSa Y Y, dYa n, dNW , dNa (3.3:B)
For a solid phase (a=s) there is only the first term on the right side.

Here, for the different types of phases, Yy and YOl are:

yg ) _pg Yo T Py Yor ~ Yer ysg B Ysg ylg B Yig
) (3.3:C)
Yg = Vg YQ = VR Ysl = AS2 YSg = Asg Ylg = AZg
For convenience we will occasionally use the notations:
Xq =S, X, =Y, Xq = NG X, = NG (3.3:0)

Let us now consider any variation in our thermodynamical system. A
phase a changes from the original equilibrium to a new (internal) equi-
librium state. The four variables Xi of the phase a are then changed to
new values:

Xo = X, v+ AX, i=1,2,3,4 (3.3:E)
i i i
The change in energy is, using a Taylor expansion:
4 ;44
I U, aX, + 5 & & U.. aX. X, + ... (3.3:F)
- i i 2 .00 i i 7]
= i=1 j=1

Ui and Uij are the partial derivatives of Ua :

aU 52U
a

U, = —= u

i 73X, i35 3 K. (3.3:6)
1 J

It is important to distinguish clearly between the independent variations
and the induced variations or changes of other thermodynamical quantities.
To dencte independent variations we will use Latin d. Consider as an

example a variation where a water meniscus is slightly displaced. The dis-

placement at a point on the meniscus is given by a small vector dr . The
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independent variation dr is a vector function defined for each point of
the meniscus. The displacement dr gives a change AX2 in X2 , that is in the

volume or the area of the phase. AX, is a functional of the independent

2
variation dr . We may expand AXZ in terms of increasing order in dr . The
first and second order terms we denote GXZ and 62X2».
In general we have:
AXi = 6Xi + GZXi A i=1,2,3,4 (3.3:H)

Here AXi is the total change in Xi in the variation. 6Xi and 62Xi are

the first and second order terms of the expansion of AXi in the small
independent variations. In the special case when dXi is one of the in-

dependent variations, we have:

AX, = dX. or §X. = dX. , 62X. =0, .. (3.3:1)

i i i i i
We now have:

MU= 8+ 80 ... =
o a a v (3.3.3)
4 2 1 4 4

= LU (8X, + 87X, + wuu) v 3 T D ULt (8Xe + wa )t (8X. + Lau ),
joq 1 i i 2 i=1 j=1 i) i j

4
U = 1 U, sX, (3.3:K)
a  soa 17
i=1
The second-order variation in the energy Ua is then:
> 4 > g 4 4
U = & Ul s 8T, o+ 5 I I Ui' . GXi * 86X, (3.3:1)
R Y : i=1 j=1 1 J

From the fundamental equation (3.3:B) for the phase o we have

u, =T U2 =y U, = u U, = u_ . _ (3.3:M)
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double sum may be simplified since:

4 U,

Uss 68Xy = & == » 86X, = 8l (3.3:N)
RSN AR B 373 J i

I).M N

J

Here GUi is the first-order variation in Ui .

We now have, returning to the usual notation:
SU =T85S +y &Y +u oN® +u_ &N> (3.3:0)
o a a a w o ow a a

2 2 2

- 2 2,0
§ Ua = T8 Sa Y, 8 Ya MR 3

Qa
Nw t Mg 8 Na ¥

1 . a a a , an© 2 a,
*3 {dTa 5Sa + éyaoGYa * Su 6NW + dua 6Na} (3.3:P)

Here for example 6Ta is the induced first-order change in the tempera-

ture of the phase a . For a solid phase we have only the terms involving

S .
a

the

Let

The second part of (3.3:L orP) is the second-order change in U, in
variation:
X, > X. + 86X, (3.3:Q)
i i i
us denote this part 62U& . Then from (3.3:L and P) we have
A AR ST
87U, =3 I I gyax 8Kt 8%yt
i=1 j=1 i
_ 1 . <o . o @ a a A
= §-{6Ta Gaa + Gya (SYOl + 6uw 6NW + 6ua GNa} (3.3:R)

Any phase a must be internally stable, that is stable for any internal

variation between different parts of it. This leads to the important con-

2

clusion that ¢ U& is non-negative for all values of 6X1 = dSa s 6X2 =
= = o = a .
<SYOl , 6X3 6NW and §X, 6Na :
20" 5 0 (3.3:9)
o -
This will be used in paragraph 3.4.
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Consider in order to show this two equal parts A and B of a phase a .
Consider an arbitrary variation where the quantities d>(i , 1=1,2,3,4, are

transferred from part B to part A:

Ao xB o ax, BB L. (5=1,2,3,2) (3.3:T)
1 1 1 1 1 1

Then we have for part A:

A 4
U = 1ou, ax, (3.3:0)
a . 1 1
i=1
4 4
PETARSEE U dX, dX,
R S B R J

The coefficients Ui and Uij are of cause the same for both cases
since these are of equal size. For part B we have the same formulas with
—dXi instead of dXi . Thus the first-order variationscancel out and the second-

order variations are equal:

U = 87U (3.3:V)

su =2 e 2P -2 AP s 0 (3.3:W)
a a a a -
Thus SZUQ is non-negative for all variations and we have proved formula
(3.3:S).
3.4. Stability of a meniscus region.

Consider a region around a water meniscus S in a pore:
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Figure 3.4:I. A water meniscus S in a pore surrounded by a certain region.

The internal stability of this system is studied in section 3.4.

We will in this section study the intemal stability of this thermodynamical
system, which consists of a water meniscus in a pore and a certain sur-
rounding region. Internal stability refers to the case, when the system is
regarded as completely isolated. The system consists of a solid phase s ,
a gas phase g and a liquid phase & . Between these there are three surface
phases: solid-liquid sf , solid-gas sg , and liquid-gas %g .

The stability of this isolated system requires that the total energy
is minimal relative to any small internal variation with constant total
entropy. These variations are transfer of entropy or heat between the six
phases, transfer of air and water between the five pore phases and dis-
placements of the water meniscus S. Deformations of the solid part will
not be confidered, since the solid is assumed rigid. The total entropy and
masses of.the system are constant in the variation. The outside boundary
of the total system is fixed.

The system is thermodynamically stable if:

AU =32 AU >0 a = s,8,g,54,3g,88 (3.4:A)
o O
for all possible small variations of these types. The first-order terms

L

of Al must vanish, sines they are oroar smegariatione, Thie gives the
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conditions for thermodynamical equilibrium. Stability then requires that
the second-order variation in the total energy is non-negative. Thus we
have the stability requirements:

sU = & GUa =0 (3.4:8)
a

2 2

§U =1 §U >0 ' (3.4:C)
o

a

The second-order terms dominate over terms of higher order. Thus there

is stability, if 62U is strictly positive for all variations. The stability
will be determined by terms of higher order, if GZU becomes zero for some
variation. This special case will not be considered. Excluding this possi-
bility we have stability, if 62U is positive for all variations and in-

stability, if there exists a variation for which 62U is negative.

3.4.1. First-order variation in energy.

We will first in this section study the first-order variation §U .
We will again get the results of section 2.2. on force equilibrium. The
derivation here will give a better motivation of the interpretation of the
quantity Ysg T Y, @ a force along the pore wall acting on the boundary
I of S. The approach of this section will be used in subsequent sections.

By adding the expressions for GUa in formula (3.3:0) for the six
phases we get the total first-order variation in the energy:

SU = 2 GUQ = T8S + Y, GNW T, GNa - Dg (‘SVg

(3.4.1:A)

TPy 6V2 * Ysg dAsg ’ Ysﬁ GASE ¥ Ylg SAQg

Here 65 is the sum of the first-order changes in entropy for the six
phases, while GNW ancd de are the changes in the total amounts of water
and air. For the considered isolated system these changes are zero: &S =

SN = 0 , and &N =0
w

3]

0

»



Since the outer boundary of the total region is fixed and

the solid is rigid, we have:

5vg = - 5\/2 6A52 = - GASg . (3.4.1:B)

Thus the first-order change in the energy is given by:

sU = Yﬂ,g 5A£g + (Ysg - YSZ)GASg + [pg - pl)(SVl . (3.4.1:C)

Ylg GAlg represents the work required to

increase the area of the liquid-gas surface by an amount &A

The first term

g

against the surface tension The second term (Ysg - YsQBAs

Ylg ) g

can be interpreted as the work required to increase the area of

solid-gas surface by an amount GAsg at the expense of the

solid-liquid surface against a force Ysg T Ygg oo Finally,
(pg - DQ)5V£ is the work required to increase the liquid volume
by an amount GV2 at the expense of the gas volume against the

pressure difference pg T Py

The meniscus S 1is displaced to a slightly different
position in the considered variation. The displacement of each
point on the surface S 1is given by a vector dr . See

figure 3.4.1:1 below.

Figure 3.4.1:1 A displacement of the water meniscus S . The
displacement is for each point on S given by
a vector dr



Let the surface S be given in parametric form by
r = rlu,v) , where the parameters u and v wvary in a certain
region in the (u,v)-plane. Then the displaced meniscus is given
by © = rlu,v) + dr(u,v) . The displaced meniscus must be a
reasonable physical surface, which fits to the given pore walls
The function dr(u,v) 1is of course continuous. We will assume
that dr(u,v) 1is twice continuously differentiable. We also
assume that the derivatives of drlu,v) are of the same order
of magnitude as the small gquantity dr itself. The only
exception from these assumptions is when, in a few arguments
in the following, the displaced surface consists of two smooth
parts. The normal to the displaced surface will have a dis-

continuity along the curve, where these two parts meet. In

these cases we thus allow well-behaved discontinuities in the

derivates dr, and dr,, along simple curves on S .

The first-order change of liquid volume Vl is:

8Vy = [ dr - ndS = [[ &n dS . (3.4.1:0D)

S S

Here §&n = dren 1is the first order displacement of S 1in the
normal direction n . ,

The first-order change of solid-gas area Asg is given by:

A=~ ¢ dr « m" ds = - § &m’ ds . (3.4.1:8)

Sg
r r

Here T denotes the closed boundary curve of the meniscus S
along the pore wall. The unit vector m’ is perpendicular to T,
tangent to the pore . sand Tt ints int cr cors o side S Flgurs

iv4.1:11., The quantity &m' = irem’ yives the first-order

iisplacement along the pore wall in the 4ire. tion of m*



Figure 3.4.1:II Cross-section perpendicular to T showing a
meniscus S meeting the pore wall. The vector
dr gives the displacement of S . The first-
order displacement along the pore wall perpen-
dicular to T (in the direction of m') is
given by &m’ .,

The first order change 6Alg in the area of the meniscus

is a bit more difficult to obtain. We will derive the expression
using the work of the forces that act on S in the displacement.
This method is very convenient and it will be used later in
deriving second-order variations in section 3.4.9.

The work done on the meniscus in the displacement dr is

in the first order YRgGAlg . The surface tension Ylg of the
curved surface with mean curvature «k gives rise to a net

faorce 2ylg kn per unit area. See formula 2.2.:E and figure

2.72:1V. In order to balance this force and the surface tension

along the boundary we must apply a force -2y2g|<n per unit

[

area acting over the surface S and a force m per unit

Ykg
length acting on the boundary T . The displacement work is

also given by the work done by these balancing forces in the

displacement dr

Ylg 5Agg = [ dr '(‘ZYQgKﬂ)dS + é dr-(ngnﬂ ds (3.4.1:F)
S T

or



8A, = - [[2xdren dS « § drem ds . (3.4.1:6)

S r

g

The displacement at the boundary T is in the first order
parallel to the pore wall. The component in the direction of

m' is &ém' . The other component in the direction of T does

not contribute to the integrand drem of the line integral:
drem = ém'm'+m = ém' cos(6"') . (3.4.1:H)

Here ' denotes the angle of contact (on the liquid side)
between the pore wall and the meniscus S at the considered
point on T .

Thus we have:

dAlg = - ﬂ'ZK-éndS + ﬁ cos(6')}8m’ ds
S r (3.4.1:1)

§n = dren dm' = drem’ .

This formula for the first-order variation of the area of a

surface in a displacement dr is well-known. Tt originates

B{ A derivation of the formula using ordinary

from Gauss
methods of differential geometry is given in 9a).

The geometrical interpretation of formula 3.4.1:I is
straight-forward. The line integral represents thelincrease in
area due to a displacement of the surface in thg outward tangent
direction m . See figure 3.4.1:I11 below. The change of the
area of a surface element dS in the normal displacement én

is according to formula 3.4.1:1 given by -2« éndS = —(gﬂ + gﬂ)ds.

1 2
Here R1 and R? are the radii of curvature in two perpendicular
directions on S . Let ds, and dsz be two line elements in

these two directions on the surface. Then the area of the corre-



sponding surface element is dS = ds1 °d52 . The area after the

normal displacement is

s - 80y g - 8ny . - 8n _ 4o ,
dey (1 - &) ds, (1 RS A (3.4.1:3)

N
N

see figure 3.4.1:III. Thus the surface integral of formula3.4.1:1I
does indeed give the increase in area of S 1in the normal dis-

placement 6én .

dm'cos(8') I\

/ \

_&n
| ;fblﬁ RH
==

2
— /' ds 1
- én

Figure 3.4.1:III The figure illustrates formula 3.4.1:1 for
the change in area of a surface S in a
displacement.

Other contributions to the change of area are of higher
order in dr . For example the tilting of a surface element

on S gives a contribution to the change in area proportional

to the second power of the angle of tilting. The tilting angle

is givén by the derivates dfu and d;v . Thus the tilting
gives second-order terms in dr and its derivatives.

The first-order variation of the energy of the membrane

region is now from formulas 3.4.1:C,0,E and I:

- 2 ‘ (coso' - S5 SL 5
SU = H H*{Dl-(,KYgg)éndb +Y2g ﬁ cos —f?;——~ m'ds
S T 4

(3.4.1:K}



The variations 6én and &m' may be chosen at will. Then from
the equilibrium requirement that &8U 1is zero (formula 3.4:B),

we get again:

pg TPy = 2 KYlg . (3.4.1:L)

We also get:
Yeoo Y
cose' = -S& _SP . cos0 . (3.4.1:M)

>

Thus the angle of contact 6' between the pore wall and the
surface S must be equal to the contact angle 6 determined by
F 3 5 -

the thermodynamical guantity (Ysg YSZJ/Ylg . The contact

angle © depends on the kind of material in the pore wall. It

may thus be different for different parts of the pore wall. It

will also in general be a function of the thermodynamical state

of the system.

3.4.2 The expression AARg + cos(G)AASg r 2k V.

From formula 3.4.1:C and the equilibrium conditions 3.4.1:L and M

we have:

= Ykg {GAQg + cos(e)dASg + 2« GVQ} . (3.4.2:A)
This linear combination of the changes of the two areas and the
volume within the brackets is of particular interest in the
equilibrium and stability investigations. We will meet the same
combination in the expressions for the second-order variation
of the energy, 62U , in section 3.4.4. As & preliminary we
will study this combinati in in this section.

It is convenient to introduce a special notation. Consider

any water surface or meniscus S in a pore. Lot «

denate
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the mean curvature and ©' the angle of contart at the pore

wall., If S is a non-equilibrium meniscus, then « and 6’
will vary throughout S and [ respectively. let « and 6 be two

constants. Then for a displacement dr of S we define:

T = Tldr] = AA, + cos(B) AA__ + 2x AV . (3.4.2:8B)
Lg sg Q

The physical meaning of T 1is the following. The first

term AAlg is the work reguired to increase the area Alg

against a surface tension of unit strength. The second term

CDS(GJAASg is the work required to increase the area Asg against

a force cos(0) . Finally the third term 2k AV2 is the work
required to increase the volume V2 against a pressure differ-
ence 2K .

The expansion of T in increasing orders of dr is:

T = 86T + GZT A R (3.4.2:C)
where

ST = GAQg + cos(G)GASg + 2K 6Vl (3.4.2:0)

20 L 42 . 2 2 .

8°T = § Aig cos(06)6 Asg + 2¢ 6 V2 . (3.4.2:F)

The formula 3.4.2:A reads

SU = vy, 6T . (3.4.2:F)

From formulas 3.4.1:1,E and D we get the first-order

variation of T

8t = - [f2(x’ - «)8n dS ~ § (cose’ - cos6)ém’ ds
E r

§n = dre-n sm' = dr-m’ . (3.4.2:06)



For ameniscus in equilibrium with k=«k' and 6 =6' we have

ST = 0 or:

SA

% + cos(e]éASg + 2k GVQ = 0 . (3.4.2:H)

This nice formula is valid for any displacement dr of a

meniscus which is in equilibrium; that is for any meniscus of con-

stant mean curvature «k and of constant angle of contact ©

The formula is an immediate consequence of the Gaussian formula

3.4.1:1 for an equilibrium meniscus. This is pointed out in 10}.
Let us now consider a continuous sequence of displacements

SE enumerated by a parameter e

S, r = r(u,v,e) (u,v) € Q . (3.4.2:1)

The undisplaced surface S is given by € = 0:

S =8 : r = r(u,v,0) (u,v) € Q . (3.4.2:3)

Now T will be a function of €: T =T(e) .

Consider first the displacement from S to S . Here
- € e+de
we have dr = %g de . Formula 3.4.2:G gives:
N T - T
a - Il 20« k) z=n dS + § (coseé cogb) x- - m' ds
Se re
(3.4.2:K)
By integration we get T as a function of the parameter:
€y -
, or -
T[QO) = f {- ‘UZ(K - «) e " n ds +
0 S€
+ ¢ (cose’ - cose)gg - m’ ds}de . (3.4.2:L)

r
€



5% - n dS de is a volume element in the pore

@

We note that
space which is swept by the sequence Sa . Moreover %g « m' ds de
is a surface element on the pore wall between FO and T .

The volume and surface elements are positive or negative depending
on whether the displacement in that region is in the positive
direction, that is into the gas side, or in the negative direc-
tion. A complication is that the sequence SE may sweep back

and forth in the pore space for increasing € . But for a
monoctonous sequence Se , where for each u and v the dis-

placement is in the positive or in the negative direction for

all e , we have:

T(EO) = - [/ 2(k' - kIndv + ff (cos6’ - cos6)n dS
S 5 T »T
o0 € €
s] o
(3.4.2:M)
n = nlu,v) = sign(e éi.ﬁ) .
’ o de
Here SO - SE signifies the pore space between So and SE ,
s} s
while T _ > T is the pore wall between T and T
s} €, &) €,

3.4.3 The second-order variation of the energy.

By adding the expressions 3.3:P for the six phases of the

meniscus region we get the second-order variation of the energy:

§%u = ¢ §%U_ =
o
= T 8% e, TN, ¢ ug 87N+
2 2 2 i 2, 2
+ ng $ Agg + Ysg 8 Asg + Yay § ASQ pg 8 Vg pgﬁ V2 +
2 ’
+x 8%y ) (3.4.3:A)



Here 62U& is defined by formula 3.3:R. The quantity 625 is

the sum of the second-order variations in entropies for the six

2 2

phases, while & Nw and & Na are the second-order changes in

the total amount of water and air. For the considered isolated
2 2

S=0, 8N =0 and &°N_ = 0.

system these changes are zero: 6 » a

Since the outer boundary of the total regioh is fixed and the

solid is rigid, we have:

4 o 2 - - .
§ Vg = 8 VQ § A52 8 Asg . (3.4.3:8B)

Then with formulas 3.4.1:L and M we obtain:

2. 2 2,0, .
87U = vy, 87T + §°U (3.4.:C)
where
8°T = 6%A, + cos(8)6%A_ + 2x 6%V , (3.4.3:0)
g sg 2

%0 = & sCuy (3.4.3:E)

o
(a=s,2,g,s8,8g,4%g)

, 1 4 4 azua

I 1 3 IR 8% 8% (3.4.3:F)
i=1 j=1 J

In formula 3.4.3:F we have used the notations of .paragraph 3.3:

X, =S , %X, =V or A , X, =N and X, = N* . For the
1 a 2 a o 3 w 4 a

solid phase a = s there is only the entropy term (i=j=1)
The formula above for 62U is the starting point for the

mathematical analysis of the stability. The second-order variation

GZU is divided into two part:,

The first part, 62T , is (apart from the factor ng)

Teg,
a geometric quantity «dependinyg on the displacement dr of the

meniscus S with the constant mean curvaeture «k and the constant



contact angle 6 . It does not depend on the thermodynamical
states and properties of the various phases of the considered
system. It only depends on the shape of the surface © and on
the shape of the pore wall in the vicinity of the boundary
curve T .

The second part 62U' , the sum over 6?Ué , depends on
the considered variation as well as on the thermodynamical pro-

o

perties of the six phases. From formula 3.3:5 we have that sach
term 62U& is non-negative for any variation. We note from
formula 3.4.3:F above that the second part involves only products
of first-order variations.

Paragraphs 3.4.4-6 below deal with the first geometrical
part of 62U and 3.4.7 with the second phase-dependent part.
In paragraph 3.4.8 the results on the stability of a meniscus
region are summarized.

The contact angle 6 depends con the type of pore wall.
The general case, when the contact angle 6 is any given varying
function over the pore walls, is discussed in section 3.4.9.
We only note that formula 3.4.1:K is still valid. In this case
(Ysg - Ysk)/yﬁg = cos{®) is a given function along the boundary

curve T' . Formula 3.4.2:H is replaced by:

6A2g - $ costola)) &m' ds + Uk 6V2 = 0 . (3.4.3:0)
. 1" -

)
3.4.4 A formula for &°T

)

The second order variastion & T in a displacement dr of an
equilibrium meniscus S is according to formula 3.4.3:0D given

by



- 2 2 :
87T = 8%A; + cos(0) STA .+ 2 87V . (3.4.4:A)

3

It is an arduous task to express the variations 62A£g , GZASg
2

and § V2 in dr . The expressions become complicated and in-
tractable. I have not found much on this in the literature. But

the second-order variation of the area of a surface in the

special case of a normal displacement dr = dn n 1is given in
Blaschke Qb)_ In our notations:
2 _1 2
§°hge = 7 [ {v(dn)+vidn) + 2K{dn)“}dS
s (3.4.4:8)
dr = dn n . )
Here K = Kq Ko is the Gaussian curvature for each point on S .

See appendix 1. The differential operator V is the gradient
on the surface 6. This operator is discussed in the following
section 3.4.5 and in the appendix 1 which gives the elements of
differential geometry.

It is much easier to derive 62T directly from the formulas
in paragraph 3.4.2. There, a sequence of displacements S was

€

considered (formula 3.4.2:1):

Se: riu,v,e) (u,v) € . (3.4.4:D)

Formula 3.4.2:L is applicable:

£ o
Tldr] = Tle )= [{-[[2(x" - K)%g-ﬁ ds +
o 5
E -
+ é (cose' - cosB]%%-%' dslde . (3.4.4:E)
T

€



When € 1is zero, we

integrands of the surface

of the first order in €

Now let &k’

mean curvature and angle of contact in the displacement

K'(u,v,eO) - x =

i

8'(u,v,e ) - 8
0

Then for the integrand

arl(u,v,e)
x o€

have

and

ds =

en(u,v,e) = 2

that «' = k and 6’

89"

K'(u,v,eD] - k'(u,v,0)
6'(u,v,€o) - 0'(u,v,0)

of the surface integral

2(k’ (u,v,e) -

§x' _dr
e 8T

€ €
o 0

= 0 . Thus the

integral and of the line integral arc

be the first order variations in

dr

Sk’ + ... (3.4.4:F)

86" + ... (3.4.4:0G)

in 3.4.4:E we have:

k' (u,v,0))dS(u,v,e) x

« n{u,v,0) dS(u,v,0) + ...

(3.4.4:H)

In the lower line only the first-order term is written out.

Here «'(u,v,e)

given by (u,v)
dS(u,v,0)

S and S_ .
€ o

and so on.

is the mean curvature of SE

The quantities

we have in the same way:

(cos®’ -

= {(cos(8’'(u,v,e)) -

= - sin(8) 88° . dr
€ €
o 0
Here ds{u,v,e) and

line elements on Fg

em'

cos(8'(u,v,0)))

m

ds(u,v,0)

ids =

ar{u,v,e) .
3¢

"(u,v,0) ds(u,v,0) + ...

and T

o]

dS(u,v,€)

in the point

and

are the areas of corresponding surface elements on

For the integrand of the line integral in 3.4.4:E

m’ (u,v,elds(u,v,e)=

(3.4.4:1)

are the lengths of corresponding



Inserting 3.4.4:H and I in 3.4.4:E we get:

€

o
TLar] = f (- ff 125 6 up - ACu,v,0) dS(u,v,0) ¢+ ...]
o S€ €o

+ § [- Ssin®) 60’ dr-m’(u,v,0)ds(u,v,0)+...]1}de

T Eo
€

= - [[6x’ dr-n dS—-;- ¢ sin(6) §6' dr.m' ds +

SO I‘lD

(3.4.4:3)

On the last line above we have the second-order terms of T[dr] .
The first order terms are zero for our equilibrium meniscus.

With the usual notations
dr-n = &n sin(6) dr-m’ = sin(8) &m' = én (3.4.4:K)

we have the fundamental formula for the second-order variation

of an equilibrium meniscus:

§°T = - [f 6k &n as -

%¢ 68’ &n ds . (3.4.4:0)
S r
Here §&n = dr.n is the first-order displacement in the normal
direction. The quantity §&x' denotes the first-order variation
in the mean curvature for each point on S , while 66' is the

first order variation in angle of contact. These quantities are

illustrated in figure 3.4.4:1 below.



Figure 3.4.4:1 The figure shows the notations of formula 3.4.4:L

for 62T . The equilibrium meniscus S with
boundary T is displaced to a new position in

the displacement dr . The mean curvature is then

changed from « to x + 6k’ + ... , while the

angle of contact is changed from 6 to 6 + &6'...

It is possible to derive the fundamental formula 3.4.4:L
above by considering the work done by the forces acting on the
meniscus during the displacement dr . This very instructive
derivation is made in section 3.4.9 for the more general case,

when the angle of contact & may vary over the pore wall.

3.4.5 The variation &8k’ of the mean curvature.

There is in reference 9c} an expression for the first-order
variation of the mean curvature in the case of a normal dis-

placement dr = dn n

28k’ = V- Vldn) + (4’ - 2K)dn . (3.4.5:A)

Here ¥V is the gradient operator associated with the surface

For a surface given by r = rlu,v) the gradient operator V

is defined through:

o
O



-F 2 ) (3.4.5:B)

where

E=r r F=r.r G=r -r . (3.4.5:C)

the operator V+V is identical with the operator A of
reference 9c) through formula A1:0 in the appendix on differen-
tial geometry.

Let «k and « denote the two principal radii of curve- -

1 2
ture. See appendix A1. Then with formulas A1:Q and A1:R we have:

2 <1

4k° - 2K = 4(———= Ky * Ky . (3.4.5:D)

The gradient operator V for a surface S is discussed in
some detail in appendix A1. We only note that the gradient
operator has the following important property. Let ¢ = ¢(u,v)

be a function defined on S . Then Vy for a point on S is

a vector iying in the tangent plane to S in the point:

- (P (- FAy ., poed .Y _
v Eo-F2 {r (6 55 - F 3y} * n (E 50 - F 55}, (3.4.5:E)

Let dt be an infinitesimal vector between two adjacent points
on S and dy the difference in ¢ between the two points.

.

Then we have

dy = dt * vy . (3.4.5:F)

The second term in formula 3.4.5:A is not difficult to

interpret. Let R1 = 1/K1 and RZ = 1/K2 be the principal radii
of curvature to S . Then the normal displacement dn dimishes
these radii to R, - dn and R, - dn . Thus we get the following

contribution to the increase of the mean curvature: -



(3.4.5:6)

“The first term of 3.4.5:A, VeV(dn) , is a bit more difficult
to interpret. It gives the change in mean curvature due to the
fact that dn = dn(u,v) is a varying function over S

We need the generalization of formula 3.4.5:A to an arbitrary

displacement dr

dr = &n n + dt (8n = dr- n) . (3.4.5:H)

Here dt 1is the component of dr that is tangent to the
surface S . A direct calculation of &k in the general case
is rather laborious. We will therefore instead use the following
method.

et P be a point on the surface S and P’ the corre-
sponding point after the displacement. Let Pn be the point on

the displaced surface that lies on the normal to S at P
P: rlu,v)

P': r(u,v) + dr =

= r(u,v) + énn + dt

P i rlu,v) + (8n+...)n

Figure 3.4.5:1 The figure shows
a point P on a
menisecus S and the
points P* and P_ on
the displaced
meniscus.

Then from formula 3.4.5:A we get, writing out the first-order

terms:

€ (P) = k(P) = 2{V+V(n) + (2 + Kg)ﬁn} v ... (3.4.5:1)



We now need the increase in mean curvature from Pn to P?
on the displaced surface. The vector from Pn to P' is in the
first order dt . Let k' denote the curvature and V' the

gradient operator for the displaced surface. Then from formula

3.4.5:F we have:

k'(P*') - K'(Pn) =dt - V' (k') + ... =
=dt - (Vv ..k v o..a)e = dt .« Vk + ... .
(3.4.5:7)
We have used that in the zeroth order V = V' and « = k' .

By adding formulas 3.4.5:I and J we get the formula for

the first-order variation in an arbitrary displacement:

Sk' = % {v-9(6n) + (K? + Kgldn} + dt . vk
(3.4.5:K)

dr = énn + dt .

For a meniscus in equilibrium the mean curvature «k is

constant. Then Vk wvanishes and we have:

Skt = 2 (V- 9(6n) + (k2 v k2)6n} . (3.4.5:1)
2 1 2
{k constant)
3.4.6 The variation 66' 1in angle of contact.

The contact angle 6 between & meniscus S and the pore wall

at a point on the boundary curve T 1is given by:

cos(8) = n + n . (3.4.6:A)

Here ﬁs is the unit normal to the solid pore wall directed

into the pore volume. Let mp denote the unit tangent vector



of the boundary curve T . Figu

re 3.4.6:1 below shows the

various unit vectors used in this section.

Figure 3.4.6:I The figure sho

used in the cal

ws the different unit vectors
culation of 66’

From the figure 3.4.6:1 we have:

3
1

3
i}

3
n

cos(6) m + sin(e8) n
- sin(e) m + cos(8) n

sin(8) m* + cos(8) ﬁs

~The angle of contact 6’

and the pore wall is given by

cos(

8') = cos(® + 866" +

, 8n  and 6ns are

8' , n and HS in the displac

of the equation above give:

- sin(6)86' = n - 8n_ + n

= S

(3.4.6:B)
(3.4.6:C)

(3.4.6:D)

between the displaced surface &'

) = (n + én + ...J-(BS + 565+.
(3.4.6:E)

the first-order variations of

ement dr . The first-order terms

Sn - (3.4.6:F)



The displacement dr of a point on the boundary I to a

new position on the pore wall may be written:

dr = ém' m' + émr Mmoot . . (3.4.6:0G)

Here é&m’' and &m are the first-order displacements in the

T
directions of m' and 5F respectively . The guantity 555 is
the change of the normal HS in this displacement along the pore

wall. Then from formula 3.4.5:F we have:

Gns = (dr - Vs)nS = [(8m' m' + 6mrmr) -Vs]ns . (3.4.6:H)

We have here applied formula 3.4.5:F on each component of ng
The symbol VS is the gradient operator for the surface of the
pore wall.

With formulas 3.4.6:B and G the displacement of a point on

the boundary may be written:

dr dn.n + 8t + ... ,

(3.4.6:1)

8t = &m' cos(8)m + émP%F

The displacement &t 1is tangent to the meniscus S .

The quantity &n denotes the change of the unit normal
of the meniscus S in this displacement. The problem of getting
8n for the displacement 3.4.6:I is analogous to the problem of
calculating 6k’ 1in the preceding section for a displacement

dr = én n + 8t . The total change 8n is the sum of a change

1

sn in the tangent displacement &t and a change 552 in the

normal displacement é&n n

The change 651 in n due to the displacement &t is

in the same way as above for dns

sn' = (8L +V)n = [(8m’' cos(8)m + smemy) - VIR . (3.4.6:3)



A formula Fop the change in n in a displacement is given

in reference 12a):
§r% = - n x [Vx(8n )] =
= - nx [V(&n) xn] =
- V{dn) . (3.4.6:K)

On the second line we have used a formula from 12b).
In conclusion we have the following formula for the first-

order variation in n in an arbitrary displacement:

&n = - Y(&n) + (8t + V)n

(3.4.6:L)

dr = §n - n + &t
Using 3.4.6:C,D,H,J and K in 3.4.6:F we get:

- sin(@) » 668' = n_ - ['<5mr My Vin +

+ (- sin(8)m + cos(8)n) « { - V(&n) + [6m’ cos(@)m s« Vlin} +
+ (sin(o)m + cos(@)n )-[sm'm' = VIn +n - [smmy + v 10 (3.4.8:M)

Let m denote the arc length along T . Then we have from

T
formula 3.4.5:F:

[m

n = m . A = .—a_ .
T 'VS]nS = [mr Vln amr . (3.4.6:N)

Let Kg denote the curvature of the pore wall of the boundary
curve -T 1in the direction of m' , that is perpendicular to T.

Then from formula A1:P in appendix 1 we have:

Kg = - mre [(m’ -VSJBS] . (3.4.6:0)

Let K denote the curvature of the meniscus S at T in the
direction of m , that is perpendicular to T.Then in the same

way we have:



Ko = " m e [(m+ V)n] . (3.4.6:P)

Since n 1is a unit vector, we have

(m e Vi(nen) = 2ne[(m + ¥)n] . (3.4.6:Q)

o
Ll

In the same way we have for HS

0 = ng o* [(m' -Vs]ns] . (3.4.6:R)

Inserting 3.4.6:N-R in 3.4.6:M we get:

an
- sin(0)86' = sin(B)ém’ (- KS) + Gmr n e ami +
: - s ' . - 3n
+ sin(8)me V(dn) sin(8)8ém’ cos(8)( Km] + Gmrn5 35;
(3.4.6:9)
With the use of formula 3.4.6:A and d&m' = &n/sin(8]) we get

the Fundémental formula for the first-order change in angle

of contact 6’

36 Ks-chos(e)

r 3m + &n W - l';l » V(é&n) . (3.4.6:7)
T

§6' = &m

T %%— , gives the change in 6' due to

T .
the displacement GmT in the direction of TI' . For a meniscus,
where the contact angle 6 1is constant along the boundary curve
r., %%r is zero and this term vanishes. Then we have:
r

The first term, &m

K -~k cos(8)
s m

§0' = 6n _—S—ZL—I'\W)_ - m * V(6&n) . (3.4.6:U)

(6 constant)



3.4.7 The second part 62U' of the variation of energy.

The change GZU in energy for a displacement dr of a meniscus
in an isoléted meniscus region is given by formulas 3.4.3:C-F.
We have in the preceding sections studied the first part 62T

of the second-order variation of the energy. The second part

52

U' of formula 3.4.3:C depends on the thermodynamical properties
of the six phases of the meniscus region. From formulas 3.4.3:E,F

and formula 3.3:R we have:

2 2

§"Ur = 6 U& » (3.4.7:A)
o
62U’ =1 ; ; EfEE__ §X. 86X. =
2 axiax. i j
i=1 j=1 J
21 (RPN o a .
= 2{6Tu SSa + éya 6Ya + 8u, GNW + Gua dNa} . (3.4.7:8)

Here we have used the notations of paragraph 3.3
The displacement dr determines the change 6v£ of liquid

volume and the change 6A of solid-liquid area. Then we

s®

have for the isolated meniscus region using formula 3.4.2:H:

GVg = - le GASg = - dAsk 6A£g= cos(ﬁ]&ASl— 2K5V2
(3.4.7:C)
6V2 and 6A51 may have any values. Then GVg , GASg and
GAgg are given from these formulas.
We will in this section study the dependance of 62U' on

the variations of entropies and masses for a given displacement
dr . In our study of stability we are interested in those varia-
tions which give the smallest possible value for 62U‘ and thus

for GZU



The six changes of entropies are only subject to the

condition of isoclation:

z 65a =0 (3.4.7:D)

{(a = 5,2,g,5%, sg,. 2g)

For the five variations of amounts of water and the five variations

of amounts of air we have:

z éNz =0 g GNZ =0 (3.4.7:€)

(a = 2,g, s, sg, 2g)

In the quadratic form 3.4.7:A,B we now have fifteen

(2+5+4+4) independent variables &V, , SA . , 85, ..., sNY& .
2 si s a

In the variation we get certain induced changes of the temperatures,

GTa » and chemical potentials, 6u3 and Gug , in the different
phases o . Consider for given dr and thus for given GVQ and
GASZ any possible variation in entropies and masses. The phases

a are mutually stable for variations of entropy and masses.
This follows from the internal stability of the phases using
formula 3.3:5. Suppose now that, after the considered variation,
heat or entropy is transferred between the phaseé so that we

get the same temperature in all phases. Then this will diminish
the energy, since thermal equilibrium is established. In the
same way the energy will diminish, when water and air are trans-
ferred between the phases, so that we get the same chemical
potentials in all phases.

Thus for given 6V2 and (SAS2 the smallest value of GZU:

is given for a variation such that the new temperatures and

chemical potentials are the same in all phases:



<5TOt = 8T (o = 5, %, g, sk, sg, 2g)
6113 = Su, {(a = &, g, s, sg, 2g) - (3.4.7:F)
Gu: = Gua - " -

This gives thirteen (5+4+4) relations between the variations.
Then we have only two independent variations 6V2 and GAl left.
Inserting 3.4.7:F in 3.4.7:A and B and using 3.4.7:D-E we get

for this smallest GZU’ for ‘given 6V2 and 6A

s®
2., _1 . -
87U’ = 5 L 6ya dYa =
a
-1 - - :
=3 { épg GVg Gp2 6V2+ 6Y326A52 +6YSgGASg+ GYZgGAlg}
(3.4.7:G)
Using 3.4.7:C we get
2': - - - -
287U [6(pg pl) 2k Sy£g16V£+[cos(6]6y2g 5(Ysg stldAsz
(3.4.7:H)
This variation giving the smallest change for 62U’ for
given &V and 6A is of a rather special type. The meniscus

2 sf

of the isolated region is conceived to be displaced to a new

position giving the prescribed &V and GAS . This new posi-

L L
tion is normally no equilibfium position. Then the meniscus is
kept fixed, and thermal and chemical equilibrium between the six
phases is established. Then G(Dg‘PQ) in formula 3.4.7:H is the
change of the pressure difference over the meniscus for the state

thus established. The guantity GYQg is the change of surface

tension of the meniscus, and G(Ysg—y ) is the change of

s

Ysg_ysl These three changes will depend linearly on the



on the prescribed values &V and 6A » since we are dealing

2 s&
with first-order changes. For example for the change Gpg in
gas pressure we will have:
Gpg = KV GV2 + KA GASZ o : (3.4.7:1)
The coefficients KV and KA will be functions of the thermo-

dynamical variables of the different phases.
Thus we get for the combination of changes in formula 3.4.7:H

expressions of the following type:

d(pg-pl) - 2k 6y£g = ng{evv 8Vy + By sinte)GAsl}

. N " . . 2
cos(e)sylg— 6(Ysg Ysl) = Ylg{BVA s1n(6)6v2+ Bpp Sin (6)6As£}

(3.4.7:3)
The factaers Ygg and sin(8) are introduced for future con-
venience.
Inserting these expressions in 3.4.7:H we get:
620" = Y28 (g (6v.)% + 2 8. 8V, (sin(8)8A ) s
2 AY L VA L sg
. 2 , ]
+ BAA(Sln(G)GASQ) } , (3.4.7:K)
where
8V, = [ 8n ds sin(68)8A_, = § &n ds (3.4.7:L)
S r
and Y
Byath
. Pva"Pva _
Bua = — 7 — (3.4.7:M)

Formula 3.4.7:K will be used in the mathematical analysis of

stability in section 3.5.



From formula 3.3:S we have that 62U& is non-ﬁegative for
any variation. Then this is also true for the sum 62Uf . Thus
the quadratic form 3.4.7:K is non-negative and the coefficients
will satisfy:

20 >0 )2 . (3.4.7:N)

Buv Ban Byv Ban 2 (Byp

If we make the pore region surrounding the meniscus larger and

larger, then the changes 6(pg—pl), 6y2g , and &(y )

sg_Ysl

of intensive variables for given GVR and GAS will become

L
smaller and smaller. Thus we have the important conclusion that,
in the limit of an infinite pore region around the meniscus, the

coefficients BVV » BVA , and will be zero.

Ban

The coefficients depend on the thermo-

Byy » Bya and Bpp
dynamical variables of the six phases in a rather complex way.

A calculation of the coefficients would require a detailed know-
ledge of the thermodynamical properties of the bulk phases and
surface phases. We will not discuss this problem any further.

A very simple example of the type of calculations necessary to

get the coefficients is given in section 3.5.1.

3.4.8 Stability of a meniscus region.

In this section we will summarize the results of the
previous sections. We have considered a displacement dr of an
equiliﬁrium meniscus in an isolated meniscus region. See figures
3.4:1 and 3.4.1:1. The second-order variation of the energy is
according to formula 3.4.3:C:

2, _ 2 20 ' .
§7uU = ng §°T + 87U . (3.4.8:A)

The first term is given by formula 3.4.4:L:



82T

JI 8«’ 6n ds -

% § 68’ &n ds . (3.4.8:8)
r

Here d&én = dren is the first order displacement in the normal

direction.

The change &6k’ of mean curvature is from formula 3.4.5:L:
) 2 2 ‘
28k’ = V +V{(&n) + (ky o+ K5)8n . (3.4.8:C)
The change 66’ 1in angle of contact is from formula 3.4.6:U:

Ko™K cos(8)

§6' = 6n W)—— - m°V(6n) . (3-4-8!0)

It is here assumed that the contact angle 6 is constant over
the pore wall and that 0 < 6 < 7 . The case of varying contact
angle © over the pore wall is treated in the following section
3.4.9. Thq modifications required, when 6 = 0 or 6 = m , are
discussed at the end of this section.

From formula 3.4.8:B-D we have:

26°T = - [ [vevisn) + (Kf + K%)Gn]dn ds +

K Cos(e) K

+ ﬁ [W dn + m- V(Gn)]dn ds . (3-4.B:E)
r
This formula may be simplified by the use of formula A1:U in

appendix 1. We then get the following fundamental formula:

26°T fj [V(6n) + 7(6n) - (% + «3)(6n)7] ds

Km cos(0)- K

+ -SW (6!’!) ds . (3.4.8:F~)_



The second part 62U' of the second-order change in energy

in formula 3.4.8:A depends on the changes in entropies and masses.

2

The smallest possible value of &§°U' for a given displacement

dr is from formula 3.4.7:K of the following type:

2., _Yg 2 .
§°Ur = B {8, (8V,)7 + 2 B, 8V, (sin(8) 8A_ ) +
« B, (sin(8) 8A_ )%} ) (3.4.8:6)
AA sf
where
8V, = ff &n ds sin(8)8A_, = $ &n ds . (3.4.8:H).
S T

We will from now on only consider this variation in entropies and

2U’ for given dr .

masses that gives the smallest §
Finally, we now have from 3.4.8:A,F and G the (smallest)
second-order variation in energy in a displacement dr with

first-order normal component én

v
6% = ~2B { [[ [V(sn)+V(6n) - (k] + «3)(6m)71dS +
s

chos(e)—K 2 2
(8n)° ds + By, (Jf 6n dS)” +

T sin(8)
r
2
+ 2Byaff 8n dS § 8n ds)+ By ( § 8n ds)T} . (3.4.8:1)
S r r
In this fundamental formula &n = 8n(u,v) 1is any function over
the surface S . Stability requires that this expression is non-

negative for all 6n

The second part GZU' of 62U in 3.4.8:A is non-negative

for any variation. Thus if 62T is positive for all variations,



then this is also true for 68°U , and we have stability. This

stability criterion with 62T given by formula 3.4.2:E is stated

by Gibbs 13]. The second part GZU' is zero for displacements
§n  with SVR =0 and (SAS2 = 0 . Thus if there is a displacement
6n with 6V, =0, 6A_, = 0 and 8°T < 0, then &°U is nega-

tive and we have instability. When neither of these two possibi-
lities occur, the stability investigation requires a study of
both 6°T and &%U°’

It is appropriate to introduce the following terminology.

A meniscus S is called strongly stable if

8%t > 0 for all én . (3.4.8:3)

(The case 6n = 0 is of course excluded.)

The meniscus S 1is strongly unstable if there exists a displace-

ment d&n such that

2. . ) )
§%r < 0 sV, = 0 8A_, = O ) (3.4.8:K)

Finally the meniscus S is called weakly stable if the following
two conditions are fulfilled:

2

i. There exists a displacement 6n with &°T < O
2 p (3.4.8:L)
ii. 6°T > 0 for all displacements with 6V£ =0
and 6A =0
s

These two conditions are essentially the negation of 3.4.8:J and K.
The remaining possibilities with GZT = 0 for some variation in
the cases 3.4.8:3-L are more complicated. The stability may be
governed by terms of higher order than two. We will not study

these more complicated special cases. i

With this terminology we have that, if a meniscus S is

strongly stable, then S together with any surrounding meniscus



region is stable. If, in the other extreme, a meniscus is strongly
unstable, then any.surrounding meniscus region is unstable.
Finally, if the meniscus is weakly stable then the stability of
the meniscus region will depend on the surrounding region, that

is on Byy - Byp and Bpp

Thermodynamically the region around the meniscus acts on the
meniscus through 62U' as a restoring force in the displacement.
wWhen the meniscus is strongly stable, we have stability even
without the use of these restoring effects of the different phases
in the meniscus region. When the meniscus is strongly unstable,
there is a displacement with 62T < 0 such that GVZ and
SAsl = 0 . In this displacement the different phases are un-
affected. Consequently there is no restoring force, and we certain-
ly have instability.

When the meniscus is weakly stable, the stability of the
meniscus region will depend on the strength of the restoring
forces from the phases of the region. Let us first consider the
case when the surrounding pore volume of the meniscus region is
very large. Then, for a given displacement, for example the change
in gas pressure, Gpg will be very small. The restoring forces
of the phases are very small. Mathematically this means that the

2

coefficients and are very small, and 67U' |is

Buv * Bua Ban
very close to zero. Thus the meniscus region will be unstable for
a suFFiEiently large surrounding. Suppose now that we diminish
the surrounding region. Then the restoring forces and consequently
62U' will increase for a given displacement (except for dis-
placements with 8V, =0 and GAS2 = 0 where 62U' = 0 ). By

making the surrounding region sufficiently small we can increase



2U' as much as we choose. The meniscus region will be stable

8
‘iF it is sufficiently small. In conclusion we have instability
for a weakly stable meniscus together with a sufficiently large
surrounding, but stability for the meniscus together with a
sufficiently small surrounding.

Thus, coarsely speaking, a weakly stable meniscus has to
fluctaute cooperatively with a surrounding of a certain size in
order to reach a state of lower total energy. The probability for
the required fluctuation will decrease with increasing size of

these surroundings.

Modifications when 6 = 0 and ©® = 7w . We have in this

section assumed that sin(6) 1is not zero. The modifications
required, when the contact angle 6 is equal to 0O or = , are
straight-forward.

For the displacement &m’ = drem' in the m’'-direction we
have that ém’ sin(8) = 8n . See figure 3.4.1:II. Thus the normal
displacement &n is zero at the boundary T , when sin(8) is

Zero:

én =0 (6=0,m) . (3.4.8:M)

There are no restrictions on the displacement &m’ along the

3

pore wall. The quantity 6n/sin(6) 1is to be replaced by &m' in

the different formulas:

Sn
sin(9) T

- &m' (6=0,m) . (3.4.8:N)

Then the line integral in expression 3.4.8:F for .62T vanishes:

2

26%T = [[ [V(6n) - V(bn) - (k]

S

© k2)en?las . (3.4.8:0)

(6=0,m)



2

Formula 3.4.7;H for 67U’  is still valid. But in the linear

expressions 3.4.7:J we must omit the factors sin(6) .

Mpg'Dl) VA évzg = Ylg{va SV, * Bya ‘SAsz}

(3.4.8:P)
cos(e)dylg - G(Ysg-Ysl) = Ylg{BVA 6V£ + BAA 5Asl}
Then we get for 62U’
8BS B
2 Lg VA 2 VA 2
§TUr = {(B - =—)(8V, )" + B,,(8A + — 8V, )7}
2 Vv BAA L AA sf BAA 2
(3.4.8:Q)
The change 6As£ is given by
§A , = § om’' ds . (3.4.8:R)
r
The displacement &m' and thereby GASZ may be chosen indepen-

dently of én . Then from 3.4.8:Q the smallest value of 62U'

for given 6&n is:

2 (A% L
where 32
VA
BO = B, - w2 . : (3.4.8:7)
\AY VvV BAA

Formula 3.4.8:I for the total change in energy is replaced by

2 Y 2 2 2 2
8°0 = 2B ([f [V(6n) V(sn) - (k] + k5)(6n)%1aS + By, (] 6n 05)7)
S S

(6=0,m)
(3.4.8:U)

where 6n 1is any function over S which is zero on the boun-

dary T



3.4.9 Alternative derivation of 62U for a more general situation

There is an alternative, very instructive way to derive the

change in energy 62U by considering the work done by the

forces that act on the meniscus in the imagined displacement dr

We have hitherto assumed that the contact angle 6 is
constant throughout the pore wall. We will in this section remove
this restriction and allow 6 to vary over the pore wall. The
contact angle 6 1is also for each point on the walls a function
of the thermodynamical state. The given function 6 over the
pore walls refers to the contact angles at the intitial equi-
librium state of the meniscus region. The function 6 will be
discontinuous along a curve, where two different kinds of pore
walls meet. |

We assume that 6 is continuously differentiable over the
pore wall,* except alqng some simple curves, where 6 may be dis-
continuous. We will also allow corners and edges on the pore
walls along some curves. Thus we have that the contact angle 8 is
a smooth function over smooth pore walls except for some curves,
where the contact angle 6 or the unit normal to the pore wall
have discontinuities. .

Consider now a displacement dr of a meniscus in an isolated
meniscus region. This equilibrium meniscus S is displaced to
a new surface S' in the pore. The forces acting on S balance.
But on S’ there are unbalanced forces. In the gas and liquid
phases there are after the displacement the pressures pg + Apg
and Py ¥ ApQ . The surface tension of the meniscus is ng + AYZg’

and the mean curvature at a point on S’ is «k + Ac' . The

pressures and the surface tension give a net force on the meniscus.



See section 2.2 and especially.formulas 2.2:C,E and‘figures
2.2:111,IV. This net force acting on a surface element dS’ of the dis-

placed surface S' 1is directed in the normal direction n' . The

force is:

Faysr = (opgmBp, + povdpy » 20y *Ayy ) (k*Ak"))In’ dS" =
= (-pg+p2 +2Y2gK"6pg*5p2 *ZKéYkg +2Y2g6K' +..)(n +..0)(dS+ Ll )=

= 2vy, o’ ndsS + (- 8lpypy) * ZKGYEg)a ds + .. . (3.4.9:A)

The zero-order terms vanish because of the force equilibrium
condition (formula 2.2:D). The last line gives the first-order
terms of the force. Here dS and dS' are corresponding surface
elements on S and S' . The first term of the last line is
the force due to a change &k’ 1in mean curvature and the second
term is the force due to changes in the thermodynamical variables
pg s Py and ng in the vicinity of the surface element.

At the boundary T' of S’ there is a net force acting

along the pore wall. Let m (corresponding to m' at T ) be
the unit vector which is tangential to the pore-wall, perpendi-
cular to T' , and points in the direction from liquid to gas.
Let 8' =8 + 66’ + ... be the‘angle of contact. Then the force

on a line element ds' along the pore wall due to the surface

tension Ylg + AYgg is:

(yzg + Aylg) cos(6')m” ds' . (3.4.9:B)

The difference Yy may be interpreted as a force per unit

sg_Y5£



length acting on T in the direction of m’ . Then the following

force acts on the corresponding displaced lineelement ds' of T':
[Ysg_Ysl + A(Ysg—ysl)]m ds . (3.4.9:C)

sg—Ysl in the dis-

placement dr of a point on the boundary T . This change has two

The quantity A(Ysg_ysk) is the change of ¥y

different causes. Firstly, there is a change due to the displace-
ment from a point on’the pore wall with contact angle 6 to a
new point with contact angle 6 + A8 . These two values are the
contact angles in the initial thermodynamical state of the
meniscus region. This first part of the change is then from
formula 3.4.1:M:

ate

Ysg-Ysk) = YJLg cos (8 + A0Q) _Y!Lg cos (8) . {3.4.9:D)

Secondly the displécement dr induces a change in the thermo-

dynamical states of the phases of the meniscus region and thus

a change in y_. -y Let us denote the first-order term
sg 'si&
II ~
8 (Ysg Ysl)
I1 _ LI _ ‘ .
A (Ysg Ygg) = 8 (Ysg Yog) *o--- . (3.4.9:E)

From 3.4.9:B-E we get the net force along the pore wall on a

line element ds' of T°'

= - . ¥ _ I _ IT _ n [
=1 (Y£g+Aylg)Losde) *Ygg Vay + A (Ysg Yool * 8 ng Ysl)]m ds

il

ds'’

=[_(Y2g+6Y2g + ...) cos(B8+66" + ...) + Yog Yy +Y£gcosw+66+."%

~ Yy, c08(8) sty Jreua] (M'+...)(ds+...) =

sg_Ysl



II

Yo sin(e)(se--se)ﬁ' ds + [& " (y ) - (Sygxcos(e)]r?\' ds+...

sg-Ysz
(3.4.9:F)

Here we have again used formula 3.4.1:M. The last line gives the

first-order terms of the net force. The quantity 66’ denotes

the first-order change in anglé of contact and &6 the difference

in contact angle between corresponding points on T' and T in

the initial thermodynamical state. Thus the first term of the

last line gives the force due to a change in angle of contact &6’

in the displacement and the force due to the difference 66 in

contact angle between corresponding points in the displacement

on the pore wall. The second term gives the force due to induced

changes in the values of the thermodynamical variables Yy »

Sg

You and Ylg in the vicinity of the considered line element.
The change &6' in angle of contact is studied in section

3.4.6. From formula 3.4.6:T we have:

k -k _cos{6)
S

- 390 m . .
66 (Smr amr + &n W m V(Gn) . (3-4.9.(3)
Aere Gmr = dr -%F is the displacement along the boundary curve
I' , while %%— is the rate of increase in 6 ip this direction.
T

The displacement dr of a point on the boundary T to a
new position on the pore wall may according to formula 3.4.6:6

be written:

dr = ém’ m' + Gmr mpo* ... . (3.4.9:H)

Here GmF and 6&m' are the displacements along T and perpen-

dicular to T in the direction of m' on the pore wall. Thus

the change 68 1in contact angle is:



B 96 , 08 .
8§ = dmr. amr*dm T . (3.4.9:1)
Here %%T is the rate of increase in 6 1in the direction of m',

that is perpendicular to T along the pore wall.

From 3.4.9:6 and I we get:

R -96
Kg chos(@ A7

sin(9)

66’ - 88 = &n - m * V(&n) . (3.4.8:7)

We note that the change of 6 along T does not appear in this

formula.

Now in order to keep the displaced meniscus S’ 1in its
non-equilibrium position the extraneous forces - ?dS' and
- ﬁds' are needed.For each surface and line element.

Let us now consider a continuous sequence of increasing
displacements tdr , where t goes from zero to one. Then the
extraneous forces needed to keep the meniscus in position will

in the first-order increase linearly with t from zero for t=0

to —FdS' and -Fds' for t=1 . In order to perform the dis-

placeﬁent dr we must exert these linearly increasing forces

on the meniscus during the increasing sequence of displacements.

.

The work done on the meniscus from these extraneous forces are:

1
We,gr = [ Lff (- ¢t ﬁds, + )edrdt +§ (-t ?ds,+...)-d5 dtl =
o S r
1 - - - -
= -3 Lff Fugr =dr + ¢ Fygr = drl « ... . (3.4.9:K)
S r

The second line gives the work done up to the second order, since
ﬁdS' and ﬁds' » given by 3.4.9:A and F, contain only first-

order and higher terms.



Thus the displacement dr may be performed by doing the
work Wg,g» o©ON the meniscus region. Otherwise the region is
isolated from the surroundings. Then the increase in energy is

equal to the work done on the system:

AU = (3.4.9:L)

Wsssgo

The first-order terms of this equation vanish. The second-order

terms give with the use of 3.4.9:A,F and K:

Y
620 = L& {- [| 26c'6n dS - § (88'-60)6n ds)
5 r (3.4.9:M)
1 I ,
+§-{H [6(pg~pg) —ZKGYRg]Gn ds + §Byzgcodb)— 8 [Ysg-Yslllam ds}

S

The work needed to perform the total displacement depends on
the sequence of thermodynamical states in the six phases and in
different parts of these during the displacement. The state within
the six phases may deviate more or less from internal equilibrium,
and there may be smaller or greater deviations from thermal and
chemical equilibrium between the phases. The necessary work will
increase, when these deviations from equilibrium increase. We
get the smallest possible value on the work needed, when the six
phases are in internal equilibrium and when the phases are in
mutual thermal and chemical equilibrium during the complete
sequence'of displacements.

Thus we will consider the case, when the six phases of the
meniscus region are in internal and mutual equilibrium during
the displacement, except for the forces on the meniscus, which

are balanced by the extraneous forces. Then the temperature and



chemical potentials for water and air have constant values
throughout the meniscus region. We have the type of situation
considered in section 3.4.7, where 62U’ was studied. The seconc
line of 3.4.9:M above corresponds to formula 3.4.7:H for the
change in energy GZU’ due to indﬁced changes in pressures

and Y:s.

We have allowed discontinuities in tﬁe contact angle 6 and
in the direction of the pore wall normal along simple curves on
the pore walls. This gives two possible complications. Firstly
the boundary T may intersect such a curve of discontinuity.
Secondly a segment of the boundary T may follow such a curve.
The conditions for force equilibrium in these two situations
are discussed in sectioﬁ 2.2 on pages 28-35.

Let us first consider a point where I intersects a curve
of discontinuity at a non-zero angle. The orientation of the
surface S at the poin£ of intersection at the boundary of S
must satisfy condition 2.2:L,M. The upper line of formula 3.4.9:K
is of course still valid. The force ?ds' will have a disconti-
nuity at the sequence of intersection points during the dis-
placement. But still Eds' is of the first order. the extension
of the part of the boundary affected by the discontinuity during
the displacement is also of the first order. Then the contribution
to the work from the discontinuity is of the third order in dr .
Thus the intersection of a curve of discontinuity does not affect
the second-order terms of our stability analysis.

Consider next a segment of the boundary T where T follows
a curve of discontinuity. Let GC denote the angle of contact

on the liquid side between the pore wall and the meniscus S .




Then ec must satisfy the inequalitities 2.2.:0 on page 31. Let
ec satisfy strict inequalities: 81<ec<62—a . The quantities
6

8 and o are defined in figure 2.2:VIII on page 31. We

17 72
have from the discussion on page 31 that the restoring force per
unit length of the displaced boundary will be finite. The required
work in a displacement of the boundary segﬁent will be positive
and of the first order in dr. But all other contributions to

the energy change AU are of second order. Thus any displacement,
where a segment of T that follows a curve of discontinuity is
displaced, leads to a state of higher total energy. The system
will be stable relative to this kind of displacements. In the
following analysis we only have to consider displacements for
which the boundary T is kept fixed along those segments of the
boundary where it follows a curve of discontinuity.

We also have to consider the special case, when OC is equal

to 91 or 6.-o in formula 2.2:0. Then we have the ordinary

2
situation of the continuous case for displacements of the boundary
to the side of the pore wall that corresponds to the equality

in formula 2.2:0. A displacement to the other side (corresponding
to the inequality in formula 2.2:0) will be stopped. by a finite
restoring force.

"The first line of 3.4.9:M corresponds to ylgézT in the
previous case for constant 6 . We will still use this notation.
From Formulag 3.4.8:A and B we see that the only difference is
that 66' is replaced by 86'-88 . Comparing 3.4.9:J and 3.4.8:0
we see that the term ﬁQT is to be added to « cos(8) - x_ ,

am s

when 6 is variable. Instead of formula 3.4.8:F we now have:



26°T = [[[V(6n) -+ V(8n) - (k% + x2)(6n)?1aS »
S

k_cos(6)-x +28

m s o

m' 2
+ TRl (6n)° ds . (3.4.9:N)

The second line of 3.5.9:M is more complicated. Let us first
consider the case, when the pore wall consists of é certain number
of regions of different types. For each region there is a constant
contact angle. The boundary curve T will pass through different
regions of the pore wall. The boundary curve is then divided into
a number of segments Fi , each with a constant contact angle ei.
The displacement d8m’ 1is zero for any segment of the boundary,
where it follows a curve of discontinuity.

In the earlier case of constant 6 throughout the pore wall

studied in section 3.4.7 the changes 6(pg-D£) - 2k SYQg and

cos(e]dyzg - GII( ) were given by linear combinations of

Ysg_ysk

. i
(SVjl and 6AS2 according to formula 3.4.7:J. Let 6As£ denote

the increase in area covered by liquid for the part of the pore

wall with the contact angle ei:

i , _ n .
GAS,Q = J‘ §m ds —fﬁe—lv) ds . [3.4.9.0)

r. T,
i i

o _ e B -
Now d(pg pl) 2k Gygg and cos(e)dykg §T Ysl) will depend

58
i

. II .
linearly on GVQ and all G/—\S2 . The change § (Ysg Ysl) is

of course in general different for the different types of pore

wall. Then we get expressions of the following type:



- ' 3 i
‘ G(pg-pz) - 2x Gng' ng{BVV SVy + I By s1n(6i)6A51}
i

II . " .
COS(ei)GYQg -4 (Ysg-ysl) ] = YZg{BVi 51n(ei)cv£ +

. . j .
+ I Bij 51n(6i) 51n(6j36A82} . (3.4.9:P)
J
The factors Yy and sin(ei) are introduced for future con-

venience. The various B coefficients will depend on the thermo-
dynamical variables of all bulk and surface phases of the system.

Formula 3.4.9:M may now be written:

§%0 = Yoe 8217 + 87U , (3.4.9:9)

where 62T is given by formula 3.4.9:N. The only difference from
the previous formulas 3.4.8:E or F is that 6 has different values
Bi on each segment Fi of I.

The second part 62U' is given by formulas 3.4.9:M and P:

Y .
2, _ & 2+ . i .
U’ = —75 {8y 8Vy) 2 E By; sin(8,)6A_, 8V,
i
. . i i
+ T I Bij 51n(ei) s1n(9j]6AS2 GAsl} , (3.4.9:R)
iJ
where
B, = 2(BY. + B7.)
vi © 2 Pyi Vi
8V, = Jf 8n as sin(6.)8As, = [ &n dS (3.4.9:5)-

S r.
i



We have again as a consequence of formula 3.3:S that 62U' is
non-negative.

The generalization to the case of a continuously varying
contact angle 6 1is now straight-forward. The first part GZT in
GZU of formula 3.4.9:0Q is given by formula 3.4.9:N. The second

part GZU’ is given by an expression of the following type:

20, . N 2,
s7Ur = —B {8, (8V )7 + 28V, § B, (s)én ds +
r

+ 6§ Bppls,s’) 8n(s) 8n(s’)ds ds’ . (3.4.9:7)
rr

This general case is of course from an experimental and practical
point of view extremely complicated. The formula is given for
the sake of completeness.
We will end this section by giving the exact definition of
T in the general case of varying contact angle 6 . The definition

of formula 3.4.2:B is replaced by:

T = T[drl = aAA ff' (-n) cos(6)dS + 2 AV, . (3.4.9:U)

r-r’

Lg

Here AA is the increase in area of the meniscus, and AV2 is

Lg
the increase in liquid volume in the displacement dr . The sur-
face integral is taken over the part of the pore wall between
the initial boundary curve T and the boundary curve T’ after
the displacement. The factor n 1is equal to -1 on that part
which is changed from solid-liquid to solid-gas, while n is

equal to +1 on the other part which is changed from solid-gas

to solid-1liquid.
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Formula 3.4.2:6 for the first order variation 6T is still
valid. From this we get that formula 3.4.2:M is still valid. Then
the line of argument in section 3.4.4 starting with formula
3.4.4:0 is also valid. The only modification starting in formula
3.4.4:1 is to replace 66' by 686'-886 ., since 6 may now vary.
Thus, in accordance with the upper line of 3.4.9:M, we have in

stead of 3.4.4:L:

26°T = - [ 26x’ 6n dS - § (88’ - 86)8n ds .  (3.4.9:V)
S r

The quantity ngT is the work necessary to achieve the
displacement of the meniscus, if all phases were to remain in

their initial thermodynamical state.

3.5 Mathematical analysis of the stability of a water meniscus.

3.5.1 Introduction

We will in this section 3.5 analyse the mathematical side
of the stability of a water meniscus S with boundary T 1in a
pore. We will study the stability of the meniscus together with
an isolated surrounding meniscus region. See figure 3.4:I. The
surface S has a constant mean curvature «k . There is given a
contact angle 6 depending on the character of the pore wall.
The angle of contact ©6' between S and the pore wall (on the
liquid side) is equal to the prescribed contact angle 6.

We assume that 6 1is constant over the pore wall. If the
pore wall consists of regions of different types, then we get
g certain contact angle for each region. When the character of

the vore wall changes continuously, we get a continuously varying



contact angle over the pore wall. The modifications necessary in
these two cases are given at the end of this introductory section.
The pore wall may in general have corners and edges, where the
unit normal of the wall has a discontinuity. We assume that the
pore wall is smooth in the vicinity of the boundary curve T .
The boundary curve may in fact intersect corners and edges on the
pore wall, if the equilibrium condition 2.2:L-M is fulfilled. The
case when the boundary curve follows a corner line is touched upon
on page 101.
The surface S 1is given in parametric form by r = r(u,v) ,
where the parameters u and v vary over a given domain of the

(u,v)-plane. Let ¢ be a sufficiently regular function defined

n

on S @ ¢ (u,v) . Then we define the functional J for the

meniscus S through:

[V - Vo - (k2 + k2)9°1dS + o2 ds . (3.5.1:A)
1 2
s r

Jly]

Here the function o , defined along T , is given by:

chos(e]-Ks

o = - . (3.5.1:B)
sin(0)

The symbol ¥ denotes the gradient operator on the surface. It
is defined by 3.4.5:B and C. The quantities kK, and Kk, are the
principal curvatures of S . See appendix 1 on differential
geometry. The quantities Km and K, are the curvatures of S
and of the pore wall at I in the direction perpendicular to T.

(The gas side defines the positive sides of the surfaces.)
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From formula $.4.4:F on page 77 we nave for a small displace-

ment of S with normal component &én n

J[én] = 2 877 . (3.5.1:C)

Let S and T be defined by

v v
Sy = /[ wds Ty ~ $ vds . (3.5.1:D)
S r
Then Sdn will give the increase GVR in liquid volume, while
Fén/sin(GJ gives the increase (SASZ in the part of the pore

wall which is covered by liquid.

We define the functional I[y] through

1Iv] = By (5,07 + 28y, Sy Ty + BpalT)® (3.5.1:E)

The coefficients BVV , BVA , and BAA depend on the thermodyna-

mical characteristics of the region surrounding the meniscus ©§ .

The functional I[y} 1is a positive semi-definite quadratic form

in SW and Fw (formula 3.4.7:N on page 76).

From formulas 3.4.8:G and H on page 78 we have for a dis-

placement with normal component &n n

§7Ur = Iég 16n] . (3.5.1:F)

Let Jt denote the sum of J and I :

Jylel = Jlyl « Tly) . (3.5.1:6)
Then the total change in energy for the meniscus region in a dis-_
placement with normal component  6&n n is according to formulas

3.4.8:A, 3.5.1:C and F:



¥
§%u = ——%—th[Gn] ) (3.5.1:H)

2 2

The physical meaning of ng 8°T and 6“U’ has been dis-
cussed at length in sections 3.4.2, 3and 7. We have a displace-
- Y
ment with normal component &n n . Then ng 62T = _%E J[én] is
the work necessary to displace the meniscus against the surface
tension Ylg , the pressure difference p Py and the force
¢ . Yyg
Ysg_Ysl = Ylg cos(®) at the pore wall. The guantity > J[y]
gives the work of the displacement, when these forces retain their
values of.the initial equilibrium state. But during the displace-
Y
ment these forces will change. The second part —%g I[én] = 52U’
gives the work necessary to overcome these induced additional

forces from the changes GYRg , é(pg-pl) and 6&(y )

sg_ysl
The analogy between our water meniscus and a stretched
membrane is very illuminating. In this analogy the membrane is
stretched along the surface S, and it is attached to the pore
wall at the boundary T . The tension of the infinitely flexible
membrane is ng . The fluids above and below the membrane have
the pressures pg and pl.The membrane is linked to the pore
wall but is is free to move along the wall. The force from the
membrane at the boundary T in the normal direction of the
pore wall is balanced by the linkage device. At the boundary T

there is a force Ygg cos(8) (= vy ) per unit length acting

sg-ysl
along the pore wall perpendicular to I' . See figure 3.5.1:1



Figure 3.5.1:1 The figure illustrates the analogy between the
water meniscus and a stretched membrane with a
tension Yoo * The boundary of the membrane is
kept € attached to the pore wall, but it
may move along the wall. There is a pressure dif-
ference p -py, over the membrane. A force
ngcos(e) g per unit length acts on the boundary.

The work needed to overcome these forces in a displacement

of the membrane from a position S +to a new position §' is:

AA

ws_)sn = ng llg + ng CUS[e)AAS

g ¥ (pg-pllAvl. (3.5.1:1)

Here AAgg is the increase in membrane area, AASg the increase
in pore wall area above the membrane (solid-gas area), and AVR
the increase in the pore volume below the membrane (liquid volume].

!
The quantity —75 J[8n] gives this work up to the second order

for a displacement with normal component én . Inserting the
equilibrium conditiaon pg‘p2 Z yng we get the geometrical inter-
pretation of J[8n] )
T YA ) / B ‘ E
= i[8n] = 8°A + ros(BY8°A_  + 2k &V . (3.5.1:1)
Ly 5 2



If the forces are unchanged during the displacement, then
i
_TE J[én] gives the total change in energy of the membrane

region. But for example the pressures pg and Py, may change
due to changes in gas and liquid volumes. The tension Ylg in
the membrane may depend on the area of the membrane. Then Ylg
will change during the displacemént. The work necessary to over-

Y
come additional forces of such types is given by —%5 I[én] .

Consider as an example a case where the pressures pg and Py

change because of a volume change 6Vg = - GV2 in the displace-
ment. The work 62U’ necessary to overcome these forces is:
§20 = 1 (- §p w8V - sp -8V } ) (3.5.1:K)
2 g g L 2
Let kg and kl denote appropriate compressibilities for the
two fluids:
Vv aV.
1 g 1 L
k= = o= o« kg = = 5 o (3.5.1:L)
g Vg apg '3 VR sz

L

pore volume is constant: dvg = - 6V£ . Then from formulas

3.5.1:F,K,L and E we get for this example:

Here Vg and V are the volumes of the two fluids. The total

2

! ! ) . (3.5.1:N)

= 1 .
thenl = o— (g Vv

(s
Lg gvg L ¢

2 _
} (Vo)™ =

BuvBen
This is a special case of 3.5.1:E.
The function o is defined along the boundary T by formula
3.5.17:B. A slightly different analogy between the meniscus and
a stretched membrane gives an instructive physical interpretation
of o . We have again an elastic membrane S with a tension Yy

g
between two fluids with the pressures pg and Py - The old



- 0o -

pore wall is replacedby a new one in the vicinity of the boundary
curve T . The new wall is generated by straight lines having the
direction of the normal n to S at ' . See figure 3.5.1:11.
The new wall is attributed a constant contact angle 6 = % .

The membrane is attached to the wall, but it is free to move
along the pore wall. In this new situation both terms Ko cos(0)
and K of formula 3.5.1:B for o will vanish. Let us now
imagine that we have along T springs with a spring constant

Yoo g per unit length of T acting on the boundary of the membrane.
See figure 3.5.1:I1.

Figure 3.5.1:I1 The figure illustrates an analogy between the
water meniscus and a stretched membrane. The
conditions at the boundary of the meniscus, which
are contained in the function o, correspond to
springs that act on the boundary of the membrane.
The spring constant is 7y, o per unit length
along the boundary curve.

The restoring force on a line element ds of the boundary curve
I' is equal to x ng ogds , where x 1is the displacement per-
pendicular to T along the plane pore wall. The boundary function
o may assume negative values.

Consider now « small normal displacement dr = 6&n n of

the membrane. Then the energy stored in the springs is equal to:
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Y
L& § o(6n)? g . (3.5.1:0)
r

The energy of the displacement of the membrane against the forces
Yo

shown in figure 3.5.1:I1 is then given by -§5 J[én] , where J

is given by formula 3.5.1:A.

We will in our analysis include the possibility that o(s)

may become infinite: - « < og(s) < + » , We have instability when
o(s) = -~ on a finite segment of the boundary T . There is an
infinitely strong restoring force, when o(s) = +« on a segment

of the boundary. The membrane will be kept fixed in its original
position along such a segment of the boundary. Thus we will

always have:
p = 0 on those parts of T', where o = +» ., (3.5.1:P)

The situation with ¢ = + o may be realized, when the boundary T
follows an edge on the pore wall. Compare figure 2.2:VIII on
page 31. (The situation 6,l = 92 , a <0 and 6, < GC < 62 - a
gives o = + o , while 61 = 62 and a >0 gives o0 = - « ,)

The given formulas must be modified, when the contact angle
8 equals 0 or 7 Tince sin(e) appears in the denominator.

Then we have instead:

IW] = [99-9y - (k§ecs)p71as (3.5.1:0)
S ' {6 = 0,m)
2
Ify]l = 8\',v(sw) (3.5.1:R)
(6 = 0,m)
At the boundary T, % must be zero:
v =0 . (6 = 0,w) (3.5.1:9)
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We will finally give the modifications for the general
case, when the contact angle 6 1is any function over the pore
walls. The contact angle 6 and the unit normal to the pore wall
may even be discontinuous along some curves on the pore walls.
The intricacies, when the boundary T follows a curve of dis-
continuity, are discussed on pages 89-90.

Formula 3.5.1:A for J[¢y] 1is still valid in this general
case. In formula 3.5.1:B for the boundary function o one term

is to be added:

98
Kk _cos(8)-k_+
_ .m s _am’ .
o = STnTE) . (3.5.1:T)
The additional term %%7 is the rate of increase in 8 in the
direction m' . See for example figure 3.4.1:II on page 52.

The modifications for I[¢] are more drastic. Let us first
consider the case, when the pore wall consists of a number of
regions with a constant contact angle for each region. The
boundary curve T 1is divided into a number of segments Fi with

the constant contact angles ei . Then we define:

i _
Ty = [ ¥ 4 . (3.5.1:U)

r.
i

The functional I[y] is now given by:

2 AR T rd . (3.5.1:0)

I[‘p]=3vv[sw) i Ty Ty

i
+ 2 BVi Sw Tw

i i

Here I is a positive semi-definite quadratic form in the

. 1 L2
variables T ,I'7,..., and &
v 1%

In the general case, when 06 varies over the pore wall, we

have
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LWT = Byy(5,0° + 28 §8,,(s) ¥(s) ds «
r

+§ § Buals,s’) wis) pls')ds ds’ . (3.5.1:W)
T T

The functional I[y) is positive semi-definite.

In conclusion of this introduction we note that the mathe-
matical theory of stability presented in section 3.5 is inspired
by the methods of reference 19). The comparison of the stability
in certain related situations in section 3.5.2 has a counterpart
in 18a) for similar problems. The eigenvalue methods used in

section 3.5.5 are similar to the methods in 19b).

3.5.2 Some general conclusions. Strong and weak stability.

The meniscus region is stable, if GZU >0 for all dis-
placements, and it is unstable if there is a displacement with
62U <0 . There remains the possibility that GZU is equal to
zero for some displacement, although it never becomes negative.
In this case the stability will depend on terms of higher order

than two. We will not study this special case.

Thus from 3.5.1:H we have stability if for all P

Jt[wl >0 (3.5.2:A}
(The case ¢ = 0 1is of course excluded.) We have instability
if there exists a ¢ such that

Jt[w] < 0 . (3.5.2:B)

The remaining more special possibilities will not be considered.

Now Jt is the sum of J and I , where I 1is non-

negative. We have on page 79 in section 3.4.8 introduced the
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following terminology.

The meniscus is strongly stable if

J{y)l > 0O for all ¥ . (3.5.2:C)

(The case ¢ = 0 is of course excluded.)
The meniscus is weakly stable if

i. There is a ¢y with J[y] <O

(3.5.2:0)
ii. J[y] > 0 for all ¢ such that SW =0, Fw =0 .
Finally the meniscus is strongly unstable if
there is a ¢ such that J[y] <O, Sw =0, Fw =0 .
(3.5.2:E)

The case 3.5.2:D for weak stability is essentially the complement
to the other possibilities. The remaining more special possi-
bilities will not be considered.

We note again that strong stability for J implies the
stability of Jt , and that strong instability for J 1implies
the instability of J, . In the intermediate case of weak

t

stability we have to study the sum J+I = Jt in order to decide

on stability.
The function o , defined along the boundary T is allowed

to become infinite:

- ®w < gls) <+ . (3.5.2:F)
Here s 1is the arc length along the boundary curve T . It is
clear that there is a strong instability, if o = - « for a
segment of the boupdary. The meniscus may be stable when 0 =- @

just for some isolated points on the boundary. In the following
stability investipations we need only to consider the functions

g , where - o < ¢gl(s} < + =
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In the subsequent sections we will often study a family
of stability problems. The following general observations on the
stability performance for related cases will prove useful. Con-
sider first a certain meniscus S with a certain surrounding
region. Let us compare two cases I and II with different boundary
functions OI(S) and OII(S) . Let JI and JII denote the

corresponding functionals. Suppose we have

01(5) > OII(S) on T . (3.5.2:G)

Then from formula 3.5.1:A we have for any o :

Jrlwl > Jiplvl . (3.5.2:H)

From this we may draw .the following conclusions. Strong
stability in case II implies strong stability in case I. Weak
stability in case II implies weak or strong stability in case I.
Conversely, weak stability in case I implies weak stability or
strong instability in case II. Strong instability in case I
implies strong instability in case II. The functional I[y] is
the same in the two cases. Thus stability in case II implies
stability in case I, while instability in case I implies insta-
bility in case II.

We might say that case I has better stability than case II.

We will use this terminology in the following, when two related
stability problems are compared. Thus a case I has better stabi-
lity than a case II if all implications of the preceding paragraph
hold true. When the implications for J on strong stability,

weak stability, and strong instability above hold true, we will

say that J has better stability in case 1 than in case I1.
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Let us next compare two situations I and II, where the

meniscus SII consists of a certain part of the meniscus SI .

We may also say that SI is an extension of SII . The smaller
meniscus SII has a boundary that partly coincides with the

boundary of SI , and partly lies in the interior of SI . The

surface SII may also lie completely in the interior of SI

Let Fil denote the part of the boundary of SII that coin-

cides with T and let T7I be the rest of T . See figure

I II 11
3.5.2:1 below.

Figure 3.5.2:1 Comparison of a meniscus S; with a part SII of it.
The right case has better stability.

Let o1 be the boundary function for case I. For case II

we choose the following boundary function:

op on  Tyg

= . (3.5.2:1)

+oo on T

11
I1
Thus at the new boundary FEI the meniscus is kept fixed. Then

there is better stability for J in case II than in case I.
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Consider in order to show this any function wII for

stability problem II. The function wII is defined on SII'

and it is zero on FEI . Put:
¥ on Sy
v = . (3.5.2:3)
0 on SI—SII

The function 12 is defined and continuous on SI . The gradient

Vg has a finite jump at FEI . Anyhow JI[wI] is well-defined.
It is clear that JI[wI] = JII[wII] . Thus for any function on
SII giving a certain value for JII we can get a function on

SI with the same value for JI . Then certainly JII must have

better stability than JI .

Let us finally compare two cases I and II with the same
meniscus and boundary function but with different surrounding
regions. See figure 3.4:1 on page 48. The functional ' J 1is the
same in the two cases. But we have different functionals II and
III . The functional I[y] represents the work necessary to
overcome induced changes in pressures and surface tensions. For
a displacement given by a certain ¢ the induced changes and
this work will be smaller, when the region is extended. Let case
IT have a larger surrounding region. This region consists of the

region of case I and an additional part. Then for any ¢ we

will have:
I;0el > 1710wl . (3.5.2:K)

It is then clear that case I will have better stability than

case II.



To sum up, we have shown that the stability is improved
when the boundary function o is increased. We have also
shown that the stability is improved, when the surrounding
region is diminished. Finally, we have shown that the stability
of a meniscus is improved when a part of it is cut away, while
the new parts of the boundary are kept fixed. Conversely,
the stability deteriorates when the meniscus is extended beyond
a part of the boundary with o = +« , whatever boundary
function we choose for the new part. Especially we note that
when a meniscus with o = +« along the entire boundary is
extended, then the stability will deteriorate for any choice
of boundary function on the new parts of the boundary. For
future reference we will give two simple corollaries to this.
Suppose for a certain meniscus S that there is a function

¢ (¢ § 0) that satisfies:

Jl¢) =D ¢ =0 . (3.5.2:L)

Then there is not strong stability for S or any extension
of it. This holds true for any choice of boundary function o
and for any extension of S

To prove this we have only to note that because of
3.5.7:L there is not strong stability for S with the boundary
condition o = +

We also have the following obvious corollary .

Suppose that there exists, for a certain meniscus S ,
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a function ¢ (¢ ¥ 0) which satisfies:

Ji¢l =0

¢| =0 (3.5.24M)
T

S =0

¢

Then there is not weak (or strong) stability for S or any
extension of it. This is true for any choice of boundary

function o¢ and for any extension of S

3.5.3 Formulas for J[y] . A criterion for strong stability.

Let ¢ and ¢ be two functions defined on S . Then

as a generalization of formula 3.5.1:A for J[y] we define:

36w =[] {96y - (x5+k3)0y}dS + fooyds . (3.5.3:A)

S r

Then we have that J[y] = 3[y,9] . The function J[¢,y] is

linear in ¢ and in ¢ . It is symmetric:

Jle, vl = Jlv, ¢l . (3.5.3:B)



From formula A1:U in appendix 1 vie have:

JI Voevy dS = - [[ oVeVyp du + § ¢ mevy ds . (3.5.3:C)
s S r

Here V denotes the gradient operator on the surface S given
by formulas 3.4.5:B and C on page 65. The unit vector m is the
outward tangent vector to S at the boundary T . See figure

2.2:11 on page 19.

Let us now introduce the differential operator L :
2 2 . .
Lly) = - {vevy =+ (el x5 )p) . (3.5.3:D)
We will also use the notation:
Lptw) =0y + me VY . (3.5.3:E)

The expression Lr(w] is defined on the boundary curve I for
all points where o is finite.

From formula 3.4.5:L on page 67 we have

L{dn) = - 268« . (3.5.3:F)

Fermula 3.4.6:U on page 71 gives:
Lr[dn) = - 488" . (3.5.3:06)

Here §x' denctes the change in mean curvature and &8’ the
change in angle of contact in a displacement dr with normal
component  &n n.

With these notations we get from 3.5.3:A and C:

e, vl = f[o Liylas + § ¢ Lplylds . (3.5.3:H)

S r

We may change the order hetween ¢ and ¢ in thi§ formula, since
J is symmetric. This gives the analogue of the so-called Creen’'s
seond formula. Formulaes 3.5.3:A and H give the analogue of

Creen's first formula.
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Jly) = 31
When o = +

on this part.
be omitted in
From the

of J we get

J[¢+w] =

For the p

following impo
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different expression for J[¢,y] we get,putting

vopl = Jf v L(y)dS + § v Lp(ylds =
s r

= - [[olv-vy+ (Kfmg)wlds + ¢ yloy + meVy)ds
S

= ) (9yep - (Fee2)9?1ds + foyl ds . (3.5.
S T
for a part of the boundary, then ¢ must be zero
The line integral of owz over this part has to
the above formulas.
linearity of L and L and from the symmetry

r

the sum of two functions:
J¢1 + Jw] + 231¢,¥] . (3.5.3:3)

roduct of two arbitrary functions we have the

rtant relation:

Iwed = 97 o L(oddS + § vPoLp(e)ds + [f 6% Vyevy aS

S

The proof is a
expand the gra

integral becom

wZ

VoV
The first two

¥ Vo-ve

r S (3.5.3:K)

s follows. We start from formula 3.5.1:A and
dient V(¢¥) . The integrand of the surface

es:

£ 290 VeTh ¢ 07 VPeTy - (cS+k2)pe? L (3.5.3:0)

terms may with the use of A1:K and N be written:

s GV(PZ) Ve = Ve(yZo V) - vio VeVo .  (3.5.3:M)

3:

I)
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The surface integral of the divergence term in 3.5.3:M
above may be transformed into a line integral along T . From
formula A1:S in the appendix 1 on differential geometry with
w = w2¢V¢ and thus wen = 0 we have:

[ v-(p%eve)ds = § v2o me9 ds . (3.5.3:N)

S r

Then from 3.5.3:L-N we have:

Iwel = - [[ 676 {V-Us + (kiek5)elds +
S
ff ¢2 Vy+Vy dS + § ¢2¢{Em-v¢ + oplds . (3.5.3:0)
S r

This is the given formula 3.5.3:K using the definitions of L
and LF .
Formula 3.5.3:K for J[y¢] gives a very useful griterion

for strong stability:

Let ¢ be a function defined on S satisfying:

i. L(¢) >0 on S
ii. Lr(¢] >0 on T (3.5.3:P)
iii. ¢ > 0 on S

We also assume that L(¢) and LF[¢) are not both identically
zero on S and T respectively. Then we have strong stability.

In order to prove this we must show that J[y] 1is positive
for all ¢ . (The case ¢ = 0 1is of course excluded.) Since ¢
is strictly positive on the whole of S , we have, using the

product formula 3.5%.3:K:



= . = v + _‘k +
Il = 361 - ff ()% oLieras + § D7 oL (9)0s
S T
NS ESIRIC SLEN (3.5.3:0)
S

All integrands are non-negative. Thus J[y] is non-negative.
The third term vanishes when % is a constant. In this case,
the sum of the first two terms is strictly positive, since we
have assumed that L{¢)} and LT(¢) are not both identically
zero. Thus J[¢] 1is actually strictly positive, and we have
strong stability.

When o = +o on a part T’ of T, we may allow ¢ to be
zero on this part of the boundary. We then only have to consider

1)

functions ¢ which are zero on T' . Then % 1is in the normal

¢

case a nice function and the theorem is still valid.

There is a nice alternative proof of the above theorem

3.5.3:P. Let S+¢ denote the displaced surface in a displacement

of S with normal component €¢ , where € is a small positive

quantity. The surface S+¢ lies above S , since ¢ 1is strictly

positive. In the same way we have a surface S_¢ completely

below S Ffrom a displacement with normal component - e€¢ . The

meniscus S lies between S+¢ and S_¢ . See figure 3.5.3:I.
The mean curvature of S*¢ is from formula 3.5.3:F

k-0.5 L{egp) =k - 0.5€elL(¢) . We have assumed that L(¢) is

non-negative. Thus the mean curvature of S+¢ is everywhere less
than the mean curvature kx of S . At the boundary of S+¢ we
have from 3.5.3:6 that &8' = - LF(€¢) . We have assumed that

Lr(¢] is non-negative. Thus the angle of contact 8' of S+¢

is less than the prescfibed contact angle 6 . In the same way



we have that the mean curvature of §S_, is everywhere greater

b

than the mean curvature « of S , and that the angle of contact

0’ of S_ is greater than the prescribed contact angle 6.

¢

Figure 3.5.3:1 The figures shows the meniscus S and the surfaces

S+¢ and S_¢ above respectively below S. A dis-

placed surface S' cannot penetrate the confining
surfaces S+¢ and S_¢.

Consider now any displacement dr of S . Let us imagine
this displacement as a continuous sequence of displacements ndr ,
where 1 increases from zero to one and if necessary above one.

When n 1is sufficiently small, the displaced surface will lie

completely between S+¢ and S_¢ . For a certain value of n
the displaced surface touches S+¢ or S_¢ somewhere for the
first time. We will denote this surface S' . See figure 3.5.3:1I.
This first point of contact between S’ and S+¢ or S_¢ will

lie either at the boundary on the pore wall or in the interior
of S°'.
Let us first laok at the case when the point of contact is

~

an interior point on 5 as in the figure 3.5.3:1 above. The

¢
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surfaces and S' have the same tangent plane at the point

S+¢
of contact. The mean curvature of S' in this point will be

smaller than that of S , since S' 1lies below But

*

the mean curvature of 'S is everywhere smaller than the mean

*

curvature « of S . Thus the mean curvature of S' at the

S*¢ .

point of contact is smaller than (or equal to) «x.

The forces acting on the meniscus are the pressure difference
pg—p2 and the surface tension Ylg . The magnitude of these
forces are unchanged during the displacement, since we are study-
ing J[y] . (The induced changes in pressures and surface tension
are contained in I[y] .} The equation for force equilibrium is
pg-p’Q = 2 Ylg k . We have shown that the mean curvature of §S'
is smaller than k at the point of contact. Thus we get a net
restoring force on S' at the point of contact pushing the dis-
placed meniscus back in the - n direction.

Let us next consider the case when the point of contact

lies on the boundary of and S' at the pore wall. The

S+¢

boundary curves of and S' will be tangential at the

S+¢
contact point. The surface S' 1lies below S+¢ . Thus the angle
of contact for S’ at the contact point will be smaller than
that of S+¢ . But the angle of contact for S+¢ is everywhere
smaller than the prescribed contact angle. Then the angle of
contact for S’ at the contact point will be smaller than the
prescribed contact angle 6 in this point.

At the boundary of a meniscus there is a force Ysg-Ysl
(= Yy cosB) acting in the direction of m' . See section 2.2

and especially figure 2.2:VI on page 28. From the surface tension

Ylg we get a force Ylg cos(8') acting in the opposite direction.
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Here 6' 1is the angle of contact. When ©6' 1is equal to the

contact angle 6, there is force equilibrium. When ©' |is
smaller than 6, we get a net force in the direction of - m’ .
Thus we get a net restoring force on the boundary of S' at the

point of contact pushing the displaced meniscus back in the

-m direction.
In conclusion we have that, when a displaced meniscus
touches S , it will experience a restoring force at the point

*

of contact pushing the meniscus back. The displaced meniscus
cannot penetrate the surface S+¢ .

Consider now the case when the point of contact lies on
S_¢ instead of on S+¢ . Following the same line of argument we
get again a restoring force at the point of contact pushing the
displaced meniscus back. The displaced meniscus cannot pass the
surface S_¢ . The meniscus is entrapped between S+¢ and S_¢ .
Then we certainly have strong stability.

The third condition of 3.5.3:P requiring that ¢ 1is strictly

positive is necessary, since we divide by ¢ . Let us now allow
the function ¢ to be zero along some curves on S . Formula
3.5.3:Q will still be valid, if % is a sufficiently well-behaved
function on S . We must then restrict the functions ¢ to those
which are zero at the points where ¢ is zero. Coarsely speaking,
¢ must have a zero of the same kind as ¢ at the points where

¢ is zero. We get the following corollary to 3.5.3:P:

Let ¢ be a function defined on S satisfying:

wy

i. oll¢) >0 on
(3.5.3:R)
Pi.oeLple) _ U on T
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Let ¥ be any function on S such that % is sufficiently
well-behaved. This implies that ¢ must be zerowhere ¢ is zero.
Then we have that J[¢] is non-negative: J[y] > 0 .

A standard technique for studying the behaviour of quadratic
functionals is a method using so-called conjugate points. See
reference 14). The method is there only developed in the one-
dimensional case. In this method the quotient between the argu-
ment function ¢ and a certain function ¢ is studied. The ana-
lysis of the product J[¢y)l has been inspired by this. The
technique is extended to the two-dimensional case for functions
which are zero at the boundary in reference 15). This is very
similar to our approach.

The stability of various special surfaces will be studied
in sections 3.5.7-710. It will turn out to be rather simple to
find appropriate functions ¢ for criterion 3.5.3:P on strong
stability. This criterion is the simplest and most direct method
that I have been able to find. The problem of deciding between

weak stability and strong instability will be more difficult.

3.5.4 Formulas for Jt[y]

From formulas 3.5.1:H,A,E, and D we define the bilinear

functional Jt representing the total energy:

1l

3. Le,w] = J0e,y] + Ile.y] -

[ tvpe-vy - [Kfmg)w}ds +§ oy ds ¢
s r

va S¢ SW + BVA S¢ I‘\p + BVA Slp F¢ + BAA F¢FW ,

(3.5.4:A)
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where

S¢ = H ¢ dS F¢ = ¢ ¢ ds . (3.5.4:B)
S T

We have Jt[w] = Jt[w,w] . The functional Jt is linear in ¢

and in ¢ . It is symmetric:

Iele, vl = I, 1v,0] . (3.5.4:C)

We will use the notations:

Lt(‘“ L(y) + va Sw + B\',A F'p , (3.5.4:D)

t " . .
Lp(w) = Lo(w) + By, S, + B (3.5.4:E)

an Ty
The expression Lt(w) is defined on S , while L?(w] is
defined on the boundary curve T . The coefficients BQA and

BOA are defined on page 75.

From formulas 3.5.3:F,G and from formula 3.4.7:] on page 75

we get the physical meaning of Lt and L%
Yeg Lt(dn] = - 2 Yeg Sk’ o+ é(pg-pg) - 2x8 Yog T
= G(Dg‘DQ - 2k Ylg) , (3.5.4:F)
. t o . y _ R -
s1n(eJY£g LF(Gn] = Ykg sin(@8)é6’ + cos(e)leg G(Ysg Ysl)
S(YQg cos(@) - Ysg + Ysl) . (3.5.4:G)
The operator L represents the restoring force per unit aree

t

on the displaced meniscus, while L; represents the restoring
force per unit length acting on the boundary curve along the pore

wall.
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The analogue of the addition formula 3.5.3:] is:
JpLovw) = 3,060 + 3, [y] + 23,00,9]

I have not been able to find any analogue to the theorem

of formula 3.5.3:P for the stability of Jt

3.5.5 Stability criteria using eigenvalue methods.

Eigenvalue methods provide a powerful technique for the
study of the behaviour of quadratic functiocnals. This technique
is described in reference 16). In this section the method is
applied to our functionals J and Jt

We will use the following notations

I, [v]
Jly] t
Iyl = —==— 320yl = . (3.5.5:A)
I $7ds t o v2ds
S S
The case % = 0 1s excluded, so that the integral in the deno-
minators is strictly positive. J' and Jé are not changed when
Yy 1is multiplied by a constant:
J'lay] = 3°[y] Jé[aw] = J&[W] . (3.5.5:B)

We now assume that J’[¢] has a minimum AO for ¢ =¥ _ .

Then for any ¢ we have

2 ;
! ' . 3.5.5:0)
Iy *ev’ > A, ff (y_+ewr)”ds (
S
We apply the addition formula 3.%.3:J. The terms of the above
inequality that do not contain € cancel out. The first-order

terms in € must also vanish, since the inequality shall hold
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true for both positive and negative ¢ . Thus we must have
2e I,y ) = 2e AO'H bou' ds (3.5.5:E)
S
or with formula 3.5.3:H

[fo Lty ) - x v 1as + $ v Loty dds = O . (3.5.5:F)
S r
Here ¢' 1is any function on S and on ' . Then the minimal

function b, must satisfy:

Ly, ) = A ¥

o0
(3.5.5:0)

Lr(wo) = 0 .

The minimum of J'[y] 1is thus given by the smallest eigen-

value of the eigenvalue problem:

e (3.5.5:H)

Lr(w] =0

We note that, if o = + «» on a part of the boundary, then for
this part the boundary condition Lr(w) = 0 1is replaced by the
condition % = 0 . In conclusior we have that J is strongly
stable, if and only if the smallest eigenvalue for the eigen-
value problem 3.5.5:H is positive.

J is weakly stable if J[¢l and thence J'[y] are posi-
tive for all 9 with S, =0 and T,k = 0 . We assume that

v v

J'[y] with the subsidiary conditions SW - 0 and Fw =0

has a smallest value A1 for ¢ = w1 : =

J' Lyl > J'[wq] B A1 for ¢ such that S, =0 ,F  =0. (3.5.5:1)
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Put ¢ = w1 + ey’ . We get as in the preceding case, following

formulas 3.5.5:0-F:

[e (Lo = Aqu,dds + § v Lo(y,)ds = 0 , (3.5.5:3)
S
where ¢' is any function satisfying
Syr = JJwr as =0 Ty = $ 97 ds =0 . (3.5.5:K)
S r

From 3.5.5:J and K we can now only conclude that L(w1) - A1w1
is constant over S , and that Lr(¢1J is constant along T .

The minimal function ¢1 must then satisfy:

= = r—
L(w1) A1w1 v A, qu ]
(3.5.5:L)
Lr(w1) = B1 Fw1 = 0
Here A,I and 81 are two constants. We note that, if o = + o

on a part of the boundary, then for this part the boundary con-

dition Lr(w) =B is replaced by the condition v =0 .

1
Thus the study of weak stability or the minimum of J’[y]
with the subsidiary conditions Sw = 0 and Fw = 0 give rise

to the following problem of eigenvalue type. The minimal function

¥ shall for some constants A and B satisfy:

Lly) = Ay + A S¢ =0
(3.5.5:M)

Lr(w) = B FW = 0
The smallest A for any A and B , for which there is a non-

zero solution ¢, gives the minimum of J’'[¢y] with subsidiary

conditions S, = 0 and T, 6 = 0

v -y
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In conclusion we have (when 3 1s not strongly stable) that
J is weakly stable if and only if the smallest X of problem
3.5.5:M is positive. .

A meniscus region is stable if Jt[w] is positive for all
y ($0) . Let Ay be the minimum of J![y] assumed for ¢ = ¢, .
Following the same line of argument as for the minimum of
J'[y)] in formulas 3.5.5:C to G we get that by must satisfy:

Lelogd = Ay
(3.5.5:N)

{
o

t
Lrlwy)

Then the minimum of Jé[w] is given by the smallest eigenvalue

for the eigenvalue problem:

Lt(w) AP

(3.5.5:0)

]
[am]

t
Lr(w)

We note again that the boundary condition LF(w) = 0 1is replaced
by the condition ¢ = 0 for a part of the boundary where o = + .
We have stability if and only if the smallest eigenvalue for
problem 3.5.5:0 is positive.

The first eigenvalue problem 3.5.5:H for strong stability
is the cimplest one tosolve.Theproblems 3.5.5:M for weak stability
and 3.5.5:0 for stability are more difficult. In the following
section another method to handle weak stability and stability

is developed.
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3.5.6 Stability criteria using meniscus solutions.

We have an equilibrium water meniscus S in a certain
surrounding region. The mean curvature k 1is constant, and the
angle of contact ©6' 1is equal to the contact angle 6 . The system
is in a certain thermodynamical state given by some thermodyna-
mical variables. When these variables are changed infinitesimally, -
the meniscus S 1is displaced to a new equilibrium position S’ .
Normally S’ 1lies infinitely close to S . Let then ey , where
e 1s infinitesimal and y a function over S , be the normal

component of this displacement.

The change in mean curvature §&ékx' 1is constant over S ,
since S' also has constant mean curvature. Formula 3.5.3:F
gives:

L(ey) = - 28k’ = const. (3.5.6:A)

When the state is changed, the contact angle © changes to a new
value. The change ¢8' 1in angle of contact in the displacement
must be equal to this change in ©, since S' is an equilibrium

meniscus. Thus from formula 3.5.3:6 we get:
Lr(ew) = - 88’ = const. (3.5.6:8)

From 3.5.6:A and B we have that y must satisfy:

L(y) = C
(3.5.6:C)
Lr(w) =C ,
where C and C' are two constants. Functions satisfying

3.5.6:C represent a displacement of a meniscus to a new equi-
librium meniscus in another thermodynamical state. We will call

functions ¥ satisfying 3.5.6:C meniscus solutions. On parts of
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of I' where o0 = + o the boundary condition Lr[w) = C' s
as usual replaced by the condition ¢ = 0 .

Meniscus solutions will be of great significance in the
stability investigations. Suppose for a given stability problem
that we are able to find two linearly independgnt (that is non-
proportional) meniscus solutions ¢a and ¢b . We will in this
section investigate consequences of this assumption.

Thus we assume that we have two linearly independent

meniscus solutions ¢a and ¢b

L(¢a] = C L(¢b) = Cb

(3.5.6:D)
LF(¢a] = Ea Lr(¢b) = Cb
There are restrictions on the constants. Applying formulas

3.5.3:B and H on J[¢a,¢b] we immediately get:

C_ S + C' T = C_ S + C' T . (3.5.6:E)
a b

Consider now a certain type of stability problem, for example
the stability of a cylindrical surface for different heights of
the cylinder and different boundary conditions. The situation is
characterized by a set of parameters. A major problem in the
stability investigations is to find those values of the para-
meters which give the boundary or limit between weak stability
and strong instability.

From section 3.5.% we have that there is weak stability if
the smallest A1 of problem 3.5.5:L is positive, and strong in:
stability if the smallest A is negative. Thus at the boundary

1
between weak stability and strong instability the smallest A1
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of 3.5.5:L is zeru. The minimal function w1
L(w1J = A1 Sw =0
1
Lp(wy) = B, I‘w1 =0
Thus w1 is a meniscus solution.

on the two meniscus solutions W1 and ¢a s

Then we get:

A, S + B, T =0
1 ¢a 1 %
A, S + B, T =0
(T
This is an equation system for A1 and B1
A1 = 0 B1 = 0
or that the determinant is zero:
S T - S T = 0 .
I

will then satisfy:

(3.5.6:F)

We may apply formula 3.5.6:E

and on ¢1 and ¢b
(3.5.6:G)

Either we have
(3.5.6:H)
(3.5.6:1)

Thus we have got the following criterion for the limit between

weak stability and strong instability.

We have two linearly independent meniscus solutions ¢a

must have either that

or that there is a non-zero solution ¢ to

Liy) = 0 5 =0

Lr(w) = 0 r =140

and

Then for values of the parameters of the stability problem

the transition between weak stability and strong instability

(3.5.6:3)

(3.5.6:K)
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This criterion will be simpler to use than criterion 3.5.5:L
on weak stability.

Let us now turn to the gquestion of stability of Jt . The
functional Jt is stable, if J 1is strongly stable, and un-

stable if J 1is strongly unstable. The remaining problem is

then to investigate the stability of Jt , when J is weakly

stable.
The functional Jt is the sum of 3 and I , where I 1is
a quadratic form in SW and Fw (formula 3.5.1:E). Let us put:
S, = x r, = . (3.5.6:L)
¥ v 7

We will first study the minimum of J[¢] with the subsidiary

conditions S = x and T,6K =y for any x and vy .

v Y

We have assumed that J 1is weakly stable. We also assume
that we have two linearly independent meniscus solutions b, and

by - If the determinant S T r were zero, then we

o, b, S¢b 95

could form a non-zero linear combination ¢ of ¢a and ¢b with

S¢ = 0 and P¢ = 0 . It is easy to see from formula 3.5.3:1 that

then J[¢] 1is zero, and we would not have weak stability. Thus

B T
%o, o, " So, o,

linear combinations of ¢, and ¢b , two new meniscus solutions

ig different from zero. We can form, from

by and ¢A which have the following properties:

L(¢v) = DVV S¢v = 1

(3.5.6:M)
LF(¢V) = DVA T¢v =0
L(¢AJ = UAV(=HVA) U¢A i

(3.5.6:N)
LF(¢AJ =D r =1

AA on
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Here DVV , DVA ,

gives that DAV and DVA are equal. As usual the boundary con-

DAV and DAA are constants. Formula 3.5.6:E
ditions are replaced by the conditions ¢v = 0 and ¢A =0 on
those parts of the boundary where o = + o, The case when 0= + =

on the entire boundary is treated below.

Let now ¥ be any function satisfying SW = x and Fw =y
and put:

LA S S IV A Y . (3.5.6:0)
Then SW' = 0 and Fw, = 0 and we have:

I, x oy +y ¢,1 = v (xDy,, + yD,)dS ~
5

+

$ ¥’ (xDy, *+ yDppdds = O . (3.5.6:P)
T

Thus we have from the addition formula 2.5.3:J:
Iyl = 3y’ ~+ x¢y, * y¢A] = J[y'] + J[x¢v + y¢A] . (3.5.6:8)

The quantity J[y'l is non-negative, since J 1is weakly stable.
Thus J[x¢v + y¢A] is the minimum of 3J[y] with the subsidiary
conditions S = x and T, =y . From formulas 3.5.6:M and N

v v

we have for the minimum value:

J[X¢V + y¢A] =[] (x¢y + y¢A)(xDVV + yDVA]dS +
S

o f (x¢v + y¢A)[xDVA + yDAAst

] 2, . 2 .
= Dyy 7 ¢ 20yaxy * Bpp vy (3.5.6:R)

We have proved the following theorem.
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Ltet J be weakly stable. There exist two meniscus solutions

by and ¢A satisfying 3.5.6:M and N. Then the minimum of J[y]

with the subsidiary conditions S¢ = x and Fw =y is

2 2 R .
Dyy x7 * 20yp xy * Dpp v .The minimum is assumed for ¢ =x¢,*+y ¢,

For Jt[w] we now have:

2
Jt[W] = J{y] + Ilyl > (DVV + va)x + Z(DVA * BVA)xy +
s Dy, + Byyly? (3.5.6:5)
AA V\/y ’ «e D02

where x = S¢ and y = Fw

For Jt we have arrived at the following theorem. Let J
be weakly stable. There exist two meniscus solutions ¢V and ¢A

that satisfy 3.5.6:M and N. Then Jt is stable precisely when

the quadratic form in 3.5.6:S is positive definite, that is

precisely when:

D > 0

w T Byy
(3.5.6:T)

2

(D 3 (D

wv * Byy) Dpp * Baad > (Byp + Byp)

The functions by and ¢, will be called fundamental
meniscus solutions. They are uniquely determined, when J is

weakly or strongly stable. Consider in order to prove this two

. . = = ’ s = =
meniscus solutions @ ¢v and ¢ ¢V with Sw 1 and FW 0.
Then the difference ¢ = ¢V-¢0 is a meniscus function with

S¢ = 0 and F¢ = 0 . Then from formula 3.5.3:1 J[¢] 1is zero,

and ¢ must vanish on S , since J 1is weakly stable.
The left side of 3.5.6:1 is equal to +1 for ¢ ¢V

and ¢b = ¢A . This gives the following theorem from the criterion

a =

of formulas 3.5.6:1 and K.
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There exist two fundamental meniscus solutions ¢V and ¢A .
Then for values of the parameters of the stability problem on
the limit between weak stability and strong instability there

is a non-zero solution to the following problem:

L(y) = 0 S =0
v (3.5.6:U)

Lp(y) =0 r, =0

Let us finally consider the special case, when the meniscus
is kept fixed along the entire boundary, that is when o =+» on I .
Then the functions ¢ must vanish on T . The function ¢A drops

out. We then need one meniscus solution ¢V , which satisfies

1
O
w

n
-

L(oy) vV oy
(3.5.6:V)

1t
o

by
T
Instead of the theorem of formula 3.5.6:U we now have the follow-
ing stability criterion. '
There exists a fundamental meniscus solution ¢V . Then for
values of the parameters of the stability problem on the boundary
between weak stability and strong instability there is a non-zero

solution to the following problem:

"
o
%2]

[l
o

Liy)
(3.5.6:W)

<
u
(en]

Consider now, in the region of weak stability, the minimum
of J[y] with the subsidiary condition SW = x . The minimum is
assumed for Y = x - ¢V . Instead of 3.5.6:5S we now have for any

y , that vanishes on T
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3. 0w] > 3lxey) + Ilwl = (D, + va)xz . (3.5.6:A")

Thus Jt is stable precisely when:

D > 0 . (3.5.6:B")

v * Byy

We will end this section with some remarks on how to con-
struct meniscus solutions. Suppose that we have completely solved
the eigenvalue problem 3.5.5:H. Let wi be the eigenfunctions

and Ai the eigenvalues:

Llyy) = Ay
i=1,2, ... (3.5.6:C")

Lr(wil =0

The functions wi are chosen so that they form an orthonormal

set:
1 i=]

IR by ds = (3.5.6:D")

S o 143

We postulate that the set of functions is complete, so that
the constant ¢ = 1 <can be expanded in the series:

1=z oy ¥; on S . (3.5.6:E")

i
The coefficient oy is equal to S¢ because of 3.5.6:0'. Then
i

we get the following meniscus solution:

6. = L —= ¢. . (3.5.6:F")

Here

(3.5.6:G")
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The terms with Sw = 0 wvanish in the sum 3.5.6:F'. The function
i
¢, is defined if, for all 1 with non-zero Sw , Ai is

i
different from zero.We postulate suitable convergence of the series.)

In the special case when ¢ = + o along T we have instead
of 3.5.6:C':
L(wi) = Aiwi
i=1,2,... . (3.5.6:H")
vy =0
r

Then we have the following fundamental meniscus solution:

1 1
b = g 1o (3.5.6:1")
v z%(s A T .
i VA TR
1 1 1

Here the sum in the denominator must of course be different from
zero. For the constant DVV we get:

O = 1 (3.5.6:3")

vy 7
—-(S )
Apowy

wwﬂ]

The functions wi must be .orthonormal. An application of these
formulas i given in section 3.5.10.
Suppose next that we have found all solutions of L(y) = 0

(without any boundary conditions). Let wg denote these functions:

Lyl) =0 i=1,2,... . (3.5.6:K")

If the functions Lr(wg) , 1i=1,2,..., form a complete set on the
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boundary T, then the constant ¢=1 can be expanded on T

) 0 e
T oy Lr(wi] on T . (3.5.6:L")

i

PN
n

We get a second meniscus solution:

(e]

¢, = Z u? vy (3.5.6:M")
i
Here
L(¢b] =0
(3.5.6:N")
Lr(¢b] = 1

3.5.7 Stability of a cylindrical meniscus.

We will in sections 3.5.7-10 apply the preceding theory
in some different cases. The surface S must have constant mean
curvature. There are very few simple surfaces of this kind. The
simplest ones are a part of a plane, a part of a cylinder, and a
part of a sphere. Reference 16} discusses rotatioéally symmetric
surfaces of constant mean curvature.

In this section we will study the stability of a cylindrical
meniscus in a pore. In the following section 3.5.8 we will study
the stability of a spherical cap. The stability of a symmetric
spherical zone is studied in section 3.5.9. Finally we will
investigate the stability of a rectangular cylindrical meniscus
in section 3.5.10.

The cylindrical meniscus S is given in parametric form by

Lez<kb

S: rlg,z} = (R cosyp, R sing,z) (3.5.7:A).
_“iwiﬂ
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The radius of the cylinder is R , and the height is L . The

boundary T consists of two parts:

: - L
r, F(w'i)
-m < <T . (3.5.7:8)
r_ ;(W;“%)
The pore wall must fit to the cylindrical meniscus S . The
pore is (at least in the vicinity of I, and T_) rotaticnally

symmetric around the z-axis. See figure 3.5.7:1I.

Figure 3.5.7:1 The figure shows a cylindrical meniscus in S in
a rotationally symmetric pore. The liquid phase
£ lies between S and the pore wall in an annulus.
The height .of the cylinder is L. The boundary T
is composed of the two circles I', and I'_ of the
cylinder.

The liquid phase lies outside the cylinder bhetween S and the

pore wall in an annulus. The angle of contact at T, and T_ 1is

equal to the contact angle 6 . The curvature Ky of the pore wall
at T and T_ in the direction perpendicular to T, and T_

+

is K; respectively K; . The curvature K of S at T in the
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direction perpendicular to I, that is in the =z direction, is

zero. Thus we have for the boundary function o  from formula

3.5.1:8:
+
K
- 2= ¢ on T
sin(8) + +
Km cos(S]-KS
a =——W= ) . (3.5.7:C)
- KS
“sincey C O- on T
The constants o and o_ may assume any values including + «

+

Schematically we have the following stability problem:

o g
- +

—w<0+<+oo

—o<g <+wx

~

2 R>0 L>0

Figure 3.5.7:11 The figure shows schematically the stability
problem studied in section 3.5.7. The boundary
function o assumes constant values o, and o_

on the two boundary circles of the cylindrical
meniscus.

Formulas for our special surfaces are given in appendix 1. From

formulas A1:W,A’ and B' we have:

iy - ff 13H? . AL2y2 - 1 4234s + foylds (3.5.7:0)
z AT )
S r
5? 1 3%y . 1
L) = - (¥, " 5+ — ¥} (3.5.7:E)
9z R 3P R
- L]
Lp (W) =09+ 5
(3.5.7:F)
- _ 3y
LF (v) oy 9z
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Let us first note from the discussion in section 3.5.2 that
the prospects of stability are diminished when for a given

cylinder o, or o_ 1is diminished. This is also true for weak

or strong stability. Especially we have that instability for

the case o, = o_ = *« implies the instability for all o, and

o_ . We also note that, for the case g, = o_ = +o, the prospects
of stability diminish, when the surface S 1is extended. Thus we
diminish the prospects of stability when L is increased for

o, = 6_ = + = and for fixed R

We will first study the conditions on L , R, o, and o_

for strong stability. We will then first study the eigenvalue

problem of formula 3.5.5:H:

L(yp) = Ay Lr(w) =0 (3.5.7:6)

or with formulas 3.5.7:E and F:

2 2 .
3_%+L23_g+ (.17 + Ay =0 (3.5.7:H)
9z R™ 3¢ R

6,0 % gz -0 S, = 1% . (3.5.7:1)

We will use the technique of separation of variables in order

to get solutions of 3.5.7:H. Put

Ylg,z) = Zm(z] - cos{mp + wm] m=0,1,... . (3.5.7:3)

Here @ is any constant. Then Zm(z] must satisfy:

me (07 -0 ) (3.5.7:K)
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Wwhen X = 0 we get the following solutions of 3.5.7:K:

0. z in(2 .
m=0: cos(g) 51n(R) (3.5.7:L)
m=1 : cos(w1+w1] z-cos(w+wa) (3.5.7:M)
[2 /2
m>2 : cosh¥lTzjcodmore ) sinh( T Lz)cos(merer) (3.5.7:N)
R R

We will try to find a function ¢ which is suitable for
criterion 3.5.3:P on strong stability. Let ¢ be a linear combi-

nation of the two solutions 3.5.7:L:
¢ = cos(E + @) (3.5.7:0)
R o . .5.7:

We will use the notations

n - oo (3.5.7:P)
and
B, = arctg(Ro,) B_ = arctg(Ro_) (3.5.7:Q)
B, B_
Then we have, choosing ©, = 5
L(¢) = 0O
B,*B_
sin(8+-n*wo) sin( > -n)
Ly (¢) = - (3.5.7:R)
+ R cos(g,) R cos(B,)
B,*8_
sin(B_-n+w0] sin(——j——-n)
LF (¢} = =

- R cos(g_) R cos(B_)

Suppose now that

> n . (3.5.7:5)
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Then it is easy to verify that

B,+8.
2

< -n<mw - + o < % (3.5.7:T)

[NIE]
2N

Thus ¢ 1is positive on S , and Lr(¢J >0 . The function
fulfils criterion 3.5.3:P and we have strong stability. When
we have equality in 3.5.7:S, then LF(¢) is zero. Thus from

formula 3.5.3:H J[¢] will be zero, and we do not have strong
B,*B_
stability. The equation * = n must give the boundary between
2 .
strong stability and weak stability.

In conclusion we have strong stability precisely when

arctg(Ro,} + arctg(Ro_) L

>R . (3.5.7:U)

>

2

This region of strong stability is shown in figures 3.5.7:IV,V,VI
for different values of o, and o_ .
We now turn to the problem of finding the region of weak

stability. We first note that the eigenfunction ¢ = sin(%)

from formula 3.5.7:L gives a condition for weak stability for
. )

g, = 0_ = +o , When n = 5p =T, we have for this ¢ :
L(y) =@ 5 =0
v (3.5.7:V)
V] =0 (r,. = 0)

Then J[yl 1is zero and we do not have weak stability. When the

surface is extended, that is when n = %ﬁ >1 , we must get
strong instability. We have strong instability for n >m , when
o, = o_ =+ » , and thus for all o and o

+ - + -
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For the investigation of weak stability we need meniscus solu-
tions. The functions ¢ = cos(%) and ¢ = sin[g} from formulu
3.5.7:L and the constant ¢ = 1 satisfy L(¢) = C , where C
is a constant.

From these functions we get the Followingvfundamental meniscus
solutions:

1 cos(%)-cos(n]

¢V = 5 (3.5.7:W)
4 R sinl{nl)- ncos(n)
. z
1 51n(n)-ncos(§] Ro,- Ro_ -
dp = 5 - sin(z)}
A 41 R R

sin(n)-ncos(n} 2cos(n)+(Ro +Ro_Jsin(n)
(3.5.7:A")

The fundamental meniscus solutions are defined except when
tg{n) = n or 2 cot(n) + Ro, + Ro_ = 0 . The equation tgln) = n

has not any solutions for 0 < n <mw.

The fundamental meniscus solutions satisfy 3.5.6:M and N:

L(¢V) = DVV S¢V =1 L(¢A] = DVA S¢A =0
(3.5.7:8")
Lr(¢V] = DVA F¢V =0 LF(¢A) = DAA F¢A =1
The constants DVV , DVA ., and DAA are given by:
Oyy = —7 " gy Rl o =
4mR gtn/on 4mR £ n
(3.5.7:C")
0 : {(R0++R0‘)cot(n)+2Ro+~Ro_ . 0 tgln) 1
AA tglnl-n" , p2

2 cot(n)+Ro +Ro_

The function ¢ = sin(é] from formula 3.5.7:L. satisfies L(y) = 0,
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S =0, and T =0 . In the special case when

2 cot(n) + Ro, + Ro_ = 0 , we get that L, (y) = Lr (y) . Then

r
+
from formula 3.5.3:1 we get that J[y) = 0 . We do not have weak

stability. Thus we have strong instability in the region

Ro, + Ro_ < 2 cot(n) O<n<m . (3.5.7:0")

+

In the region O0O<n<w , Ro, + Ro_ > - 2 cot(n) there is
a boundary surface between strong instability and weak staﬁility.
The boundary surface may in part coincide with the boundaries
n=n and Ro+ + Ro_ = - 2 cot(n) of the considered region and in
part lie in the interior of the region. In the interior ¢V and
¢A are defined everywhere. Then from theorem of formulas 3.5.6:J,K
we have for values of n , Ro, and Ro_ on the boundary surface

in the interior of the considered region that there exists a non-

zero solution to the following problem:

L(y) =0 5, = 0
(3.5.7:E")

Lr(w) = 0 Fw =0

The general solution of L(y) = 0 1is a linear combination
of the functions 3.5.7:L-N. The conditions Sw = 0 and Fw =0
are fulfilled, if cos(é) is omitted in the linear combination.
The boundary condition Lr[ﬁ) = 0 remains to be satisfied.

We have already discussed the solution ¢ = Sin(%) . We
got the condition Ro, + Ro_ = - 2 cot(n) . Let us then try a
combination Yy = (A+B- 2) cos(¢@ + m1) from formula 3.5.7:M. Then

we get the conditions:

o,L
Lp (w) [A o, » Bls= + 1]] cosle + o)

+

I
=)

(3.5.7:F")

Ly (0) = [A o_ - BI

+ 1)1 cos{y + wq) =0
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There is a non-zero solution when:

or

or

The graph of 3.5.7:8' is a hyperbola:

S T E g
]

(3.5.7:G")

Figure 3.5.7:II1 The graph illustrates condition 3.5.7:H' for
weak stability. The stability condition is

satisfied in the shaded region.

On the upper branch J[y] is zerodue to3.5./7:E".

We do not have

weak stability. Thus we certainly have strong instability below

and to the left of the upper branch. We have the following

necessary condition for weak stability:

o, L+ 1>20

+

(o, L+ 1o_ L+ 1) >1

(3.5.7:HY)

This is the shaded area in the figure 3.5.7:1I above.
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We must also study the other possible solutions given by
3.5.7:N. For each m > 2 we get a condition for non-zero solu-
tions. It is shown below that all these conditions are weaker
than 3.5.7:H'. Thus 3.5.7:D' and 3.5.7:H’ give the region of
weak stability (and of course the region of strong stability).

A direct verification of the fact that the solutions 3.5.7:N
give weaker conditions than 3.5.7:M is rather laborious. But we
may instead use the theorem of formula 3.5.3:R to show this.

A suitable ¢ is a certain linear combinatieon from 3.5.7:M:

o,L+o_L
¢ = (———+ 2 - (o, - 0_)z) cosly + 9,) . (3.5.7:1")
2

This ¢ satisfies:
L(¢) = O oLp(4) = (0,0 L + o, + o) cos’(@+®,) (3.5.7:3")

Thus ¢ LT[¢) > 0 , when 3.5.7:H’' holds. Then we also have that
the linear expression in z in 3.5.7:I' is positive, so that ¢

is zero, only when cos(w+w1) is zero. Let now ¢ be any function

from 3.5.7:N for a certain m . This ¢ 1is zero, when ¢ 1is zero,
if we choose an appropriate value for ®, - The quotient % is

well-behaved, and we get from 3.5.3:R and formula 3.5.3:0 that
J[yl > 0 . The function ¢ cannot be a solution to 3.5.7:E',
since this implies that J[¢j = 0 . Thus when 3.5.7:H’ holds,
there are no solutions of 3.5.7:E' for the functions 3.5.7:N.
We may also use the conclusions of section 3.5.2 to show
that the functions of 3.5.7:N cannot give the boundary between
weak stability and strong instability. Suppose as an example

that the following function from 3.5.7:N gives the boundary:
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V3

P = coshl Sz z )« sin(2¢) (3.5.7:K")
R 0

Jlyl = 0O

Consider now a new stability problem for one half of the cylinder.

On the two new boundaries ¢ = 0 and ¢ = 7m (- % <z < %] we

prescribe that o = +« ., On the other two parts of the boundary
we keep the old values o and o_ . This new case has better

+

stability than the old one. Because of the factor sin(2¢]), ¥ is

zero on the two new boundaries ¢ =0 and ¢ = 1 . We alsoc have
that
0.5 _ 0.5 _ o
SF =0 r =0 . (3.5.7:L")
Here 80'5 is the integral of ¢ over the new half of the cylin-

der. Let JD'S

denote the J-functional for the new problem. The
weak stability is better for the new problem. Then we must have
that 3%-%[y] > 0 . But from 3.5.7:K' we have 3°°7[y]=23lyl- 0.
Thus ¢ cannot give the boundary between weak stability and

strong instability.

In conclusion we have weak stability precisely when the

following conditions are fulfilled:

L
7R <

Ro, + Ro_ > - 2 cot(%ﬁ)

oL+ 1>0 (o,L + 1oL + 1) >1 (3.5.7:M")

arctg(Ro,J+arctg(Ro_)

L
< =
2 2R

The last line excludes the region of strong stability.
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Figure 3.5.7:IV below summarizes the obtained results in

the special case when o, = o = g .

n=arctg(Ro)

Rao

Figure 3.5.7:IV The figure shows the regions of strong stability
KX, weak stability ////, and strong insta-

bility .7%7” for a cylindrical meniscus with

constant boundary function (o, = o_ = 0).

The point L = 27R , o = +« gives the limit between weak stability
and strong instability for a cylindrical surface, which is kept
fixed at the boundaries. This is a classical result proved by
Poincaré 17). This case is also discussed in reference 16).

The case, when the meniscus is kept fixed at T_ , is given

by o_ = + o . The conditions for weak stability is then from
3.5.7:M'
L 1 m L . ,
SR <m 0+L + 1 > 5 arctg(R0+) + > < >R (3.5.7:N")

2

The second ‘inequality above may be writter r +« *Ra >~ -*, The
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obtained results on stability in this case are summarized in

figure 3.5.7:V below.

Figure 3.5.7:V

The figure shows the regions of strong stability
XA, weak stability /,// , and strong insta-
bility ,7,7,7s for a cylindrical meniscus, which is
kept fixed at oneend (0_ = + «) , for different
constant values g, for the boundary function at

the other end.

The figures 3.5.7:VI (A-E) below give the regions of strong

stability, weak stability and strong instability for some different

values of Ro_
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Figure 3.5.7:VI The figures A-E show the regions of stroqg
stability xxx , weak stability /-, , and
strong instability ..’ for a cylindrical
meniscus for some different values o_ of the

Boundary function at one end.

Finally we will investigate the stability of Jt . We hayg
stability when J 1is strongly stable, and instability when 3
is strongly unstable. For the remaining region of weak stability
there is stability when the quadratic form 3.5.6:P is positive
definite or when the inequalities 3.5.6:Q hold. The constants

B and D are given by 3.5.7:C'. Thus we get the

w * Bya - AA

following conditions for stabilitys

1 4 '
ety © AR By > 0 (3.5.7:0")
1 LRt 2 2 te(n) 3 2
g Byy) (7R Dpp v 4RTB, 0> (B ios + anR7 )

(3.5.7:P")
where DAA is found in formula 3.5.7:C'.

Condition 3.5.7:0' is illustrated in figure 3.5.7:VII below.

When o, = o_ = +« , condition 3.5.7:P' becomes the same as
3.5.7:0". In this case there is strong stability, when 0 <n<3
and weak stability when %< n<m . The shaded region in the

figure below gives the region of stability for this special case.
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INER

Figure 3.5.7:VII The shaded area gives the domain of stability
for a meniscus region, which contains a cylin-
drical meniscus that is fixed at the boundaries.
The constant B8 is a measure of the restoring
effects of the "surrounding meniscus region in
a displacement of the meniscus.

3.5.8 Stability of a spherical cap.

In this section we will study the stability for a meniscus,
which has the form of a spherical cap. The surface is in standard

spherical coordinates given by:

S: r = (R sin(8) cosle) , R sin(8) sin(w) , R cos(B)) (3.5.8:A)

0<8<8, , 0<oc<2n

We use a bar over 8 to denote the azimuthal angle in order to

distinguish it from the contact angle 6 . The radius of the

spherical surface is R . The angle éo satisfies 0 < GD < T
The boundary I to S is given by 3.5.8:A with 6 = 60
The pore wall is rotationally symmetric around the z-axis

and fits to the boundary T of S .



Figure 3.5.8:1 The figure shows a spherical meniscus in a
rotationally symmetric pore. The meniscus has
the form of a spherical cap.

The contact angle is 6 . The curvature of the pore wall at T in

the direction perpendicular to I' is Ky oo The curvature Km of
S at TI' in the direction perpendicular to T is of course % .
Then the boundary function ¢ is according to formula 3.5.1:B:
1 .
R cos{6)-x_
05— . (3.5.8:B)
sin(8)

Here o is constant along ' and may assume any value including

R, )
(—) /
~/
B}y - o < < + o
A ¢ <
R>0

Figure 3.5.8:I1 The figure shows schematically the stability
problem studied in secticn 3.5.8. The function o
is constant on the boundary circle.
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For a surface of spherical form we have from formulas

A1:0', E', and F' appendix 1:

Iyl = AN @2 ;%w}ds + oy’ ds
R

. 2= o
5 36 R%sin“(6) r
(3.5.8:C)
1 ] zy 9 1 32
L) = - {m——— &= (sin(8) &) « T 2d . Sy
R%sin(B) 236 30 R7sin"(0) 3¢ R
(3.%.8:0)
For the houndary 6 = éo we have
Lo(y) =op + 2. 20 (3.5.8:E)
I R 36 i

We will first study the conditions for strong stability.

We will again start with a study of the eigenvalue problem 3.5.5.H:

Liy) = xy Lr(w) =0 (3.5.8:F)
or with formulas 3.5.8:D and E:

1 5 - 1 2%y 2
——_<—f(sin[6) —_) o — > + (2 + AR Jy = 0
sin(8) 236 96 sin“(8) oo

(3.5.8:G)
Rop+ 2 - g 6 - B (3.5.8:H)

38

The solutions to 3.5.8:6 involve the associated Legendre functions.

Put

©

[«v)
AS]
1

Fm(cos(é))- cos(me + wm) m=0,1,... (3.5.8:1)

Then f (t) must satisfy Legendre’s differential equation:
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2 dZFm df mZ
(1-t7) 5 2t Tt {vlv+1) - 2} Fm =0 (3.5.8:3)
dt 1-t
cos(eo) <t <1
Here we have put v(v+1) = 2 + ARZ .

The solutions to 3.5.8:]1 are the associated Legendre functions
P;m(t) and Q;m[tJ . See reference 18). Unly P;m(t] is regular

in t=+1 . We have then the following solutions to 3.5.8:0.
P;m(cos(é])- cos{mp + mm) m=0,1,... (3.5.8:K)

where wm is a constant.
The functions P;m(t) may according to 18) be expressed in

terms of the hypergeometric function Fla,bs;c;i;x) :

2 Fl-v,v+1;1emast ) (3.5.8:L)

P 7

-m 1
v (t) = o7

The power series expansion of F is given in the following
sections in formula 3.5.9:H. When A = 0 or v = 1 only the
first two terms in the power series 3.5.89:H of the hypergeometric
function are non-zero. Then we get for X = 0 the following solu-

tions to 3.5.8:G:

m=0: cos(8) (3.5.8:M)
m=1: sin(6) cosl(e *+ w1) (3.5.8:N)
.. In
m>2: (1;2951gl]2(c05(é] + m) cos(mp + wm) . (3.5.8:0)
1+cos(8)

The function 3.5.8:M is suitable for criterion 3.5.3:P

on strong stability. We have for ¢ = cos(0)
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) (3.5.8:P)
cos (6 ) -
Lr(¢) = 5 {Ro - tg(eo]}

m
The function ¢ is positive on S , when 60 <z . The quantity

LF(¢) is then positive, when Ro> tg(éo) . Thus ¢ fulfils
b

criterion 3.5.3:P, when Ro > tg(éo) , 0 < 6, < > » and we have

strong stability. The quantity LF(¢] is zero on the curve

Ro = tg(éO) , 0 <9 <

o Then J[¢] 1is zero, and we do not

N[ =

have strong stability.

In conclusion we have strong stability precisely when

Ro >tg(6 ) ,0<8 <2 . (3.5.8:0)
a} 2

This region of strong stability is shown in figure 3.5.8:III.
We now turn to the problem of finding the region of weak
stability. We need meniscus solutions. The function ¢ = cos(8)
from 3.5.8:M and the constant ¢ = 1 satisfy L{(¢) = C , where
C 1is a constant.
From these two functions we get the following fundamental
meniscus solutions:

cos(B)-cos(8 )
0

1

by = — - _ .

Vooar? (1—cos[eo))2 (3.5.8:R)
1 1+cos(éo)~2cos[é)

Op T 7R . (3.5.8:5)

sin(8 ) (1-cos(8 ))
0 0

The solutions are always defined, since 0 < 80 S

The fundamental meniscus solutions satisfy 3.5.6:M and N

with the constants:
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0 R 2 cos(éo) 0 N sin(ﬂo)
vV nR4 (1—005[50))2 VA nRr> {ﬂ-cos(éo])z
B (3.5.8:T7)
1 6o
DAA = o {oR + 2 COt(TT)}

2mR%sin(6 )
O

Outside the region 3.5.8:Q of strong stability there is a
boundary line between weak stability and strong instability. From
the theorem of formula 3.5.6:K we have that on this boundary

there is a non-zero solution to the problem:

L(y) =0 S =0
v (3.5.8:U)
Lp(y) =0 r, <0
The general solution to L(y) = 0 1is a linear combination
of the functions 3.5.8:M-0. The conditions S, =0 and T =0

v v

are fulfilled when the solution cos(8) is omitted. It remains
to fulfil the boundary condition LF(WJ =0

The second function 3.5.8:N gives the condition:

sin(éo)-cos(w+w1) ~
Lr(w) = {Ro + cos(8 J} = 0 . (3.5.8:V)
R o

We get the boundary line Ro + cos(éo] =0, 0<6 <m. On the

boundary 1ine we have [yl = 0 , S¢ =0 , and FW = 0D . There
is not weak stability on this line. Then there is strong instabi-
lity when Ro + Cot(éol <0

The other functions from formula 3.5.8:0 have more nodal
lines and will give weaker conditions for weak stability. This

may be shown in the same way as in the previous section, when

we studied the weak stability of a cylinder.
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In conclusion we have weak stability outside the domain

3.5.8:0 of strong stability when:
Ro > - cot(d ) . (3.5.8:W)

The obtained results on the stability of a spherical cap are

shown graphically in the figure below.

a
ul
R, RO AT A O A A o i
e -
’ 7,0 Ro=-cot (6 )
A /// &l
Ro=tg(6 )
Ro

Figure 3.5.8:1I1 The figure shows the regions of strong stahility
XXXX » weak stability ,,, , and strong in-
stability .”.%’” for a meniscus that has the

form of .a spherical cap.

The boundary curves between the different stability regions
have a simple interpretation, when K is zero, that is when
the pore wall is not curved in the z-directien. Then we have

from 3.5.8:8:

~ cos(8+éOJ‘
Ro - tg(f ) = ———2——  Ro + cotl
sin(e)cos(eo)

sin(6+6 )
0

DI
o
(-

sin(@8)sin(0 )
o

(3.5.8:A")



The region of strong stability is then given by the condition

o + 06 <

o . The region of weak stability is given by

NI

<6 + 06 < . (3.5.8:8")

N =
o

Figure 3.5.8:IV A below illustrates the transitional situation
bhetween strong and weak stability. The other two figures B and C

illustrate the transitional case between weak stability and strong

kil

. o . 3 3 i .
instability for OC < arcl 0 > 5 respechively.

2 5 2

Figure 3.5.8:IV Figure A shows the transitional case between
strong and weak stability, when the curvature «
of the pore wall in the direction perpendicular
to the boundary is zero. Figures B and C show the

transitional case between weak stability and strong

instability for §O< respectively éo >% for a

o N=R

pore wall with «_ =

The limit between strong and weak stability is given by the case,
when the pore wall is parallel to the z-axis. The limit between
weak stability and stronp instability occurs when the pore wall
is perpendicular to the z-axis. ' -

There is also an elucidative interpretation of the limit

between weak stability and strong instability in the general case
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(KS $+ 0) . From 3.5.8:B we have on the boundary line:
_ sin(6+éo) R Kg
Ro+ cot(eo) = — - =0
sin(e)sin(eo) sin(8)
(3.5.8:C")
L sin(e + 6 ) = R sin(d ) .
K 0 s}
s
Here éL is the radius of curvature of the pore wall in the z-
s

direction. Equation 3.5.8:C’ implies that the corresponding centre
of curvature lies on the z-axis. See figure 3.5.8:V below. Then
the pore wall along the boundary T is part of a sphere with its

. The situatian

centre on the z-axis and with the radius
ER
is illustrated in figure 3.5.8:V for positive and negative K

Figure 3.5.8:V The figures show the transitional case between weak
stability and strong instability. The pore wall fol-
lows in the vicinity of the boundary circle T' a
sphere with the centre on the z-axis. The curvature
K. is positive in fig. A and negative in fig. B . The
meniscus may slide rigidly on the spherical pore
wall.
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The meniscus may slide rigidly on the spherical pore wall. In
such a displacement there is not any changes in areas or volumes,
and J is zero.

The conditions for stability on Jt are from 3.5.6:1 and
3.5.8:T7 (for the region of weak stability):

2 cos(8 ) 4
——————=— + R B, >0 (3.5.8: D)
(1—cos(60)]

. = 6o
2 cos{(8 ) oR+2-cot (=)
(—*——_0—2 + TTR4 BV\/](———fz—— + TTRZ BAA] >
(1-cos(8_J) 2 sin(6 )
o o
sin(8 )
> (- ° » R 8,07 (3.5.8:€")

{1-cos(8® ))2
o)

The first condition 3.5.8:D' is illustrated in figure 3.5.8:VI

0.5

|
0.4 I

I
0.3f |

|
0.2 |

|
0.11

I

2 8

; o
Figure 3.5.8:VI

The shaded area is the domain of stability for a meniscus region,
which contains a meniscus, when the meniscus has the form of a
spherical cap. The meniscus is fixed at the boundary circle. The
constant BVV is a measure of the restoring effects of the surround-

ing meniscus regicn in o displacement of the men,scus.
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The second condition 3.5.8:E' becomes identical with the first
condition 3.5.8:0’" when o =+ , This is the case when the

meniscus is kept fixed at the boundary. In this case there is

strong stability for 0 < 60 < % and weak stability for

% < éo < m . There is never strong instability. The shaded region

in figure 3.5.8:VI above then gives the region of stability, when
o = +o . °

The special case when the meniscus has the form of a

plane circular disc with the radius Ro , 13 alsc¢ of interest.

We get this case in the limit:

R
R » + o eo = arcsin[Tg] - 0 . (3.5.8:F")

From 3.5.8:B we get ¢ = - Ks/sin[SJ . When o is positive, that
is when K is negative, we get according to figure 3.5.8:III
strong stability. When K is positive, we must study the limit

of Ro+ cot(éo) . We get weak stability precisely when:

-1 < Roo < 0 . (3.5.8:G")

From 3.5.8:T7 we get the values of DVV , D R DAA in the limit

3.5.8:F'. From 3.5.6:0 we then have stability (in the region

3.5.8:6’ of weak stability) when

2

1 4
v B ) (—(oR_ + 4) + B,,) > (- — + g )% (3.5.8:H")
nRg w 2nR§ o AA TrRé VA

3.5.9 Stability for a symmetric spherical zone.

In this section we will study the stability for a meniscus,
which has the form of a symmetric spherical zone. The surface is

in standard spherical coordinates given by:
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S: r = (R sin(f) cos(e) , R sin(6) sin(p) , R cos(8)) (3.5.9:A)

-8, <8 <5+ B 0<@< 2n

Nl =
INTE
N

1

Here 6 1is the azimuthal angle, and R is the radius. The angle

61 lies in the interval 0 < é1 < % . The boundary T consists

of two circles T, and TI_ given by 3.5.9:A for 8 = g - 91
respectively 6 = % + 51
The pore wall is rotationally symmetric around the z-axis

and fits to the boundaries T_ and T

+

Figure 3.5.8:I The figure shows a meniscus which has the form
of a symmetric spherical zone, in a rotationally
symmetric pore. The liquid phase lies in an
annulus between the pore wall and the meniscus.

The boundary function o is given by 3.5.8:B. We assume that o
has the same value on T_ and T, . The constant o may assume

any value including =+ «.

Schematically we have the following stability problem:



Figure 3.5.9:I1 The figure shows schematically the stability
problem studied in present section 3.5.9.

The quantities J{y] and L(y) are given by 3.5.8:C and

3.5.8:0. For the boundaries T, and T_ we have:

Lp () = oy - g 3L 6-2-48,
* 36 (3.5.9:8)

B 1 Y 5 =T , 35

LF_(WJ = gy *+ R 25 6 = 5 91

We will first study the conditions for strong stability. From

3.5.5:H we shall study the eigenvalue problem:

L(y)

!

AP Lr(w) =0 (3.5.9:C)

or from 3.5.8:G:

— 1 ein() W) 130 2Ry - 0
sin(8) 396 36 sin“(8) 3¢
(3.5.9:0)
Ry - -0 6-2-3,
36
(3.5.9:E)
Y = m 3
orRy + ¥ - 6 =248
38 2 1

The solutions to 3.5.9:0 have been studied in the previous

section. With ¥ given by 3.5.8:1 we arrived at tLegendre’s
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differential equation 3.5.8:J. In our new case t = cos(8)

shall vary between - sin[é1) and sin[é1) . We get both solutions

P;m(t] and Q;m(t) , since the critical point t=-1 1is excluded.

Because of the symmetry of the problem we will instead use even

and odd solutions to Legendre's differentical equation. From

reference 18) we may get an even solution to 3.5.8:1, which

m
we denote Py
m

m _ 1252 m+y+1 m-v 1 .2 .

pv(t) = (1-t7) F(__f—_ 2 T b g t7) (3.5.9:F)
and an odd solution denoted q$

m
m _ 41242 m+y+2 m-v+1 3 2 .
qv(t] = t(1-t%) F(——7—— e t7) . (3.5.9:G)

Here F(a,b;c;x) 1is the hypergeometric function defined by the

infinite power series:

2
Fla,bsosx) = 1 + 2B, alar1) blb+1) x5 5 g.h)
C. clc+1) 2!

We now have the following solutions to 3.5.9:D (with

viv+1) = 2 + RZ2)
pg(cos(é))'cos(mtpﬂpm) qﬁ(cos(é))-cos(mwr;) (3.5.9:1)

m=0,1,2,...
For A=0 or wv=1 we have immediately from 3.5.9:F-H:

af(t) = t plet) - 1-¢2 . (3.5.9:3)

The function p?(t) is a bit more complicated. From formulas

in reference 18) we get:

t 1+t

s} - 8] - _ T
pICt) = - 09(t) = 1 - 3 In(q%

) . (3.5.9:K)
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Then we have the following solutions to 3.5.9:D for A=0

cos (6) 1+cos(6)

m=0: 1 S In _ cos(8) (3.5.9:L)
1-cos(9)

m=1: sin(é)-cos(m+m1] q1(005(§))-cos(w+wa) (3.5.9:M)

m>2: pT(cos(éJ)-cos(mw+om) qT(cos(éD~cos[mw+wé) (3.5.9:N

The solutions cos(f8) and sin(6) cos[w+w1] are regular in

6 = %. They appear 1in the previous section. The first soclution
on each line above is even in 8 - % and the second is odd.

The even solution of 3.5.9:L is suitable for criterion

3.5.3:P on strong stability. Put

6 = 1 - COSZ(BJ 1n 1*cos(8) . (3.5.9:0)
1-cos(8)

Then we have

L(¢) =0
(3.5.9:P)
C 1 B -
LF+(¢J = ¢ IR {oR h(eq)} »
where
cos(éq) 1+sin(é1) -
5 1n — + tg(91)
_ 1~sin(81)
hle,) = — — (3.5.9:Q)
sin(61) 1+sin[61)
1 - > in —
1—sin(61)

Figure 3.5.9:I11 below shows the function ¢(6) from formula

3.5.9:0.
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0.51

-0.5¢

Figure 3.5.9:II1 The graph shows the test function ¢ for strong
stability. The function ¢ is given by formula
3.5.9:0.

The function &(8) is zero for 8 = % + 0.9855 . Put

ég = 0.9855 ... {56.5%) . (3.5.9:R)
The function ¢ satisfies condition 3.5.2:L when 61 = ég
Thus for 61 > ég there is not strong stability independently of

the value of o . Figure 3.5.9:IV below shows h(é1) which is

defined by formula 3.5.9:Q.
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h(¥,)
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Figure 3.5.9:IV The figure shows the function h(§1] defined by
formula 3.5.9:Q for 0<é1<6g = 0.9855 .. . This
function gives the limit between strong and

weak stability.

The function ¢ is positive when 61 < ég . Thus ¢ satisfies
criterion 3.5.3:P, when Ro > h(é1) , 0 < 61 < ég , and we have
strong stability. On the curve Rog = h(§1) J{¢] 1is zero due to
. formula 3.5.9:P. The curve gives the boundary between strong
stability and weak stability.

In conclusion we have strong stability precisely when:
Ro > hi(B,) D<é1<ég[=0.9855...) , (3.5.9:9)

where h(é1) is given by 3.5.9:0. The region of strong stability
is shown_ in figure 3.5.9:V.

We now turn to the problem of finding the region of weak
stability. We need meniscus solutions. From the function 3.5.9:0
and the constant ¢=1 we get the following fundamental meniscus

solutions:
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1 X - sin[91) Y
by = > (3.5.9:T)
4nR Z
- 0052(51) -
1 sin(61)- 7 Y - sin(91JX
9, = - (3.5.9:U)
4R cos(8,) z
- 1+s5in(6,)
X = cos(8) 1n 1:2951?1 Y = 1n ——————Tl—
1-cos(0) 1—sin(91)
} 1+sin2(é1)
Z = sin(61] - —_— Y .

2

The denominators are never zero for 0<§1<% . The fundamental

meniscus solutions satisfy 3.5.6:J and K with the constants:

sin(§1]
0 o -1 1"“‘??“'Y
v WR4 VA
1 2 tg{§1) + 005(61) Y
DVA = 3 (3.5.9:V)
47R z
1 sin(é1)[cos(é1)Y +2tg(§1)]
Dpp = 3 —{Ro - }
47R 005(61] Z

Outside the region 3.5.9:5 of strong stability there is a
boundary line between weak stability and strong instability. From
the theorem of formula 3.5.6:K we have that on this boundary

there is a non-zero solution to the problem:

Ly) = 0 S =0
v (3.5.9:W)

Lr(w] =0 FW = 0
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The general solution to L(y) = 0 1is a linear combination

of the functions 3.5.9:L-N. The conditions Sw = 0 and Fw = 0

are fulfilled, when the first even function of 3.5.9:L is omitted.
It remains to fulfil the boundary condition LF[W] =0
Each one of the odd and even functions satisfies the boun-

dary condition for certain values on ‘91 and Ro. For

v = cos(8) we get:

tsin(é1l -
Lr(w) = ———— (Rg+ cot(61)) =0 B (3.5.9:A")
R

For ¢ = sin(8) COS(®*$1) we get:

Lp(w) = L {oR - tg(,)} = 0 . (3.5.9:B")

R

cos(6,) cos(w+w1)

Equation 3.5.9:B' gives a stronger condition than 3.5.9:A’. On
the boundary line oR = tg[é1) we have JI[y] = 0 , Sw = 0 and

F¢ = 0 . There is not weak stability. Then there is strong in-
stability, when Ro < tg(é1)

The remaining functions of 3.5.9:M and N have more nodal
lines and will give weaker conditions for weak stability. This
may be shown in the same way as in section 3.5.7, when we studied
the weak stability of a cylinder.

In conclusion we have weak stability outside the region

3.5.9:S of strong stability precisely when:
Ro >tgld,) . (3.5.9:C")

The obtained results on the stability of a spherical symmetric

zone are shown graphically in figure 3.5.9:V below.
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1

X

2
T//////////////////,/,//z,
AR Ry Ro=tg(#,)
/// Yl i’_////
000 27,87 7
///////‘// R0=h(°l)
7772 7,,0.5¢7
/;///// 4
Z 2 ////11/ Rﬂ

-1 \ 5

Figure 3.5.9:V Regions for strong stability w<x , weak stability
/77 » and strong instability .,”.”.” for a symmetric

spherical zone.

The boundary curve Rag = tg(§1) has a simple geometrical
interpretation. The equation for the boundary curve may with
formula 3.5.8:B be written:

1 cos(8+8,) = R cos(8,) . (3.5.9:0")

Kg 1 1
The quantity -K1— is the radius of curvature of the pore wall in
the z-direction. Equation 3.5.8:D0' implies that the corresponding
center of curvature lies on the z-axis. See figure 3,5.9:VI below.
Then the pore wall along the right boundary r, is part of a
1

sphere with its centre on the z-axis and with the radius .The

K
s
pore wall along the left boundary r is part of a symmetrically

placed second sphere.
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Figure 3.5.9:VI The figure shows the transitional case between
weak stability and strong instability. The pore
wall has in this case the form of spheres in the
viecinity of the boundary circles r, and T_. The
meniscus may slide rigidly on these spheres.

The meniscus may slide rigidly on the two spheres of the pore
wall. In such a displacement there are no changes in areas or
volumes, and J 1is zero.

The conditions for stability for Jt are from 3.5.6:0Q:

Oyy * BVV > 0 , (3.5.9:E")

2

(D ) , (3.5.9:F")

vv * Byl (Dap * Baad > (Dyp + Byy

where DVv , DVA and DAA are given by 3.5.9:V.

.The first condition 3.5.9:E' is given in fig. 3.5.9:VII below.
The second condition 3.5.9:F’ becomes identical with the first
condition 3.5.9:E' when o= + ©» ., The shaded region in figure

3.5.9.VII below will then give the region of stability.
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/////

B

Figure 3.5.9:VII Region of stability when o = +«. The constant
Byy is a measure of the restoring forces from
tMe phases of the meniscus region in a dis-
placement.

3.5.10 Stability of a rectangular cylindrical meniscus fixed

at the boundaries.‘

In this section we will study the stability for a meniscus
which has the form of a rectangular part of a cylindrical surface.

The surface S is 'in standard cylindrical coordinates given by:

<zsh

NI~

S: rlp,z) =(R cosly) , R sinly),2z) . (3.5.10:A)

@, ©

el
5 L0l

Here R 1is the radius of the cylinder. The length of the

cylindrical rectangle is L , while its breadth is R ¢

Figure 3.5.10:1 The figure shows the rectangular cylindrical
meniscus studied in section 3.5.10.
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The boundary T consists of four parts: z = # % , - 7; <o <5
nd =+ﬁ ‘£<Z<L
8 etz T3 2"
We will only study the case, when the meniscus is kept fixed at
the boundaries T , that is when o = +o, Schematically we have the

following stability problem:
U<(p0_<_21r

R o - L R>0 , L>0

Figure 3.5.10:II The stability problem studied in section 3.5.10.

The expression L(y) is from formula 3.5.7:E given by:

2 2
Ly = - 2%+ 538, Ly (3.5.10:8)
3z R™ 3¢ R

The function ¥ 1is zero at the boundary T :

Y = 0 . (3.5.10:C)
T

The line integral of J[y] vanishes because of 3.5.10:C. Then

from 3.5.7:0 J[y] 1is given by:

2
ly] = ,U{(g—‘ﬁ)z + —% ?-—g - —% v’rds . (3.5.10:D)
5 R™ 3¢ R

In order to get the conditions for strong stability we must study

the eigenvalue problem 3.5.5:H:

L{y) = Ay ] =0 . (3.5.10:E)

This is an elementary problem in mathematical physics. The eigen-

functiens and corresponding eigenvalues are:

©
mn(z+%) nﬂ(w+7;)
wm,n = sin( T ) sin( o
m=1,2,...
n=1,2,... (3.5.10:F)
2 2 2 2
) S S | N S
m,n L2 thpg R2
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There is strong stability, when the smallest eigenvalue is

positive. Thus we have strong stability precisely when:

m i 1
— + - —= >0 » (3.5.10:G)
L2 R2w2 RZ
o
or, with the notation n = %ﬁ from section 3.5.7:

2
1 4 s
—2>’—2 (1 - —2) . i (3.5.10:H)
n m (DO

When D<w0<ﬂ , there is strong stability for all n . The region
of strong stability is shown in figure 3.5.10:III.
We now turn to the problem of finding the region of weak

stability. First we note that the functions wmn from 3.5.10:E

satisfy Sw = 0 and Tw =0, when m or n is even. We get the
strongest condition for weak stability from AZj

4n2 . ﬂz B J_‘> 0

L2 szz RZ

o
or (3.5.10:1I)
2

1 1 m

—f > ’7(1 - _2]

n w wo

From 3.5.1:H and I we get the following conditions for weak

stability:
L <n < Ll m<Q <21 (3.5.10:K)
2/.T 1-T_
2 2
@0 %

We now need the fundamental meniscus soluticn ¢V which

shall satisfy 3.5.6:R. In this case we cannot get meniscus solu-

tions as easily as in the previous cases. We have to use the
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method outlined at the end of section 3.5.6. We need the normal-

ized eigenfunctions in 3.5.10:E. These are:

m=1,2,... .
n=1,2,... (3.5.10:L)

The functions are a complete orthonormal set of functions

Yrmn

The fundamental meniscus function ¢V is from formula

3.5.6:1":
1 1 ,
by T == I, 13— S, Vp, - (3.5.10:m)
I 1= (s, )
‘pmn

m=1 n=1 "mn

The eigenvalues Amn are all different from zero in the region
3.5.10:K. We will show below that the double sum in the denomi-
nator is different from zero in the region 3.5.10:K. Then from
the theorem of formula 3.5.6:S we have that 3.5.10:K must give
precisely the region of weak stability.

Figure 3.5.10:1II1 below summarizes the obtained results.

RIS
5SS
K35

K

KIS
LR

RRIRA
ﬁ&&&%@?
XK
DX

7% Y%

Fig. 3.5.10:II1 Regions of strong stability xx x, weak stability //
and strong instability.”.” for a rectangular cylindri-
cal meniscus held fixed at the boundary. The curves
between the different regions are given by 3.5.10:K
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Formula 3.5.10:M gives the fundamental meniscus sclution
by - which satisfies 3.5.6:R. The constant DVV is from 3.5.6:3"',

3.5.10:F, L , and M:

.y 7 s, )2
DVV m=1 n=1 Amn lPmn
® oo 1
4 8 1 1
= R — nY . .
4 o 1,2 1,2 2 2
" m'=o n'=o (m'+ =) (n'+3) L vo 172, Ar L1420
2 2 —2(m "5) + > (n *‘2—] 1
n ‘OO
(3.5.10:N)
We will use the notation
flo ) = - RY D (3.5.10:0)
o’ vV . .5.10:
From reference 20) we have the formulas:
by 1 oW ) 1 _.m
Lo oTzz 2 thimo L 177 " 7k telm)
m'=o (m +7) +x m*'=0 (m +7) -x
(3.5.10:P)

With these formulas we can perform one summation in the double

sum 3.5.10:N. Then we get:

e
1 4 7l tgl5) ; telnry)
T = no_ — {= (1 - ) - +
f(wo.n) o “2 2 22 ) _EE nr,
2 2
@4
thinr,)
£ 3 1 s 1 2 (3.5.10:Q)
voq knT+3)T 4wS ., 1.2 nr,
n'=1 1 2 —2[n+§) -1
©
where °
2 2
B . _Jam . 1,2
ry =V1 -~ r, =V—7n" + 3 1 .
0] 0
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All terms of 3.5.10:Q are positive in the region 3.5.10:K. Thus
by is defined throughouf this region.

From 3.5.6:B we have strong stability when

D >0

v Byy
(3.5.10:R)

4

R va > F[wo,n)

The function F(wo,n) is given graphically in figure 3.5.10:1V

below for the region of weak stability.

=l
"R
|‘.
/
f=0.0215
£=0.021
31 L
£=0,020
£=0.018
£=0.01%
£=0.010
2
£=0.005
=0
1.6 + { 9
L] 4 5 6 2% o

Figure 3.5.10:IV The function ?(mo,n] in the region of weak
stability.
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3.6 Summary of stability conditions.

We will here summarize the conditions for stability for a
water meniscus in a pore together with a certain surrounding region.
See figure 3.4:1 on page 4B.>Stability requires that the second-
order variation 62U of the energy of the region is positive for
any internal variation of constant entropy. The water meniscus is
displaced to new positions in these variations. Effects of gravity
and salts are not considered. The solid pore walls are assumed
to be rigid.

The analysis leads to two functionals:

I = ff IV eV - () ¢ k5)vP1ds + fov? ds (3.6:A)
S r
2
IY) = By (507 + 28,8, T, *+ Buy (1)
(3.6:8B)
Sy, = Il vwas o T, = $vds
S r

The function ¢ 1is defined over the water meniscus S and its

boundary T . The gradient on the surface S 1is denoted V¢

The principal curvatures of S are K4 and Ko
The function o , defined along the boundary T , is given by:

o =im—cs%e—ely_& . (3.6:C)
Here Km and Kk, are the normal curvatures in the direction
perpendicular to the boundary T for the water meniscus S
respectively for the pore wall.

The second-order variation of the energy in a displacement

dr of the water meniscus is given by:
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¥
8%0 = —2& {3{6n] + I[6n))
(3.6:D)

Here &n 1s the normal component of the displacement.
The variation 62U of the energy is divided into two parts.

For the first part we have:

1
2

C2e 2 2 2 )
Jlen] = 677 = 8%A,  + cos(B) 8°A_, + 2¢ 87V, . (3.6:F)

Here dzAzg denotes the second-order variation of the meniscus

area in the displacement. The contact angle is 6 , and the mean

curvature of the meniscus is «k . The second-order variations in

solid-gas area and liquid volume are GZASg and 62V2 respectively.
The quantity % Ylg J[8n] gives the energy required to

perform the displacement of the meniscus against the forces of the

initial equilibrium state. But pressures, surface tension and so on

will change during the displacement. The energy required to over-

come these induced additional forces is given by % Ykg I{én]

We have that I 1is never negative. The coefficients BVV , BVA ,

and depend in a complicated way on the thermodynamical

Ban
characteristics of the different phases in the considered region
around the meniscus.

The meniscus is strongly -stable, if J[y] 1is positive

definite. It is weakly stable, if J[y] assumes negative values

and if J[yl 1is positive, when Slp = 0 and Fw =0 . Finally,

it is strongly unstable, if there is a ¢ such that J[y] < 0 ,

SW = 0 and FW =0

Strong stability implies stability for the meniscus together

with a surrounding region, while strong instability implies
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instability for the meniscus together with any surrounding region.
The intermediate case of weak stability requires a study of the
sum J+I in order to decide on stability

The conditions in the special case, when 6=0 or 6=7 , are
given on page 101. The modifications, when the contact angle 6
varies over the pore walls, are given on pages 102-103. The com-
plications, when the pore wall has corners and edges, are discussed

on pages 89-90.
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Appendix 1. Elements of differential geometry.

This survey of differential geometry is based on references
11) and 12). The latter work deals thoroughly with the gradient
operator on a surface.

Let a surface S be given in parametric form by
r = r(u,v) (u,v) € 9. . (A1:A)

The parameters u and v vary over a given region Q of the
(u,v)-plane.

The derivates of r{u,v) are designated r , r , r
u v uu

and so on. We will use the following notations:

E = T, T, F = r,*ry, G = r,°r, . (A1:B)

The unit normal to the surface is

n=t——= 7 xp =+ __ 7 xf . (A1:C)

The area of a surface element of S is given by:

2

dS = |r,du x r dv| =VEG - F° dudv . (A1:D)

The gradient_operstor 9. Let ¢ = y(u,v) be a function

defined on S . Consider two points r(u,v) and r(u+du,v +dv)

on S . Then we have

dr = r(u +du,v +dv) - r{u,v) ;u du + ;v dv . (A1:E)

This gives:

dr - ;u = E du + F dv
(A1:F)

dr » EV = F du + G dv
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or

Gr -Fr . Er,F EU
— ¥ dv = dr o+ ———s . (A1:G)
EG-F

Let dy denote the difference in ¢ between these two points:
dyp = ¢lu+du,v+dv) - Ylu,v) = v, du + ¢V dv . (A1:H)

The gradient VY on the surface S 1is defined by:

= 1 - 3 _fF 3 7 3 _fF 3 .
vy = 5 {r (6 55 - F a5) + v (E 5= - F 320}y (A1:1)
EG-F
Then from A1:G6-1 we have:
dy = dr s V¢ . (A1:3)

The vector V¢ lies in the tangent plane of S at the con-
sidered point. From A1:J we immediately have that the vector Vy
points in the direction of maximum increase of ¢ on the surface.
The magnitude |Vy| gives the rate of increase of Y in this
direction. l

We have
Viep) = ¢V + pVo . (A1:K)
It is easy to verify that

1

R (G2 - 2F yu, + E WY . (A1:0)

2

The divergence of a vector w = wlu,v) , defined for each

point on S , is given by:

- - 1 - . _ . _ -
Vew EG—F2 {rU (G w, F wv) +r, (E w, F wu)}

We have the formula
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Ve(gw) = Vdow + ¢V ew . (A1:N)

From reference 12) we have the following formula:

Gy -Fy Evy -F ¥
. =1 3 lu vy L3 v "u .
Vv 2{au( > ) av[ : 1} (A1:0)

VEG-F EG-F EG-F

Normal_curvatures. Let P be a point on S , and let t
be a unit vector, which gives a direction in the tangent plane
of S at P . Consider those circles, which have their centre
on the straight line passing through P in the normal direction
to S , and which are tangent to the surface at P with tangent
direction t . There is a certain circle among these that fits
best to the surface near the tangen£ point P . The inverted
value of the radius of this best-fitting circle is the normal

curvature of the surface S at P for the direction t . The

radius is counted positive, if the centre of the circle lies on

the side into which the normal n is pointing, and it is negative

if the centre lies on the other side.

The normal curvature in a direction given by a unit vector

Ky = - t o [(t+¥In] . (A1:P)

The normal curvature depeﬁds on the direction t . The normal
curvature at the point P attains its maximum in a certain
direction and its minimum in another direction. These two direc-
tions are orthogonal. The normal curvatures in these two direc-
tions are called principal curvatures. We will denote these

principal curvatures Ky and Ko
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The mean curvature « 1is given by:

K = . (A1:Q)

The Gaussian curvature K 1is given by:

(A1:R)

The divergence_theorem. From reference 12} we have the

following important theorem:

 VewdS =§ wemds - f[[2c wendS . (A1:S)
s r s

Here w 1is a vector defined on the surface S with unit normal
n , mean curvature « , and boundary T . The unit vector m
denotes the outward tangent to S at the boundary T

We may deduce the following important formula, if we put

w equal to a constant:

§ mds = f[ 2« n dS . (A1:T)
r s

We obtain another important formula, if we put w=060VYy

[v¢ +vpdS = § ¢m-Vypds - [[ ¢V « Vy dS . (A1:U)
S r S

Here we have used formula A1:N and the fact that V¥ en =20

Formulas for special surfaces.

A cylindrical _surface. If the surface S 1is any part of a

cylinder, then a parametric representation of S is:
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S: r = (R cosyg, R sing,z) . (A1:V)

The axis of the cylinder is given by the z-axis, and the radius

is R . See figure 3.5.7:I.

We have:
r, = (0,0,1) rm = R(- sing, cosy,0)
E=rt_ «r. =1 F=p_er =0 6=t +r =R% (A1:W)
z r4 z ® 2
-7 9,1 - 8
v=r, 3z R2 To 3¢
For a function ¢ = y¢(z,p) we get:
cve = (A2 . (392
Vy » VY (BZ] + R2 [3@)
(A1:A")
2 1 2
vovp - 2%, 1 3%
2 2 2
9z R* 3¢
The curvatures in the z and ¢ directions are:
k. =k =0 - -1
1 z K2 7 %o TR
(A1:B')
LA
2R

The normal to the cylindrical surface is pointing inwards, since

R and hence Kw are positive.

A spherical surface. When the surface S 1is a part of a sphere

of radius R , a standard parametric representation is:

S: r = R(sin(8) cos(w), sin(8) sinle), cos(8)) (A1:C")

The whole sphere is covered, when Diéin and 0<e@<27m . See

>

figure 3.5.8:I. We have
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R(cos(8)cos(g),cos(8)sinly),-sin(8))

-
8
r =R sin(8)(-sin(y),cos(y),0)
@ (A1:D")
E - r r =RZ  Fef_ b =0 G=p o1 =R% sin”(§)

6 6 o6 @ A

1 - 3 1 -3
V=—==r_ -—*+ — ' o~

RZ ' 98 R%sin‘(f) @%@

For a function ¢ = ¥(6,9) we get:

wpevy = - (A2 . 1 (@?
26

R2 stinz(é) o
(A1:E")
2
vewy s ——— & sin(®)2Y) . — 2
R°sin(@) 236 36 R“sin“(8) 3¢

The normal to the sphere is pointing inwards. Then we have
(for a positive R }:

(A1:F")
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