Protograph Design for Spatially-Coupled Codes to Attain an Arbitrary Diversity Order

Ul Hassan, Najeeb; Andriyanova, Iryna; Lentmaier, Michael; Fettweis, Gerhard

Published in: 2015 IEEE Information Theory Workshop - Fall (ITW)

DOI: 10.1109/ITWF.2015.7360752

2015

Link to publication

Citation for published version (APA): Ul Hassan, N., Andriyanova, I., Lentmaier, M., & Fettweis, G. (2015). Protograph Design for Spatially-Coupled Codes to Attain an Arbitrary Diversity Order. In 2015 IEEE Information Theory Workshop - Fall (ITW) IEEE--Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ITWF.2015.7360752

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Protograph Design for Spatially-Coupled Codes to Attain an Arbitrary Diversity Order

Najeeb ul Hassan\(^1\), Iryna Andriyanova\(^*\), Michael Lentmaier\(^\dagger\), and Gerhard P. Fettweis\(^\ddagger\)
\(^1\)Vodafone Chair Mobile Communications Systems, Dresden University of Technology (TU Dresden), Dresden, Germany
\(^*\)ETIS group. ENSEA/UCP/CNRC-UMR8501, 95014 Cergy-Pontoise, France, iryna.andriyanova@ensea.fr
\(^\dagger\)Dept. of Electrical and Information Technology, Lund University, Lund, Sweden, michael.lentmaier@eit.lth.se

Abstract—This work focuses on the design of SC-LDPC codes for transmission over non-ergodic, block-fading channels. Our main contribution is an algorithm, allowing to start from a \((J, K)\)-regular, uncoupled LDPC ensemble, from which one can recursively build up a protograph-based SC-LDPC ensemble having any target diversity order \(d\). The diversity order is achieved assuming a low-complexity iterative decoding algorithm. The increase of \(d\) comes at the cost of increasing the memory constraint (i.e., the coupling parameter) of the SC-LDPC ensemble.

I. MOTIVATION: CODES OF FLEXIBLE DIVERSITY ORDER

The mobile-radio channel can be modelled as a slow, flat fading together with additive noise. In many cases (e.g., short-range, high-throughput data communications), the channel coherence interval (time where the channel fading is constant) is much longer than one symbol duration. Thus several symbols are affected by the same fading coefficient. An example of such a channel model is the block-fading channel introduced in [1]. In the block-fading channel, coded information is transmitted over a finite number of coherence intervals to provide diversity. The diversity order \(d\) of the code is an important parameter that gives the slope of the word error rate (WER) of the decoder.

In this paper, we consider transmission of a sequence of \(LN\) coded bits through a block-fading channel with a coherence interval of \(N\) bits. Hence, the large diversity \(d \leq L\) can be achieved, but at a cost of using a long block code or a long interleaver (large latency). Another possibility would be to use \(N\) convolutional codes in parallel, with a memory constraint \(m_{cc} \ll L\). This would provide a relatively good latency but, unfortunately, would result in the performance degradation or require an increase of the decoding complexity.

In order to obtain a better trade-off between the decoding latency, decoding complexity and the diversity order \(d\), we propose to use spatially coupled low-density parity-check (SC-LDPC) codes [2], [3]. It was observed in [3] that SC-LDPC codes, decoded using a latency constrained window decoder, have very good performance over the block-fading channel. This work is our investigation on a systematic design of SC-LDPC codes if some targeted (but arbitrary) diversity order \(d\) is required. In what follows, we a) study which maximum \(d\) is achievable for a given \((J, K)\) SC-LDPC ensemble, and b) propose a protograph-based construction of SC-LDPC codes that can achieve an arbitrary \(d\), at the cost of an increasing value of the coupling width and, thus, of the memory constraint \(m_{cc}\) for the underlying convolutional structure. In order to achieve the points above, an explicit connection between block stopping sets and diversity is established.

As a comparison reference for our codes, root-LDPC block codes are considered [4]. This is the most known construction of block-codes for non-ergodic channels, which motivated a number of further results in this area [5], [6]. However, all the existing constructions are designed for a single specified value of \(d\) (in most of cases \(d = 2\)), and will not work well if the number of fading coefficients per codeword changes. Furthermore, the boundedness of the root structure, on which they are built on, does not allow to treat an arbitrary \(d\) without blowing up the number of node classes in their multi-edge graph structure.

II. SYSTEM MODEL AND PERFORMANCE METRIC

A. Channel Model

Assume transmission of a sequence of \(LN\) coded bits through a block-fading channel with a coherence interval of \(N\) bits. For such block-fading, the received symbols \(y_i\) are

\[
y_i = \alpha_j x_i + n_i, \quad i = 0, \ldots, LN - 1, \text{ and } j = [i/N].
\]

The input symbols \(x_i\) are chosen from the BPSK alphabet \(\{\pm 1\}\), \(n_i\) are Gaussian random variables with zero mean and variance \(\sigma_n^2\), and the fading coefficients \(\alpha_j\) are Rayleigh distributed with \(E[\alpha_j^2] = 1\). Hence the signal-to-noise ratio \(\gamma\) of the received symbols is characterized only by \(\sigma_n^2\).

B. SC-LDPC Coding Scheme

Let \(LN\) coded bits, sent through the block-fading channel as described above, be generated using a SC-LDPC code of overall code length \(LN\) (i.e., containing \(L\) coupled LDPC codewords of length \(N\)). Also, without loss of generality, let the bits, belonging to the same coupled LDPC codeword, be sent within the same coherence interval. The related SC-LDPC code ensemble is defined as follows.

A protograph \(P\) of an (uncoupled) LDPC ensemble is a bipartite graph consisting of \(n_c\) check sets’ (CS) and \(n_v\)
variable sets’ (VS) nodes. Each node in a protograph therefore represents a subset of variable or check nodes of the bipartite graph for any LDPC code from the ensemble. Edges in P establish a structure of connections which are allowed in a bipartite graph of the LDPC code (i.e., a variable node from subset V_1 can be connected to a check node from subset C_j if there is an edge between corresponding VS and CS nodes in P). P is usually given by its base matrix B of size $n_v \times n_c$. E.g., the protograph of a $(3,6)$-regular LDPC ensemble is $B = [3, 3]$. Thus, $n_v = 2$, $n_c = 1$, and each check node from the unique set C_1 is connected three times to variable nodes from V_1 and three times – to V_2.

Basing on P, let us define a convolutional protograph P_c, having a memory constraint $m_{cc}, m_{cc} \geq 1$, and describing the structure of the SC-LDPC ensemble with L coupled LDPC blocks. Let $B_0, \ldots, B_{m_{cc}}$ be $n_v \times n_c$ matrices with elements from N, s.t. $\sum_{i=0}^{m_{cc}} B_i = B$. Then, P_c is described by means of the following base matrix $B_{[1,L]}$ of size $(L + m_{cc}) n_c \times L n_v$:

$$B_{[1,L]} = \begin{bmatrix} B_0 & \cdots & \cdots & \cdots & B_{m_{cc}} \\ \vdots & B_{m_{cc}} & \vdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ \vdots & \vdots & \cdots & B_0 & \vdots \\ B_{m_{cc}} & \cdots & \cdots & \cdots & (L + m_{cc}) n_c \times L n_v \end{bmatrix}$$

(2)

Note that the submatrix B_i, $0 \leq i \leq m_{cc}$ at time t, $1 \leq t \leq L$, defines the connection from LDPC block t to LDPC block $t+i$. Also, P_c can be given by a bipartite graph, whose connections are drawn accordingly to $B_{[1,L]}$:

Example 1: Let $B = [3, 3]$, and $B_0 = B_3 = [1, 1], B_1 = [1, 0], B_2 = [0, 1]$, i.e., $m_{cc} = 3$. Then the respective bipartite graph of P_c with $L = 6$ coupled blocks is presented in Fig. 1.

C. Definition of the Code Diversity

One of the main performance measures of a code family \mathcal{F} over the block-fading channel is the diversity order d ([7]):

$$d = \sup_{C \in \mathcal{F}} \lim_{\gamma \to \infty} -\log P_e(\gamma, C) / \log \gamma.$$

(3)

Here C is a code belonging to \mathcal{F}, $P_e(\gamma, C)$ is the error probability of code C, under optimal (ML) decoding.

In order to simplify the analysis, this paper assumes that P_c is computed over the whole codeword, and not over the information part of n, as it was previously assumed in [4]-[6]. So, the values of d, obtained in the present paper, are in fact lower bounds (one might still increase the diversity for information bits by placing them carefully within the codeword).

$d_{min}(N)$ of the code family \mathcal{F} as follows. If a codeword c from C, $C \in \mathcal{F}$, is affected by F fading gains in such a way that (a) the coherence interval is of size N bits, and (b) $\omega_i(e)$ is the Hamming weight of coded bits affected by the i-th fading values, then [4]

$$d_{min}(N) = \min_{e \in C \cap (0, N)} \{ \omega_i(e) \neq 0 \}.$$

(4)

Therefore, for a code of diversity/blockwise minimum distance $d_{min} - 1$ fades can be perfectly recovered, i.e., $d = d_{min}$.

Note that the same definitions can be applied to convolutional-like codes (e.g., SC-LDPC codes), as they can be seen as block codes of code length LN. In this case, the diversity order d, $1 \leq d \leq L$ will be a function of the memory of the convolutional encoder m_{cc} rather than a function of L.

As the main focus of our work is on LDPC codes, decoded iteratively, let us also define a diversity order d^c under iterative decoding, which is given by $d^c = D_c$, with D_c being the smallest number of deep fades (i.e., the number of $\alpha_j = 0$) that cannot be recovered under iterative decoding, in the limit of high SNRs (i.e., assuming $\sigma_n^2 = 0$). Clearly, for any code family \mathcal{F}, $d^c \leq d$.

III. Bounds on the Diversity Order for SC-LDPC Codes

A. Estimation of d

Let us evaluate the blockwise minimum distance d_{min} of a SC-LDPC ensemble and find the maximum possible value of d. Under the channel model discussed in Section II, d_{min} of interest is in fact $d_{min}(N)$. Given that one LDPC block of length N in the SC-LDPC code contains bits related to exactly n_v VS nodes, then, instead of searching $d_{min}(N)$ based on the parity matrix of the SC-LDPC code, one can equivalently search for $d_{min}(n_v)$ based on $B_{[1,L]}$. In other words, the calculation of the diversity order can be equivalently done over the protograph P_c of the SC-LDPC ensemble.

The procedure to calculate d comes from the theory of convolutional codes. Here we apply it to SC-LDPC codes:

- Consider the trellis representation of $B_{[1,L]}$, for which each trellis section is labeled with n_v bits. This trellis representation is obtained based on $B_{[1,L]}$ using the approach from [8].

- According to the structure of one trellis section, define an adjacency matrix A to be a $2m_{cc}(m_{cc}+1) \times 2m_{cc}(m_{cc}+1)$ matrix constructed as follows. If there exists a transition between the state i and the state j in the trellis, then the ij-th element of A is $x^{\omega_i(e_{ij})}$, where e_{ij} is the transition label, and $\omega(e)$ is the vector Hamming weight of e_{ij}. So, as $\omega(e)$ can only take values 0 or 1, $x^{\omega_i(e_{ij})}$ can only be either 1 or x. Finally, if there is a no transition between the state i and the state j, $A_{ij} = 0$.

- Given both-side termination for the SC-LDPC ensemble, its Hamming weight distribution is $W(x) = |A|^2_{[0,0]}$.

- The minimum Hamming distance is the smallest non-zero power in $W(x)$. So,

$$d = \min_{i > 0} \{ i \in N : \text{coeff}(W(x), x^i) \neq 0 \}.$$
Note that, as we are interested not to find the whole $W(x)$, but only d, we might simplify the calculation of A^d by keeping track only of a few polynomial terms with the smallest power and by neglecting all others.

Example 2: Assume the $(3,6)$-regular SC-LDPC ensemble, defined in Example 1. As a first step, a section of a syndrome trellis corresponding to $B_{[1,L]}$ is drawn in Fig. 2 (left).

![Fig. 2. Trellis section (left) and corresponding matrix A (right). Solid (resp. dashed) transitions for the trellis section represent transitions for which the related information bit is 0 (resp. 1).](image)

Further, the corresponding matrix A is given in Fig. 2 (right). The minimum Hamming distance can then be calculated by computing the Lth power of A, $W(x) = 1 + 24x + O(x^2)$. Hence in this case, $d = d_{\text{min}} = 4$.

B. Estimation of d^{IT}

As SC-LDPC codes are decoded using a low-complexity iterative decoding, we are mainly interested in d^{IT} (while d serves as an upper bound on d^{IT}). d^{IT} is related to the blockwise minimum stopping distance $s_{\text{min}}(N)$ of the SC-LDPC ensemble. Similarly as for $d_{\text{min}}(N)$, the diversity is completely determined by the protograph, i.e., $s_{\text{min}}(N) = s_{\text{min}}^{\text{protograph}}(n_\text{v})$, where $s_{\text{min}}^{\text{protograph}}(n_\text{v})$ is related to P_C and is defined below.

Definition 1 (Blockwise stopping set): A blockwise stopping set in a protograph P_C is a subset \mathcal{S} of VS nodes in P_C such that: 1) if a VS node at time t belongs to \mathcal{S}, then any other VS node at t also belongs to \mathcal{S}; 2) VS nodes from \mathcal{S} are connected to a set \mathcal{C} of CS nodes, and each node from \mathcal{C} is connected at least twice. $s^{\text{protograph}}(n_\text{v}) = |\mathcal{S}|/n_\text{v}$ denotes the size of the blockwise stopping set \mathcal{S} (in blocks of n_v VS nodes).

Note that, by condition 1) above, if bits of the t-th LDPC block in the SC-LDPC code are related to a class V_i, $i = 1, \ldots, n_v$, and they are in deep fade, then all the other bits in this codeword are also in deep fade, because they belong to the same coherence interval. Moreover, if the related VS nodes of \mathcal{S} satisfy the condition 2) above, then they cannot be corrected by iterative decoding.

Definition 2 (Blockwise minimum stopping distance): The blockwise minimum stopping distance $s^{\text{protograph}}_{\text{min}}$ is the smallest size of the stopping set in P_C.

Note that, with a blockwise minimum stopping distance $s^{\text{protograph}}_{\text{min}}$,

$$d^{\text{IT}} = s^{\text{protograph}}_{\text{min}}.$$

Example 3: Consider P_C from Fig. 1. Then $s^{\text{protograph}}_{\text{min}} = 2$. To check it, Fig. 3 shows the induced graph when the blocks at time $t = 1$ and 2 are in deep fade: all the CS nodes in the graph are connected at least twice to the set of VS nodes.

In order to find $s^{\text{protograph}}_{\text{min}}$ for a given protograph-based SC-LDPC ensemble, one might use the exhaustive search of stopping sets, by using peeling decoder, applied over P_C. Some bounds on $s^{\text{protograph}}_{\text{min}}$ are also available in [9].

Note that, with a blockwise minimum stopping distance $s^{\text{protograph}}_{\text{min}}(n_\text{v})$ and also $s^{\text{protograph}}_{\text{min}}(n) \leq d_{\text{min}}(n_\text{v})$. In this work we aim to design the protographs such that $s^{\text{protograph}}_{\text{min}}(n_\text{v})$ can be increased to $d^{\text{protograph}}_{\text{min}}(n_\text{v})$, hence approaching the ML decoding performance by using the sub-optimal BP decoding.

IV. PROTOGRAPH DESIGN FOR A TARGETED d^{IT}

At our knowledge, there does not exist a method to design a code with a fixed (but arbitrary) diversity order. Even for convolutional codes, supposed to be well-studied, the search of a code with a fixed (but arbitrary) diversity order. Even for block codes, the situation is even worse, and only few, very particular code designs, are proposed in the literature.

In this section, we propose a recursive algorithm for generating a class of codes with increasing diversity order d^{IT}. The algorithm generates the protograph for a SC-LDPC code. The advantage of working with d^{IT} instead of d is in fact that one can use a low-complexity iterative decoder, instead of the optimal ML decoder. From another side, as $d^{\text{IT}} \leq d$, it might be a challenging task to obtain a high enough value for d^{IT}.

For simplicity, we describe the construction through an example of a $(3,6)$ SC-LDPC code with $B = [3, 3]$.

A. Initialization

In the initialization step, we first define B_i, with i varying from 0 up to some $l > 0$, that fulfill the constraint on m_{cc}:

Definition 3 (Block locality): Assume that a block V_t at time t with n_v VS nodes is in deep fade. Locality is defined as the minimum number of component matrices l, required to recover n_v VS nodes.

In order to guarantee some diversity $d^{\text{IT}} \geq 2$, one should choose a protograph P_C with $m_{\text{cc}} \geq l$. This implies a minimum number of component matrices B_is which should be chosen.

Proposition 1: Given a SC-LDPC code with a base matrix $B_{[1,L]}$, constructed using a matrix B of size $n_\text{c} \times n_\text{v}$, and considering the channel model as in (1), at least $l = \left\lceil \frac{n_\text{v}}{n_\text{c}} \right\rceil$ components B_is are required in order to achieve $d^{\text{IT}} = 2$.

Proof: Let $I_0 = \mathcal{G}(\mathcal{C}, \mathcal{V})$ represent an induced graph consisting of a set of check and variable nodes \mathcal{C} and \mathcal{V}, respectively. Then, choose B_is such that there exists at least one degree 1 check node $c_r \in \mathcal{C}$, such that $I_0 = \mathcal{G}(\mathcal{C} \setminus c_r, \mathcal{V} \setminus \{v_r \in \mathcal{N}(c_r)\})$
structure and, thus, do not increase the diversity order, or at least must not decrease d_{IT}. Therefore, a second step is required to increase d_{IT}. This is accomplished by inserting an all zero matrix 2 (e.g., here [0, 0]). This makes sure that all combinations of 2 block erasures are covered either by B_0, B_1 or B_0, B_2. Note that B_0, B_1 is responsible to protect against all single block erasures (block locality), and B_0, B_2 must reduce the problem from two erasures to a single erasure by correcting one deep fade or vice versa. In our example the diversity at this step can be increased to $d_{IT}=3$ by inserting a single all zero matrix and is given below, $B_0 = [1, 1], B_1 = [0, 1], B_2 = [0, 0], B_3 = [1, 0], B_{mee} = [1, 1]$. The recursive process continues until the targeted d_{IT} is obtained. The steps to obtain a family of codes with increasing diversity d_{IT} for (3,6)-regular code with base matrix $B = [3, 3]$ is listed in the Table I. The matrix B_s is shown in red at each splitting step. Note that, the addition step can add more than one all-zero matrix.

D. Discussion

As mentioned above, d_{IT} is bounded by the blockwise minimum Hamming distance d_{min} of the code, which can be calculated by means of $W(x)$. The weight enumerator corresponding to the final protograph with $d_{IT}=5$ is $W(x) = 1 + 9x^3 + O(x^5)$. Thus, $d_{min}=5$ and, hence, up to $d-1=4$ deep fades can be perfectly recovered under ML decoding. Hence, the best possible iterative diversity, i.e., $d_{IT}=d$, is achieved at the final step of the construction.

It is also noteworthy that the code construction does not achieve the upper bound on d_{IT} at each step of the recursive algorithm. This can be easily explained by the fact that at all the steps before the final one, component matrices $B_i, i=0, \ldots, m_{ee}$ are designed such that these provide the corresponding iterative diversity d_{IT}. Hence, the maximum in terms of diversity is achieved only when all the component matrices $B_i, i=0, \ldots, m_{ee}$ are involved in providing the diversity order. Since this algorithm recursively approaches the upper bound on the diversity, the component matrices in the intermediate steps are not necessarily achieving the upper bound on iterative diversity (see column 4 and 6 of Table I).

Consider as an example the edge spreading as a result of step 1 in Table I. For this, $d_{IT}=3$, while the ML decoding diversity is $d=4$. If we ignore the component matrix B_{mee}, the resultant code becomes a (2,4)-regular code with iterative diversity of 3. The weight enumerator function of the resultant $(2,4)$ protograph is $W(x) = 1 + 27x^3 + O(x^5)$, i.e., ML diversity of 3. This shows that the component matrices excluding B_{mee}, at each step achieves the upper bound on the iterative diversity i.e., $d_{IT}=d$.

V. RESULTS AND COMPARISONS

This section presents the results of the designed codes using the proposed algorithm.

A. Some Designed Codes over the Block Erasure Channel (BLEC)

The proposed recursive algorithm above can be used to design the protographs for a wide variety of rates and values of d. It is applied with multiple initial steps to find the codes with maximum diversity for rate $R = 1/2$, $2/3$ and $3/4$ with variable node degree 3 and 4. The results are given in Table II. Let us take an example of a variable node degree 3. It can be seen that the designed protographs achieve the maximum diversity of $d_{IT}=6^3$ for all considered rates. However, as the diversity order is possible in this case compared to the Option 1 in Table I.

2Note that the maximum diversity of d_{IT} in Table II for (3,6) code is obtained by starting with Option 2 as described in Section IV-A. Since the Option 2 consumes less edges to fulfill the constraint on m_{ee}, a higher diversity order is possible in this case compared to the Option 1 in Table I.

TABLE I

Decomposition of a (3,6)-regular code.

<table>
<thead>
<tr>
<th>Step</th>
<th>m_{ee}</th>
<th>d_{IT}</th>
<th>Component Matrices</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Init.</td>
<td>2</td>
<td>1, 1, 0, 1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>Split</td>
<td>3</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>4</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Split</td>
<td>5</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>6</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Split</td>
<td>7</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>7</td>
<td>1, 1, 0, 1, 0, 1</td>
<td>5</td>
</tr>
</tbody>
</table>
than the computed one from Table II. This comes from the fact that the estimated diversity in Table III is larger than the estimated one from Table II. This comes from the fact that the increase of d_{IT} for SC-LDPC codes come at increase of m_{cc} and, thus, of the decoding latency.

Table III

<table>
<thead>
<tr>
<th>Code</th>
<th>Estimated d_{IT}</th>
<th>_latency(in bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoupled LDPC</td>
<td>1.3</td>
<td>2N</td>
</tr>
<tr>
<td>Root-LDPC</td>
<td>2</td>
<td>2N</td>
</tr>
<tr>
<td>SC-LDPC, $m_{cc} = 1$</td>
<td>3</td>
<td>2N</td>
</tr>
<tr>
<td>SC-LDPC, $m_{cc} = 5$</td>
<td>6.7</td>
<td>6N</td>
</tr>
<tr>
<td>SC-LDPC, $m_{cc} = 9$</td>
<td>10</td>
<td>10N</td>
</tr>
</tbody>
</table>

The increase of d_{IT} for SC-LDPC codes are suitable for transmission over a non-ergodic channel [3]. In this work we propose a systematic way of constructing protographs for SC-LDPC codes with any target diversity order d. At the best of our knowledge, this is the first systematic code design, addressing an arbitrary diversity order. Using our code design, any value of d can be obtained, for a moderate value of the memory constraint m_{cc}, so the proposed SC-LDPC codes have a good latency-diversity tradeoff. As for their decoding complexity, we believe that it can be kept (almost) constant, irrespectively of m_{cc}, if one uses the decoding schedules proposed in [12].

VI. CONCLUSION

SC-LDPC codes are suitable for transmission over a non-ergodic channel [3]. In this work we propose a systematic way of constructing protographs for SC-LDPC codes with any target diversity order d. At the best of our knowledge, this is the first systematic code design, addressing an arbitrary diversity order. Using our code design, any value of d can be obtained, for a moderate value of the memory constraint m_{cc}, so the proposed SC-LDPC codes have a good latency-diversity tradeoff. As for their decoding complexity, we believe that it can be kept (almost) constant, irrespectively of m_{cc}, if one uses the decoding schedules proposed in [12].

REFERENCES