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A Nystrom scheme with rational quadrature applied to edge crack
problems

J. Englund*t

Numerical Analysis, Centre for Mathematical Sciences, Lund University, Boz 118,
SE-221 00, Lund, Sweden

SUMMARY

The effects of introducing rational quadrature into a recently developed algorithm for the computation
of the stress field in edge-cracked specimens are studied. The algorithm is based on an integral equation
of the second kind which is solved using a Nystrém method. Rational quadrature can handle the
presence of corners and triple-junctions in a more accurate manner than polynomial quadrature. A
preconditioner is also included in the scheme. The rational quadrature together with the preconditioner
results in a scheme that reduces the number of discretization points needed for a certain accuracy by
up to 70% and the number of iterations needed by an iterative solver by up to 50%, compared to a
scheme using only polynomial quadrature. For validation, several setups with a single edge crack are
studied. Two large setups, containing 300 and 1500 edge cracks, respectively, are also investigated.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Using boundary integral equation methods for the solution of certain types of problems can
be very beneficial. A commonly mentioned advantage of such methods is the dimensional
reduction appearing for instance when the stress field in an isotropic linearly elastic material is
computed. One way to discretize and solve an integral equation is by using a Nystrém method.
For some problems it is fairly easy to construct high-order Nystrém schemes, while for other
problems care must be taken to retain the high order. For instance, if boundaries containing
corners and triple-junctions are studied, kernels appearing in an integral equation formulation
will typically behave as rational functions close to the corners. Use of polynomial Gaussian
quadrature instead of quadrature more adapted to the situation at hand will negatively
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Figure 1. Example of a geometry with two edge cracks. The figure shows the positive orientation of T'
and the notation used throughout this paper.

influence the accuracy of the numerical solution. The main goal of the present paper is to
construct a scheme that treats corners and triple-junctions in a more accurate way using
rational quadrature. The problems considered below consist of computing stress fields in
isotropic linearly elastic domains containing a number of edge cracks.

Section 2 introduces the second kind integral equation that is solved in all numerical
experiments in the paper. The same equation was solved in [1] without the special treatment of
corners and triple-junctions introduced here. Section 3 describes how efficient quadrature rules
can be constructed for parts of the boundary that are close to corners and triple-junctions.
Section 4 introduces a simple preconditioner which reduces the number of iterations needed by
the iterative solver GMRES with up to 50%. Finally, Section 5 contains comparisons between
the new scheme and the scheme used in [1]. The comparisons include some setups containing
one edge crack and one setup containing 300 edge cracks. It is also demonstrated that the
present scheme can handle setups with 1500 edge cracks as accurately as the earlier scheme
handled 300 edge cracks, using similar numbers of discretization points.

2. PROBLEM STATEMENT AND A SECOND KIND INTEGRAL EQUATION

The problem at hand consists of computing the stress field in a finite and simply-connected
isotropic linearly elastic specimen when prescribed traction is applied to its boundary. The
problems considered are two-dimensional and they all resemble the geometry shown in Fig. 1.
We also assume that no body forces are present and that the prescribed traction is such that
the specimen is in equilibrium. The domain in R? (or in C) that contains the specimen is
denoted by D, and its exterior by D’. The boundary of D consists of the outer boundary,
denoted by I'y, and N, edge cracks, denoted by I',,, m = 1,..., N.. We also need the notation
r,= Uﬁ;l Iy, and I' =Ty UT.. The outer boundary I'y is given positive orientation, and the
edge cracks are oriented from crack tip towards Ty, see Fig. 1. In all setups considered below
the outer boundary, 'y, contains four corners.

It is well known that Airy’s stress function, W(z,y), (z,y) € DU D’, can be represented as
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2 J. ENGLUND

W (z,y) = Re{z0(2) + x(2)}, (1)

where ¢(z) and x(z) are analytic functions of the complex variable z = z + iy. Introduce
®(2) = ¢'(2) and ¥(2) = x"'(2) and the Cauchy potentials

1 Q
B(z) = —,/ (Mdr e pup, 2)
2mi Jp T—2
1 Q(r)d7 1 7Q(T)dT
o = o [ IO
2 Jp T— 2 27 Jr (17— 2)
pr
_ L/M, zeDuUD, (3)
27i Jp T—2

where Q(z) is an unknown layer density on I', where n = n(z) is the unit normal to I' and
where tP*(z) denotes prescribed traction. Once ®(z) and ¥(z) have been determined, the stress
state in D U D' is known via the Kolosov formulae

Opz +oyy = 4Re{®(2)}, z2€DUD, (4)

Oyy — Ogg — 2104y = 2(29'(2) +¥(2)), z€ DUD". (5)

Using the potentials (2) and (3) it is possible to derive the following integral equation of the
second kind for the problem at hand [1]

[I — pM1p ' (M3 + h(iPo + 2Q))] Q(2) = pMip 'g(z), z€T. (6)
The integral operators in Equation (6) are defined by
1
mf =L [LO e, (7

mJr T —Z

1 [ fn)dr a1 [ f(r)dr

Mf(2) = 35 F?+E2wi P -z
of =7 [ e ©
and
Pof = —i%e{ [ 12 dz}, (10)

where A denotes the area of D. Let 4%, denote the crack tip of T',,, and let v}, denote the point
where T',,, intersects with T'g, see Fig. 1. The functions h(z) and p(z) appearing in Equation (6)
are defined by
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RERH
and
o= { e epuRe a
where
Nec
pe(2) = T {2 =%+ (=t} (13)
o

The value of p.(z) for z € T is defined as the limit from the right relative to the orientation of
I". Furthermore, we choose the branch given by a branch cut along I'. and

Zlggo pe(z) = 1. (14)
The right hand side of Equation (6) is given by
atPr(z a1 n(7)tP* (1) dT
o= ) 2L [ 200
r

2 n 2mi F—z

, zel. (15)

3. RATIONAL QUADRATURE

This section will introduce the main idea of the present paper. In a previous scheme [1],
ordinary Gauss-Legendre and Gauss-Jacobi quadrature was used around corners and triple-
junctions. This will be avoided here. Instead we will use quadrature rules that are specifically
constructed to handle integrals appearing in the operators M3 and Mjp~—!, when corners and
triple-junctions are present. A similar idea but with a different approach than taken here can
be found in [2]. Examples of other methods which are in one way or another related to the
problems addressed in the present section can be found in [3, 4, 5, 6], and in the references
therein.

One way of solving Equation (6) is by using a Nystrom method. This means that the
integral operators appearing in the equation are approximated using numerical integration
schemes. Typically, one uses composite quadrature rules. That is, I' is divided into a number
of quadrature panels. On each such panel a one-dimensional quadrature rule is used. The
solution of Equation (6), Q(z), is found at the quadrature nodes. The term discretization
points will also be used to denote the quadrature nodes. A discretization point will be referred
to as a target point when it plays the role of a point where Equation (6) should be satisfied. A
discretization point will be referred to as a source point when it plays the role of quadrature
node in the discretization of an integral operator. We will discretize the boundary I in such a
way that no panel extends over a corner or across a triple-junction. That is, the panels closest
to a corner or a triple-junction has one end-point at the corner/triple-junction, see Fig. 2.
These panels will be referred to as corner and triple-junction panels.

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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Figure 2. Panel placement around corners (left) and triple-junctions (right). The quadrature nodes for
one panel are shown. Points denoted by z; are examples of target points where rational quadrature is
needed for source points on the panel with shown quadrature nodes.

A straightforward choice of numerical quadrature within the Nystrém method is to use
Gauss-Legendre or Gauss-Jacobi rules on each panel. For boundaries devoid of corners and
triple-junctions, polynomial Gaussian quadrature is a good choice. The operator M3 is then
compact when operating on square integrable functions. Furthermore, standard methods, see
for instance Section 5 of [7], to compute M;p 1f(z) in the Cauchy principal value sense
give accurate results. When I' contains corners or triple-junctions the kernels appearing in
Equation (6) will behave as rational functions when target points and source points are close
to and on opposite sides of a corner or a triple-junction, see Fig. 2. Hence, polynomial Gaussian
quadrature will no longer be a good choice for such a situation. Instead we will construct simple
16-point interpolatory quadrature rules for corner and triple-junction panels. The reason for
using a quadrature rule of order 16 is that it was found to be the best trade-off between
accuracy and stability.

We now turn to the construction of the desired quadrature rules. Let I';, be a corner or triple-
junction panel which is parametrized using a real variable ¢. That is, 'y = {2(¢) : t, <t <t.}.
We assume that z(t;) is either a corner or a triple-junction. Let t;, j = 0,...,15 be the
quadrature nodes of 16-point Gauss-Jacobi quadrature, with exponent —1/2 at ¢ = —1 and
exponent 0 at ¢t = 1, scaled to the interval [ts,t.]. One should note that other choices of
node placements could also be made with good results. The choice of node placement is not
so important. The discretization points on I', are given by 2(¢;), j = 0,...,15. Now, define
the linear mapping B(z) = Cz + a, where C' and « are complex constants. We require that
B(z(t;)) = —1 and B(z(te)) = 1, see Fig. 3. Let z; € C\ T'p, and let aj, j = 0,...,15, be
complex constants. The quadrature rules we are interested in are such that functions of the

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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A NYSTROM SCHEME WITH RATIONAL QUADRATURE 5

type

13
(1) = 12::0 a;l + - _a;(%) + _6;5(%))2, T € B(T), (16)

are integrated exactly over B(I',). Note that the quadrature weights in general will be complex.
This particular choice of ¢;(7) is motivated by the structure of the operators M; and M3 as
defined by (7) and (8), respectively. Let P,(7) be a complex valued polynomial of degree
n. The definition of ¢.(7) implies that rational functions of the types Pi4(7)/(7 — B(z:)) and
Py5(7) /(7 — B(2;))? are integrated exactly, and these functions are appropriate approximations
of the integrands that appear in M; and Mj3. Quadrature weights for the last three integrals
in the definition (8) of M3, which contain denominators that are conjugated compared to the
definition of ¢.(7), are given by the conjugates of quadrature weights obtained for ¢.(7). For
the operator M;p~! and quadrature panels closest to a triple-junction one modification must
be done in order to ensure that the square-root singularities of p(z)~! at the triple-junctions
are captured by the quadrature. We therefore demand that (7 4+ 1)~'/2¢,(7) rather than ¢, ()
should be integrated exactly for this situation.

The above choice of g;(7) has the consequence that the leading term of a series expansion
of Q(z) around a corner or triple-junction is integrated exactly for certain geometries. When
B1 < m or when max (82, 33) < =, see Fig. 2, the leading term of a series expansion of (z)
will be a constant [8] and such a term is present in ¢.(7) of (16). The exponents of the higher
order terms of the series expansion will in general be complex numbers with irrational real and
imaginary parts. Therefore only the leading term of the expansion is integrated exactly using
the quadrature described here. This is however, as will be shown in the numerical experiments
below, enough to achieve a significant improvement when compared to the scheme in [1], where
polynomial quadrature is used. Note that if geometries with any angle §; larger than 7 are
to be investigated, the scheme presented here will need some modifications in order to be
effective. At corners and triple-junctions with such angles, the solution Q(z) will be singular,
which is not accounted for in the definition of g, (7).

For the discretization of integrals over a corner or triple-junction panel we will need one set of
quadrature weights for each target point that is close enough to the panel under consideration.
When the distance of a target point from a corner/triple-junction panel is approximately
longer than the length of the corner/triple-junction panel, no rational quadrature is needed
since polynomial and rational quadrature then give equally accurate results. We therefore only
construct rational quadrature rules for the following situations:

e Source points on one corner panel and target points on the other corner panel at that
corner.

e Source points on a triple-junction panel and target points on the other two triple-junction
panels at that triple-junction.

Source points on corner /triple-junction panels and target points not included in the two above
situations are treated using a set of quadrature weights which comes from the requirement
that functions of the type

15
gp(1) = Zaﬂj, T €[-1,1], (17)
=0

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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Figure 3. Left, the position of B(I'p) and B(z¢). Right, the position of I', and z:. Note that a corner
or triple-junction is present at z(ts).

should be integrated exactly over [—1,1]. Since this set of weights is independent of z;, the
same set can be used for all corner and triple-junction panels. Note that if the nodes on
corner /triple-junction panels are placed according to Gauss-Legendre quadrature, the weights
resulting from the requirement of exact integration of g, will be the usual Gauss-Legendre
weights.

The above means that, for each corner, 32 sets of 16 quadrature weights are computed. For
each triple-junction, 192 sets of 16 quadrature weights are computed (since M3 and M;p ! need
separate weights, we have to compute 192 rather than 96 sets of weights at triple-junctions).

The requirement that a quadrature rule integrates either g.(7) or (7 + 1)~'/2¢.(7) exactly
leads to ill-conditioned 16 x 16 linear systems for the weights. The condition numbers for the
target points that are located closest to a corner or triple-junction typically are on the order
of 10%. For target points farther away the condition numbers are larger. When the distance
from a target point to a corner/triple-junction panel is approximately equal to the length
of the corner /triple-junction panel, the condition number can be as large as 10'2. Therefore
the systems are solved using Gaussian elimination performed in quadruple precision. Once
the quadrature weights have been computed they are truncated to double precision prior to
running the main part of the algorithm.

Advantages of the quadrature rules described here compared to more elaborate methods as
can be found in, for instance, [8] are:

e It can easily and automatically handle setups containing many different angles g;,
1=1,2,3, see Fig. 2.

e It can handle non-straight corner and triple-junction panels.

e There is no need for a time consuming pre-processor using adaptive quadrature since
integrals of ¢;(7) and (7 4+ 1)~/2¢,(7) can be computed analytically.

4. A SIMPLE PRECONDITIONER

This section introduces a preconditioner that is based on a splitting of integral operators,
appearing in Equation (6), into two parts. One part contains close range interactions for the

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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A NYSTROM SCHEME WITH RATIONAL QUADRATURE 7

situation when both target and source points are close to a corner or triple-junction. The other
part contains close range interactions for the situation when target and source points are not
close to a corner or triple-junction. The second part also contains long range interactions. If
polynomial quadrature is used around corners and triple-junctions the computational mesh
must be refined there if highly accurate solutions are desired. In the refined mesh a large
number of discretization points will be placed close to the corners and triple-junctions. Since
the cost of our preconditioner depends on the number of such discretization points, an efficient
preconditioner will be too expensive. When rational quadrature is used, the need for a refined
mesh around corners and triple-junctions is reduced and one can then construct an efficient
and cheap preconditioner.

Let 1";’ be the union of the two (or three) quadrature panels closest to corner (or triple-
junction) j, where the triple-junctions are numbered from 1 to N, and the four corners from
N, + 1 to N, + 4. Define the operator

d .
%fr§—f(f)7 2€T?, j=1,...,N.+4,

T—2

18
0, zeT\Upetre. (18)

MY f(z) = {
The operator M} is defined analogously. One possible way to construct a preconditioner is to
rewrite Equation (6) as

[I =Ty + Ty — pMip~" (M3 + h(iPo + 2Q))] Q2) = pMyp~'g(2), z €T, (19)

where T, = pM?Pp~*MY. The intuitive idea behind this choice of T} is similar to the one
described in Section 8.1 of [9]. Define the operator T = pM;p~! (M3 + h(iPy + 2Q), operating
on functions in some appropriately weighted L?-space. What one ideally wants is to split the
integral operator T', appearing on the left hand side of Equation (6), into a compact part, T,
and a non-compact part, 7. That is, I — T = I — T, — T,. If I — Ty is left invertible, application
of (I —Ty)~! from the left in the original integral equation gives a Fredholm integral equation
of the second kind. With our choice of T,, T — T}, will not be compact. If M7 is redefined so
that the domain where M? f(z) is non-zero is increased to include both all the Fg-’ and one or
more panels neighboring the I‘é-’ , then T — Ty, will be compact. The results of the numerical
experiments below were unaltered when M? was modified in such a way. Therefore we opted
to use the above definition of M?, which leads to a simpler and faster algorithm. The question
of whether the operator I — Ty is left invertible is to the best of our knowledge non-trivial to
prove rigorously, but numerical experiments indicate that this indeed is the case. Assume that
I — Ty is left invertible and apply (I — Tp)~! from the left in Equation (19). This gives the
preconditioned equation

[I—(I-Ty)  (pM1p~ (M5 + h(iPo + 2Q)) — Tp)] Q(2) = (I — Tp) 'pMi1p~'g(z), z€T.
(20)

Equation (20) is solved numerically in the following section. Informally speaking,
Equation (20), is closer to being a Fredholm integral equation of the second kind than
Equation (6).

The discretized version of T} is a block-diagonal matrix and the action of (I —T;)~! can be
computed in a fast manner using LU-factorization since the size of each block will at the most
be 96 x 96.

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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8 J. ENGLUND

5. NUMERICAL EXAMPLES

This section will present several experiments where Equation (20) is discretized and solved
numerically using a Nystrom scheme. Integrals appearing in Equation (20) are discretized
using composite quadrature. For quadrature panels that end either at a corner or at a triple-
junction, 16-point quadrature as discussed in Section 3 is used. For panels containing a crack
tip, 8-point Gauss-Jacobi quadrature with exponent —1/2 is used. On the remaining panels,
8-point Gauss-Legendre quadrature is used. The computer code was written in Fortran 77 and
compiled using the Sun Fortran 77 compiler. All experiments were performed on a SunBlade
100 workstation.

The linear system of equations resulting from the Nystrém scheme was solved using the
iterative GMRES solver accelerated with the fast multipole method. Unless explicitly stated
otherwise, the GMRES iterations in the experiments below were terminated when the relative
residual had reached 10712,

An a priori adaptive approach was used around corners and triple-junctions. See [7] for
details of this adaptive approach. In contrast to the scheme in [1], the rational quadrature used
here removes the need for many refinements. One level of refinement gives enough accuracy for
most applications. To achieve maximum accuracy no more than 5-7 refinements are needed.

In all experiments traction was prescribed as shown in Fig. 4. That is, traction of unit
magnitude was applied along the upper and lower edges of T'y.

A description of how the operator M; is discretized and how p(z) is computed can be found
in [1]. To be able to compare the performance of the present scheme with earlier ones, stress
intensity factors, F1 and Fip, and T-stresses were computed. Details regarding the computation
of these fracture parameters can also be found in [1].

5.1. RECTANGULAR PLATE WITH ONE EDGE CRACK

In the previous paper [1] several specimens with one straight edge crack of the type shown in
Fig. 4 were investigated. The notation of Fig. 4 will be used below.

In the present section four different schemes will be used: The scheme from [1], which will
be called the Poly scheme. The scheme from [1] with preconditioning as described in Section 4
added, which will be called the PolyPrec scheme. A scheme with rational quadrature around
corners and triple-junctions but without preconditioning, which will be called the Rat scheme.
A scheme with both rational quadrature and preconditioning as described in Section 4, which
will be called the RatPrec scheme.

A convergence test was performed for a setup with h/w =1, a/w = 0.5, and 6 = 0, see Fig. 5.
In the left part of Fig. 5 the RatPrec scheme is compared to the Poly scheme. One level of
adaptive refinement was used around corners and triple-junctions. Apparently, the RatPrec
scheme clearly outperforms Poly. The error from Poly is approximately proportional to the
length of the corner and triple-junction panels. That is, under uniform refinement the Poly
scheme is of order one. Already for small meshes the RatPrec scheme gives accurate results and
it also converges faster under uniform refinement. The right part of Fig. 5 shows the relative
error in F1 as a function of the number of performed GMRES iterations for a mesh with 9968
discretization points. The RatPrec scheme reaches the desired residual faster than the Poly
scheme. The behaviour of RatPrec, as shown in the left part of Fig. 5, resembles the behaviour
shown in Fig. 7 of [8]. The RatPrec scheme can be seen as a simplified but more flexible version

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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Figure 4. The rectangular plate with one edge crack discussed in Section 5.1.
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Figure 5. The left figure shows a convergence test comparing the RatPrec scheme with the Poly

scheme. See beginning of Section 5.1 for definitions of the Poly and RatPrec schemes. The dimensions

of the specimen were h/w = 1, a/w = 0.5, and § = 0. The mesh was refined uniformly. As reference

we used the value F1 = 3.0087584653, which comes from [1]. The right figure shows the development
of the relative error in Fi for the largest run in the left figure.

of the approach used in [8]. In Fig. 5 it can also be seen that the preconditioner of Section 4
clearly decreases the number of iterations needed.

A couple of tests regarding the impact of the rational quadrature and the preconditioner were
made, see Table I. In these tests a mesh that contained no more than 272 discretization points

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:0-0
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10 J. ENGLUND

Table I. Investigation of the impact of the rational quadrature introduced in Section 3 and of the

preconditioner introduced in Section 4. In all experiments of this table the number of discretization

points was 272. The row denoted Error concerns the relative error in Fi. See beginning of Section 5.1

for definitions of the Poly, PolyPrec, Rat, and RatPrec schemes. As reference values we used values
presented in Section 7.2 of [1].

h/w a/w 0 Poly PolyPrec Rat RatPrec

1 0.5 0 Iterations 48 25 48 25
Error 20-1072 20-1072 1.2-1077 1.2-107"

2 0.5 0 Iterations 44 25 49 25
Error 2.3-107% 23-107% 42-1007 4.2-1077

2 04 «/6 Iterations 45 26 50 26
Error 14-107% 14.107% 86-1077 86-1077

2 0.5 m/4 Iterations 49 27 54 27

Error 87-107* 87-107* 15.107% 15-10°°

was used. The RatPrec scheme decreased the number of iterations needed by about 50% for
all setups and also decreased the error significantly, when compared to the Poly scheme.

In [1] the following three tests were made for a couple of rectangular setups: When 8 = 0, Test 1
investigates the number of discretization points and iterations needed in order to achieve a
relative error smaller than 1% in both F1 and T. When 6 # 0, Test 1 investigates when
the relative error was smaller than 1% in both Fi and Fj;. Test 2 investigates the number
of discretization points and iterations needed to achieve the same accuracy as in the most
accurate results found in the literature. Test 3 investigates the number of discretization points
and iterations needed to achieve relative errors in both F} and T (for specimens with 8 = 0)
or F; and Fi; (for specimens with 6 # 0) that are smaller than 1071°. These three tests were
performed using the RatPrec scheme and compared to the Poly scheme, see Table II. In these
tests the iterations were halted when the relative errors had reached the desired value.

In connection with Table II one should note that the coarsest mesh possible with the present
implementation contained 272 discretization points. In [1] the coarsest mesh possible contained
184 discretization points. This is a consequence of the fact that here we have used 16-point
quadrature instead of 8-point quadrature around corners and triple-junctions. One should also
notice that the errors from the RatPrec scheme using 272 discretization points are typically
significantly lower than 1%, which is shown in Table I. From the two rightmost columns in
Table IT one can see that the RatPrec scheme decreased the number of discretization points
needed to achieve relative errors less than 10~1° by 65% to 75%.

5.2. RECTANGULAR PLATE WITH MANY EDGE CRACKS

A clear indication of the improvements the ideas in Sections 3 and 4 result in is the maximum
number of edge cracks that can be handled. Using the present scheme, we found that we could
simulate a specimen containing 1500 cracks as accurately as we could simulate a specimen
containing 300 edge cracks using the scheme in [1]. A specimen containing 1500 was constructed
by extending the specimen with 300 edge cracks studied in [1], see Fig. 6. Using the notation of
Fig. 4 the plate had the dimensions h = 150 and w = 1. Edge cracks were placed equidistantly
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Table II. Results from the three tests mentioned in Section 5.1. The reference values used are presented
in Section 7.2 of [1]. The number of discretization points used is denoted by N. Test 1: Relative error
less than 10~ 2. Test 2: Relative error equal to the most accurate result found in the literature. Test
3: Relative error less than 107'°. See beginning of Section 5.1 for definitions of the Poly and RatPrec

schemes.

Test 1 Test 2 Test 3
hjw a/w 0 RatPrec Poly RatPrec Poly RatPrec Poly
1 0.5 0 Iterations 11 16 12 16 35 58

N 272 536 272 712 904 3904
2 0.5 0 Iterations 12 15 13 21 33 51
N 272 272 272 536 1008 3553
2 04 7/6 Iterations 13 15 14 18 39 58
N 272 184 272 184 1040 2984
2 0.5 7w/4 [Iterations 14 20 18 32 42 70
N 272 184 272 592 1040 2984

A

\

Figure 6. Part of the geometry studied in Section 5.2. Due to the complexity of the geometry only
about one fourth of the plate is shown. Note that the specimen has been rotated 90° in this figure.
The specimen contains 1500 edge cracks and is loaded by unit traction along the short plate edges.

with 750 cracks along both the right and left edges of the plate. The edge cracks were of the
same three types as in the setup with 300 edge cracks: a straight crack with # =0 and a = 0.1,
a straight crack with § = 7/6 and a = 0.1, and a non-straight crack. See Fig. 4 for a definition
of a and 6. The non-straight crack consisted of part of a circle with radius r and opening
angle 3. Here r = 1/3 and 8 = w/10 which means that this crack type had length a = 7/30.
The angle between the non-straight cracks and the plate edges, at the points of intersection,
was 7/2. The distance, along the plate edge, between two consecutive cracks was h/751. For
a more detailed picture of how the specimens in the present section were constructed, see the
figures in Section 7.3 of [1].

In [1] the smallest error obtained for the specimen containing 300 edge cracks was
approximately 107, using a total of 205,000 discretization points, see Fig. 9 of [1]. The present
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scheme managed to achieve smaller errors for the same setup using only 53,000 discretization
points. The error used here is defined as the relative error in || F||oo, in || Fi1||oo, and in ||T||oo,
where Fp, Fr1, and T are vectors containing numerically computed stress intensity factors and
T-stresses for all crack tips. As a final test we investigated the number of discretization points
needed by the present scheme to obtain an error of approximately 10~7 for a specimen with
1500 edge cracks. It was found that a mesh containing 264,000 points was enough to achieve
the desired accuracy. The value of Fi for the straight crack in the lower right corner of the
plate was found to be Fi = 1.255450. This was the largest component of F]. As reference,
values from a run with 589,000 discretization points were used.

In addition to being an efficient modification of the scheme in [1], the quadrature discussed
in Section 3 can also be used to construct an efficient post-processor for the computation of the
entire stress field in a specimen. The need for adaptive refinement will be drastically reduced
for the situation when the point where the stress field is computed lies close to I'. In order
to illustrate that the present algorithm can be used to compute the stress field accurately in
complicated setups, the von Mises effective stress o, was computed for the specimen containing
1500 edge cracks. For a plane strain state of stress, o, is given by

0 = [(1 = (L = 1)) (020 + 0yy)? = 3(0500yy — 2,)] /7, (21)

where v is Poisson’s ratio. In order to compute the stress field Equation (20) was solved using
264,000 discretization points. The solution, (z), was then used together with the Kolosov
formulae (4) and (5) to compute effective stresses, see Fig. 7, where we have used v = 0.3.
Because of the complexity of the setup only a small portion of the specimen is shown in the
figure.

6. DISCUSSION

Two modifications of a previous scheme for the computation of the stress field in edge-cracked
specimens were presented. Quadrature rules that can handle the complicated kernels appearing
in Equation (6) were introduced in Section 3. In Section 4 a simple preconditioner was
introduced. A scheme which used the rational quadrature in tandem with the preconditioner
clearly outperformed the previous scheme both in terms of accuracy for a given mesh size and
in terms of iterations needed.

Compared to more elaborate basis functions approaches, the method presented here is more
general in the sense that it can easily treat non-straight corner and triple-junction panels.
Furthermore, no time consuming adaptive quadrature is needed to construct the rational
quadrature of Section 3.

Finally, it should be noted that all computations in the present paper were performed using
the same standard workstation as was used in [1].
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Figure 7. Contour plot of the von Mises effective stress, Equation (21), in a small part of the geometry
shown in Fig. 6. Poisson’s ratio was set to v = 0.3. The grid used for the plot contains 40,000 points
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