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Preface

The central theme of this thesis is the numerical solution of problems in geomet-
ric computer vision. Given only a sequence of images of a scene we would like to
infer the motion of the observer and the three dimensional layout of the scene.
In applications, such problems come in a wide variety of sizes from setups with
only a couple of cameras and a handful 3D points to scenarios with thousands
of images and millions of 3D points. During the �rst part of this PhD I studied
one extreme of this spectrum, where one asks for the absolute minimum infor-
mation needed to solve particular instances of this problem, so called minimal
con�gurations. These minimal problems typically lead to systems of polynomial
equations that need to be solved. One conclusion of our work in this area is that
the central computational tool for dealing with polynomial systems is numerical
linear algebra. The contributions on this topic in essence deal with how to bring
out the full potential of these tools.

Towards the end of my graduate studies I have investigated the other end of
the spectrum; trying to push the state of the art in terms of how large problems
we can handle on modern hardware. Large scale problems cannot be solved
exactly and estimating 3D structure and camera locations thus turns into an
estimation problem using noisy measurements, usually in the form of a non-
linear least squares problem. Again it turns out that success or failure is largely
in the hands of numerical linear algebra.

The contents of the thesis is based on material published in the following
papers:

Main Papers

[12] M. Byröd, K. Åström, Conjugate Gradient Bundle Adjustment, Submit-
ted , 2010.

[54] Z. Kukelova, M. Byröd, K. Josephson, T. Pajdla, K. Åström, Fast and
robust numerical solutions to minimal problems for cameras with radial
distortion, Computer Vision and Image Understanding , 2010.

[11] M. Byröd, K. Åström, Bundle Adjustment using Conjugate Gradients
with Multiscale Preconditioning, Proc. British Machine Vision Conference
(BMVC), London, UK, 2009.

[13] M. Byröd, M. Brown, K. Åström, Minimal Solutions for Panoramic Stitch-
ing with Radial Distortion, Proc. British Machine Vision Conference
(BMVC), London, UK, 2009.
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[47] K. Josephson, M. Byröd, Pose Estimation with Radial Distortion and Un-
known Focal Length, Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), Miami, Florida, USA, 2009.

[17] M. Byröd, K. Josephson, K. Åström, Fast and Stable Polynomial Equation
Solving and its Application to Computer Vision, in International Journal
of Computer Vision, 2009.

[16] M. Byröd, K. Josephson, K. Åström, A Column-Pivoting Based Strategy
for Monomial Ordering in Numerical Gröbner Basis Calculations, Proc.
European Conference on Computer Vision (ECCV), Marseilles, France,
2008.

[18] M. Byröd, Z. Kukelova, K. Josephson, T. Pajdla, K. Åström, Fast and
Robust Numerical Solutions to Minimal Problems for Cameras with Ra-
dial Distortion, Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Anchorage, Alaska, 2008.

[14] M. Byröd, K. Josephson, K. Åström, Fast Optimal Three View Trian-
gulation, Proc. Asian Conference on Computer Vision (ACCV), Tokyo,
Japan, 2007.

[15] M. Byröd, K. Josephson, K. Åström, Improving Numerical Accuracy of
Gröbner Basis Polynomial Equation Solvers, Proc. International Confer-
ence on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007.

[48] K. Josephson, M. Byröd, F. Kahl, K. Åström, Image-Based Localiza-
tion Using Hybrid Feature Correspondences, ISPRS Workshop BenCOS
at CVPR, Minneapolis, USA, 2007.

Subsidiary Papers

[69] C. Olsson, M. Byröd, N. Overgaard, F. Kahl, Extending Continuous Cuts:
Anisotropic Metrics and Expansion Moves, Proc. International Conference
on Computer Vision (ICCV), Kyoto, Japan, 2009.

[68] C. Olsson, M. Byröd, F. Kahl, Globally Optimal Least Squares Solutions
for Quasiconvex 1D Vision Problems, Proc. Scandinavian Conference on
Image Analysis (SCIA), Oslo, Norway, 2009.

Organization

In summary, the thesis contains contributions in three main directions and is
correspondingly divided into three di�erent parts re�ecting this.

Part I: Solving Polynomial Equations

Theoretical and algorithmic contributions are made which link algebraic geom-
etry and numerical linear algebra. Algebraic geometry provides the theoretical
foundations for dealing with multivariate polynomials. We extract the parts of
this theory which deal speci�cally with solving systems of polynomial equations
and rephrase it in the language of matrix operations. This provides certain free-
dom, which has allowed more creativity in the design of numerical algorithms.
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Part II: Applications of Polynomial Equation Solving in
Computer Vision

Here, the techniques from part I are put to use in practice. We consider classical
problems in computer vision: triangulation, pose estimation, relative orientation
and panoramic stitching, but with some new twists which require more advanced
polynomial solving techniques than have previously been available. The mate-
rial contains a mixture of novel contributions as well as more straightforward
case studies. Where possible, we have tried to integrate these new solutions
to classical problems in complete systems to evaluate the usefulness of the new
methods in a practical context.

Part III: Bundle Adjustment

The material in this part of the thesis is of a di�erent character than that
of the preceding chapters. We consider large scale bundle adjustment, which
refers to estimation of cameras and 3D points in a non-linear least squares
framework. In other words, the topic is large scale unconstrained optimization.
In large scale geometric estimation problems, bundle adjustment is typically a
major computational bottleneck. Our basic line of attack here is to substitute
the direct linear solver (Cholesky factorization) in standard the Gauss-Newton
algorithm by iterative and approximate solvers in the form of conjugate gradient
methods. This leads to di�cult questions of preconditioning etc.
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Chapter 1

Introduction

The general �eld of computer vision deals with the problem of making a com-
puter �see�. This might mean many things including recognizing objects, places
and people. This thesis deals with the sub-�eld of geometric computer vision
where one tries to extract geometric information about the world and the ob-
server from a sequence of images. Estimation of scene structure and camera
motion using only image data has been one of the central themes of research in
photogrammetry, geodesy and computer vision. It has important applications
within robotics, architecture, the movie industry, photography etc.

Given a set of images of a scene, it is possible to compute the 3D struc-
ture of the scene and the relative positions of the cameras. Examples of such
reconstructions are shown in Figures 1.1 and 1.2. Initial reconstructions and
outlier removal were in those cases performed using an algorithm by Enqvist et
al , which at the time of writing has not yet been published, and the result was
�ne tuned using bundle adjustment as described in Part III of this thesis.

If all images were taken from the same point in space, it is possible to warp
and align them to create one panoramic image. An example of this is shown in
Figure 1.3. Read more about this in Chapter 9.

Two di�erent images of a planar surface are related by a homography which
can be described by a 3 × 3 matrix. An example is given in Figure 1, where a
poster has been photographed from two di�erent angles. Using feature matching
techniques [61] it is possible to �nd potential corresponding points between
the images, but such matches will contain many errors. Using the knowledge
that the images should be related by a homography, we can look for such a
transformation which agrees with a large number of the detected point matches.
The remaining pairs of points which do not agree with this transformation can
then be discarded as errors of the matching process.

The majority all of modern methods for the type of geometric computations
described above can be broken down into two main parts: First point wise cor-
respondence is established across views in the spirit of the homography example
illustrated in Figure 1. This is largely a recognition and reasoning task. In
the second step, we assume that image points are linked across views and this
information is then used to infer the motion of the cameras and the locations of
the points in 3D.

During the last decades, a very active research community has solved many
problems in this �eld, but much remains to be done. Throughout this thesis,

11



12 CHAPTER 1. INTRODUCTION

Figure 1.1: Reconstructed cameras and 3D points from images of Skansen
Lejonet in Gothenburg.
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Figure 1.2: Top: Reconstruction from Götaplatsen in Gothenburg. Bottom:
Reconstructions from Lilla �skaregatan and two other locations in Lund.
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Figure 1.3: Top: Nine images of a canal in Amsterdam. Bottom: All images
were taken from the same point in space. Hence by computing the relative
rotations between the views it was possible to project them onto an enclosing
cylinder which could then be cut and unfolded into a single panoramic image.
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Figure 1.4: Top: Two photographs of a poster taken from di�erent viewpoints.
Since the majority of the scene is planar, the images are related by a homog-
raphy. Middle: Potential matches have been found using feature matching
techniques. Some are correct (green) and some are false (red). Bottom: Using
the knowledge that the points should be related by a homography, we can detect
and remove false matches.
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we focus on the second of the two sub-problems mentioned above; We assume
that point-correspondences across views are given and the question is thus how
geometric information should be computed based on such data. In the thesis
we consider two quite di�erent settings. In the �rst, the number of constraints
exactly matches the number of unknowns (minimal problems). With the right
formulation, these setups can often be e�ciently solved in a single step. In the
second setting, we consider large scale problems with thousands of cameras and
millions of 3D points. These two di�erent settings have lead us to study two
particular areas of applied mathematics: The numerical solution of systems of
polynomial equations and sparse non-linear least squares problems.

1.1 Contributions

This section gives an overview of the contents of the thesis with a focus on
the scienti�c contributions by the author and co-authors. Chapters 1, 2, 3, 11
and 14 are omitted in this overview since they consist mainly of background
material and general discussions. I have collaborated with my supervisor Kalle
Åström on all papers except [47] on pose estimation with radial distortion. I
have collaborated with Klas Josephson on all papers except [13] on panoramic
stitching and [11, 12] on bundle adjustment. For each of the contributions
below, the author who took the �rst initiative in general also took a leading role
in developing theory and algorithms for that contribution and is hence listed as
�rst author.

Part I: Solving Polynomial Equations

Chapter 4 The main part of this chapter is based on [17]. Theoretical devel-
opments regarding systems of polynomial equations are made which are then
used in Chapter 5 to derive practical algorithms for solving such systems. The
concept of a solving basis is introduced and it is shown how a solving basis may
be computed and used to solve a system of polynomial equations. With the new
developments we no longer need strictly de�ned monomial orderings and proper
Gröbner bases to solve a system of equations. The advantage of this is a larger
freedom in how to design e�cient numerical algorithms.

Chapter 5 Based on the publications [14, 15, 16], we introduce the redundant
solving basis method and the SVD and QR methods for polynomial equation
solving. In hindsight, the SVD and QR methods are quite similar. However, the
more complicated SVD method was actually discovered �rst and it was only with
the development of the cleaner QR method that we understood how to formulate
these algorithms in terms of matrix operations. This cleaner formulation also
made the close connection between these methods much more clear.

Part II: Applications of Polynomial Equation Solving in
Computer Vision

Chapter 6 In this chapter we give a practical solution to L2 optimal triangu-
lation from three views. The problem was previously solved in [80], but due to
numerical di�culties extremely slow emulated 128-bit numerics had to be used



1.1. CONTRIBUTIONS 17

which rendered that algorithm useless for any practical purposes. This chapter
is based on [14].

Chapter 7 We study hybrid pose / relative pose estimation based on a mix-
ture of correspondences to other views and to known 3D points in a model. This
leads to a range of di�erent minimal cases of which two are given numerical so-
lutions. The chapter is based on material from [48].

Chapter 8 Two minimal cases for relative orientation with partial calibration
and unknown radial distortion are solved and evaluated. The results were ob-
tained in collaboration with Zuzana Kukelova and Tomas Pajdla at the Czech
Technical University in Prague and were previously published in [18, 54].

Chapter 9 A minimal solver for rotation, focal length and radial distortion
from three point-correspondences is derived and implemented using polynomial
techniques. The application is panoramic image stitching. We show that the
solver yields an improvement compared to the state of the art when integrated in
a complete stitching pipeline. The work was done in collaboration with Matthew
Brown, then at the University of British Columbia [13].

Chapter 10 In this chapter we study pose estimation for the case of unknown
focal length and radial distortion. An interesting result is that modeling radial
distortion improves accuracy considerably even for a standard lens SLR camera.
The results were �rst published in [47].

Part III: Bundle Adjustment

Chapter 12 The chapter presents a relatively straightforward approach to
Bundle Adjustment using conjugate gradients. However, care has been taken to
adapt the conjugate gradient algorithm to the particular case of bundle adjust-
ment in order to bring out its full potential. In particular, we (i) use a variant of
the conjugate gradient method which allows us to avoid forming JTJ , where J
is the Jacobian, (ii) we propose a block QR factorization preconditioner tailored
to the sparsity structure of the bundle adjustment Jacobian and (iii) we note
that the preconditioned system has �property A�, which allows us to roughly cut
the work per iteration in half. A reworked version of this chapter is currently
under review for publication [12].

Chapter 13 Despite some care put into preconditioning in the previous chap-
ter, the CG based bundle adjustment procedure of the previous chapter often
shows disappointingly slow convergence near the optimum. Here we present
some ideas of a more speculative nature that suggest how the bundle adjustment
system might be preconditioned in a more sophisticated way using multiscale
representations. Preliminary results based on these ideas have been published
in [11]. These results actually predate those presented in Chapter 12, but were
placed later in the thesis for a more logical progression of the material.
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Chapter 2

Preliminaries

This chapter introduces some background knowledge to facilitate the under-
standing of the remainder of the thesis. We start by presenting the basics of
geometric computer vision including the linear pin-hole camera and the funda-
mental and essential matrices. We then give some elements of algebraic geome-
try used for polynomial equation solving.

2.1 Geometric Computer Vision

The general �eld of computer vision deals with the problem of making a com-
puter �see�. This might mean many things including recognizing objects, places
and people. This thesis deals with the sub�eld of geometric computer vision,
where one tries to extract geometric information about the world (scene) and
the observer (camera) from a sequence of two or more images. This forms the
basis for many applications; Stereo, 3D reconstruction, panoramic stitching,
augmented reality, robotics, etc. See [40] for a thorough introduction to the
subject. The fundamental entity in this process is the camera, which needs to
be modeled in some sensible manner. The most popular way of doing this is to
adopt the central projection principle which yields the pin-hole camera model.
In geometric language, the pin-hole camera consists of a camera center t and
a plane π (the image plane) with a local coordinate system. Projection of a
world point X is done by intersecting the ray from t through X with π and the
projected point x is simply obtained as the intersection, see Figure 2.1.

We now choose coordinate system in the world so that the camera is at the
origin and place the origin O of π so that the axis from the camera center to O
is perpendicular to π and then align the camera axis with the world coordinate
Z-axis producing the schematic setup illustrated in Figure 2.2.

With this setup, we can use the top-triangle theorem of Euclidean geometry
to derive the projection of a world point X = [X, Y, Z]T . From Figure 2.2 we
easily see that we get the image coordinates

x = X
Z ,

y = Y
Z .

(2.1)

Now consider the more general case with a camera center t 6= 0 and a camera
axis which is not aligned with the Z-axis (but still intersects the origin of the
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t
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X

π

Figure 2.1: Projection of the point X onto the image plane π using the pin-hole
camera model.

z

x

X

π

Z

X
Z

X

Figure 2.2: The setup with the camera axis aligned with the z-axis is convenient
for deriving the central projection equations.

image plane). This can be brought back to the situation in Equation 2.1 by a
Euclidean transformation

X′ =
[
R −Rt] [X1

]
, (2.2)

where R is the 3 × 3 rotation matrix which maps 3D points to the camera
oriented coordinate system. In this coordinate frame we get x = X ′/Z ′ and
y = Y ′/Z ′. We now switch to homogeneous coordinates which means that we
extend the image coordinates x and the world coordinates X with a 1

u = [ x1 ] , U = [ X1 ] .

Denoting the matrix [R −Rt] in equation 2.2 by P we thus get the familiar
pin-hole projection equation

λu = PU, (2.3)

where the depth λ is now instead put on the left hand side.

2.1.1 The Calibration Matrix

The camera matrix P derived above is a 3× 4 matrix with a special structure.
If we let P be any 3× 4 matrix we get a general projective camera. Using RQ
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decomposition (QR decomposition ordered di�erently) we can write P as

P = K
[
R t

]
, (2.4)

where R is an orthogonal matrix and K is upper triangular. It is common to
write

K =

f fs x0

0 fγ y0

0 0 1

 , (2.5)

where the parameters can then be interpreted as the focal length f , the principal
point [x0, y0]T (the point of intersection between camera axis and image plane),
the aspect ratio γ (scale ratio between the y-axis and the x-axis in the image)
and the skew s which models non-orthogonal coordinate axes in the image. Of
these parameters, the focal length f is the only parameter which is explicitly
used in this thesis.

Typical assumptions are: (i) the camera is calibrated which means that K is
known and we can then multiply the image coordinates with K−1 and assume
that K is the identity matrix in (2.4), (ii) the camera is calibrated up to an
unknown focal length f which means that we can assume

K =

f 0 0
0 f 0
0 0 1

 , (2.6)

or (iii) the camera is uncalibrated which means we have a general camera matrix
P .

Algorithmically, as we will see, the uncalibrated case is often the easiest to
work with since any partial or full calibration means that we have to introduce
non-linear constraints which complicate the situation.

2.1.2 Epipolar Geometry

In the setting of two uncalibrated cameras P1 and P2, image coordinates x1 and
x2 corresponding to a common world point X obey a bilinear constraint known
as the epipolar constraint

xT1 Fx2 = 0. (2.7)

We work with homogeneous coordinates and F is thus a 3 × 3 matrix, which
is known as the fundamental matrix and is uniquely determined by the cam-
era matrices P1 and P2. An important property of F is that we always have
det(F ) = 0. Conversely, any 3× 3 matrix F with det(F ) = 0 is a fundamental
matrix of some cameras P1 and P2.

Consider now two calibrated cameras P1 and P2 on the form (2.2). These
uniquely determine a matrix E, called the essential matrix, which satis�es (2.7)
for any corresponding points as well as det(E) = 0. Moreover, since E is
computed from two calibrated cameras it can be shown that the two nonzero
singular values of E are equal which can be expressed as

2EETE − tr(EET )E = 0, (2.8)

known as the trace constraint for the essential matrix.
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2.1.3 Structure from Motion

One of the main goals of geometric computer vision can be formulated as solving
the structure from motion problem. The term structure from motion comes from
the idea of inferring the structure (3D con�guration) of an observed scene from
the motion of a camera recorded as a sequence of images. In the general setting
nothing is assumed to be known about the cameras. Algebraically formulated,
we are given m ·n image points xij captured by m unknown cameras Pi from n
unknown world points Xj . The problem is to determine the unknown cameras
and world points satisfying

λijxij = PiXj (2.9)

for all i and j.
A typical structure from motion system consists of the following steps

1. Establish tentative point correspondences across views using some local
patch descriptor. SIFT [61] is a popular choice. This step typically pro-
duces a large set of true as well as false correspondences.

2. Repeatedly compute fundamental/essential matrices from pairwise views
using randomly selected small subsets of points and save the sets which are
consistent with many of the other points (the RANSAC algorithm [30]).

3. Link matches from the previous steps between di�erent pairs to form point
tracks and incrementally or otherwise build a rough model by triangulating
3D points and adding new cameras using pose estimation.

4. Fine tune the reconstruction by employing a large scale optimization al-
gorithm to minimize e.g the sum of squares of reprojection errors over all
views for the points selected in the previous step.

The structure from motion problem is by no means solved and each of the
steps above constitutes an active sub-�eld in its own right. The procedure above
should only be seen as a rough sketch of how such a system works and there are
other possible variations on this theme.

2.1.4 Minimal Problems

In the structure from motion system sketched in the previous section, step 2
involved computing camera geometries from small numbers of correspondences.
The motivation for this is that a small set of correspondences is less likely to
contain incorrect matches. It is therefore interesting to investigate what the
minimal number of point correspondences is for a given geometric problem and
to devise algorithms for solving them. Such problems are usually referred to as
minimal problems or minimal cases and will occur frequently throughout this
thesis.

Understanding the geometry and the number of solutions of minimal struc-
ture and motion problems has a long history. For instance, computing the
fundamental matrix in the uncalibrated case requires a minimal set of seven
points in two views and with this setup the problem has three solutions. This
problem was studied and solved already in 1855, cf [20]. The corresponding
calibrated case was in principle solved in 1913 [51] and later corrected by De-
mazure [24]. However, it was only recently that a practical numerical algorithm
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for solving this problem was given [66, 77]. As mentioned above the study of
minimal cases has got increased attention with its use in RANSAC algorithms
to solve both for geometry and correspondence in numerous applications [40].
Brie�y, the RANSAC procedure is as follows: Randomly sample a small sub-
set of point-correspondences and estimate the geometric relations from them.
Count how many of the remaining point-correspondences that are consistent
with the estimated parameters. Repeat this until a parameter con�guration has
been found which agrees with enough observations. Keep these observations as
inliers and discard the rest of the observations as outliers.

2.2 Algebraic Geometry for Equation Solving

In this section we review some of the classical theory of multivariate polynomials.
We consider the following problem

Problem 1. Given a set of m polynomials fi(x) in s variables x = (x1, . . . , xs),
determine the complete set of solutions to

f1(x) = 0,
...

fm(x) = 0.
(2.10)

We denote by V the zero set of (2.10). In general V need not be �nite, but in
this work we will only consider zero dimensional V, i.e V is a point set.

The general �eld of study of multivariate polynomials is algebraic geometry.
See [23] and [22] for a nice introduction to the �eld and for proofs of all claims
made in this section. In the language of algebraic geometry, V is an a�ne
algebraic variety and the polynomials fi generate an ideal I = Σihi(x)fi(x),
where hi ∈ C[x] are any polynomials and C[x] denotes the set of all polynomials
in x over the complex numbers.

One motivation for studying the ideal I is that it is a generalization of the set
of equations (2.10). A point x is a zero of (2.10) i� it is a zero of I. Being even
more general, we could ask for the complete set of polynomials which vanish on
V . If I is equal to this set, then I is called a radical ideal.

We say that two polynomials f, g are equivalent modulo I i� f − g ∈ I
and denote this by f ∼ g. With this de�nition we get the quotient space
C[x]/I of all equivalence classes modulo I. Let [·] denote the natural projection
C[x] 7→ C[x]/I, i.e by [fi] we mean the set {gi : fi − gi ∈ I} of all polynomials
equivalent to fi modulo I.

A related structure is C[V ], the set of equivalence classes of polynomial
functions on V . We say that a function F is polynomial on V if there is a
polynomial f such that F (x) = f(x) for x ∈ V . By equivalence we here mean
equality on V (see Figure 2.3). If two polynomials are equivalent modulo I,
then they are obviously also equal on V . If I is radical, then conversely two
polynomials which are equal on V must also be equivalent modulo I. This means
that for radical ideals, C[x]/I and C[V ] are isomorphic. Now, if V is a point
set, then any function F on V can be identi�ed with a |V |-dimensional vector F
with Fi = F (vi), where vi ∈ V . Now, the unisolvence theorem for polynomials
guarantees that any function can be interpolated exactly by a polynomial on a
�nite set of points, i.e there is a polynomial f such that f(vi) = Fi. This means
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Figure 2.3: Given V = {1, 2, 3}, the two polynomials p1(x) and p2(x) shown
in the �gure are equivalent and hence represent the same equivalence class in
C[V ].

that any function F on V is a polynomial function and hence we get that C[V ]
is isomorphic to Cr, where r = |V |.

2.2.1 The Action Matrix

Turning to equation solving, our starting point is the companion matrix which
arises for polynomials in one variable. For a third degree polynomial

q(x) = x3 + a2x
2 + a1x+ a0, (2.11)

the companion matrix is −a2 1 0
−a1 0 1
−a0 0 0

 . (2.12)

The eigenvalues of the companion matrix are the zeros of q(x) and for high
degree polynomials, this provides a numerically stable way of calculating the
roots.

With some care, this technique can be extended to the multivariate case as
well, which was �rst done by Lazard in 1981 [58]. For V �nite, the space C[x]/I
is �nite dimensional. Moreover, if I is radical, then the dimension of C[x]/I is
equal to |V |, i.e the number of solutions [23]. For some p ∈ C[x] consider now
the operation Tp : f(x) 7→ p(x)f(x). The operator Tp is linear and since C[x]/I
is �nite dimensional, we can select a linear basis B of polynomials for C[x]/I
and represent Tp as a matrix mp. This matrix is known as the action matrix
and is precisely the generalization of the companion matrix we are looking for.
In fact, in the example above, we can let the set {[x2], [x], [1]} be a basis for
C[x]/ 〈q(x)〉, where 〈q(x)〉 denotes the ideal generated by q(x). Representing
Tx : f(x) 7→ xf(x) in this basis yields exactly the matrix in Equation 2.12.
The eigenvalues of mp are p(x) evaluated at the points of V . Moreover, the
eigenvectors of mT

p equals the vector of basis elements evaluated on V . Brie�y,
this can be understood as follows: Consider an arbitrary polynomial r(x) = cTb,
where c is a vector of coe�cients and b is a vector of polynomials forming a
basis of C[x]/I. We then have

[p · cTb] = [(mpc)Tb] = [cTmT
p b]. (2.13)
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This holds for any coe�cient vector c and hence it follows that [pb] = [mT
p b],

which can be written pb = mT
p b + g for some vector g with components gi ∈ I.

Evaluating the expression at a zero x̄ ∈ V we get g(x) = 0 and thus obtain

p(x̄)b(x̄) = mT
p b(x̄), (2.14)

which we recognize as an eigenvalue problem for the matrix mT
p with eigenvec-

tors b(x̄) and eigenvalues p(x̄). In other words, the eigenvectors of mT
p yield

b(x) evaluated at the zeros of I and the eigenvalues give p(x) at the zeros. The
conclusion we can draw from this is that zeros of I corresponds to eigenvectors
and eigenvalues of mp, but not necessarily the opposite, i.e there can be eigen-
vectors/eigenvalues that do not correspond to actual solutions. If I is radical,
this is not the case and we have an exact correspondence.

Note here that in a strict sense, a set of monomials B cannot form a basis
for C[x]/I since C[x]/I is a space of equivalence classes. What we mean is that
a set of monomials B are representatives of equivalence classes forming a basis
of C[x]/I or alternatively that the natural projection [·] of the monomials onto
C[x]/I form a basis. In the following we will, however, typically use the slightly
incorrect but more readable terminology of referring to a set of monomials as a
basis.

2.2.2 Gröbner Bases

We have seen theoretically that the action matrix mp provides the solutions to
a corresponding system of polynomial equations. The main issue is now how to
compute mp. This is in general done by selecting a linear basis B for C[x]/I
and then computing [p ·bi] for each bi ∈ B. To do actual computations in C[x]/I
we need to represent each equivalence class [f ] by a well de�ned representative
polynomial. The idea is to use multivariate polynomial division and represent
[f ] by the remainder under division of f by I. Fortunately, for any polynomial
ideal I, this can always be done and the tool for doing so is a Gröbner basis
G for I [23]. The Gröbner basis for I is a canonical set of generators for I

with the property that multivariate division by G, denoted f
G
, always yields

a well de�ned remainder. By well de�ned we mean that for any f1, f2 ∈ [f ],
we have f1

G
= f2

G
. The Gröbner basis is computed relative a monomial order

and will be di�erent for di�erent monomial orders. As a consequence, the set
of representatives for C[x]/I will be di�erent, whereas the space itself remains
the same.

The linear basis B should consist of elements bi such that the elements
{[bi]}ri=1 together span C[x]/I and bi

G
= bi. Then all we have to do to get

mp is to compute the action pbi
G
for each basis element bi, which is easily done

if G is available.

Example 2. The following two equations describe the intersection of a line and
a circle as illustrated in Figure 2.

x2 + y2 − 1 = 0
x− y = 0. (2.15)

A Gröbner basis for this system is
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x

y

Figure 2.4: The intersection of a line and a circle can be formulated as a system
of two polynomial equations. See Example 2.

y2 − 1
2 = 0

x− y = 0, (2.16)

from which we trivially see that the solutions are 1√
2
(1, 1) and 1√

2
(−1,−1).

However, it is nevertheless instructive to construct the action matrix. In this
case B = {y, 1} are representatives for a basis for C[x]/I and we have Tx[1] =
[x] = [y] and Tx[y] = [xy] = [y2] = [ 1

2 ], which yields the action matrix

mx =
[

0 1
1
2 0

]
, (2.17)

with eigenvalues 1√
2
,− 1√

2
. ut

2.2.3 A Note on Algebraic and Linear Bases

At this point there is a potentially confusing situation since there are two dif-
ferent types of bases at play. There is the linear basis B of the quotient space
C[x]/I and there is the algebraic basis (Gröbner basis) G of the ideal I. To
make the subsequent arguments as transparent as possible for the reader we
will emphasize this fact by referring to the former as a linear basis of C[x]/I
and the latter as an algebraic basis of I.

2.2.4 Floating Point Gröbner Basis Computations

The well established Buchberger's algorithm is guaranteed to compute a Gröbner
basis in �nite time and works well in exact arithmetic [23]. However, due to
round-o� errors, it easily becomes unstable in �oating point arithmetic and
except for very small examples it becomes practically useless. The reason for
this is that in the Gröbner basis computation, leading terms are successively
eliminated from the generators of I by pairwise subtraction of polynomials,
much like Gaussian elimination. This leads to cancellation e�ects where it
becomes impossible to tell whether a certain coe�cient should be zero or not.

A technique introduced by Faugere et al in [28] is to write the system of
equations on matrix form

CX = 0, (2.18)
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where X =
[
xα1 . . . xαn

]T
is a vector of monomials with the notation

xαk = xαk1
1 · · ·xαks

s and C is a matrix of coe�cients. Elimination of leading
terms now translates to matrix operations and we then have access to a whole
battery of techniques from numerical linear algebra allowing us to perform many
eliminations at the same time with control on pivoting etc.

This technique takes us further, but for larger more demanding problems
it is necessary to study a particular class of equations and use knowledge of
what the structure of the Gröbner basis should be to design a special purpose
Gröbner basis solver [76]. Typical examples from computer vision where this
method can be applied are: essential matrix estimation [77], relative orientation
for omnidirectional cameras [33], fundamental matrix estimation with radial
distortion [55], optimal three view triangulation [80], etc. The typical work �ow
has been to study the particular problem at hand with the aid of a computer
algebra system such as Maple or Macaulay2 [36] and extract information such
as the leading terms of the Gröbner basis, the monomials to use as a basis
for C[x]/I, the number of solutions, etc and work out a speci�c set of larger
(Gauss-Jordan) elimination steps leading to the construction of a Gröbner basis
for I.

Although, these techniques have permitted the solution to a large number
of previously unsolved problems, many di�culties remain. Most notably, the
above mentioned elimination steps (if at all doable) are often hopelessly ill condi-
tioned [80, 56]. This is in part due to the fact that one has focused on computing
a complete and correct Gröbner basis respecting a properly de�ned monomial
order, which we show is not necessary.

In this work we move away from the goal of computing a Gröbner basis for
I and focus on �nding a representative of f in terms of a linear combination of
a basis B, since this is the key to constructing mp. We denote this operation
f for a given f ∈ C[x]. Speci�cally, it is not necessary to be able to compute
f for any f ∈ C[x]. To construct mp, we only need to worry about �nding f
for f ∈ pB \ B, which is an easier task. It should however be noted that the
computations we do much resemble those necessary to obtain a Gröbner basis.

A further advantage of not having to compute a complete Gröbner basis is
that we are not bound by any particular monomial order which as we will see,
when used right, buys considerable numerical stability. In addition to this we
introduce an object which generalizes the action matrix and can be computed
even when a true linear basis for C[x]/I cannot be used.

Drawing on these observations, we investigate in detail the exact matrix
operations needed to compute f and thus obtain a procedure which is both
faster and more stable, enabling the solution of a larger class of problems than
previously possible. The theory behind these statements is explored in Chapter 4
and subsequently used in Chapter 5 to derive new stable algorithms for equation
solving.
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Part I

Solving Polynomial Equations
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Chapter 3

Introduction

Numerous geometric problems in computer vision involve the solution of systems
of polynomial equations. This is particularly true for so called minimal structure
and motion problems [20, 51, 82]. Solutions to minimal structure and motion
problems can often be used in RANSAC algorithms to �nd inliers in noisy
data [30, 83, 84]. For such applications one needs to solve a large number of
minimal structure and motion problems as fast as possible in order to �nd the
best set of inliers. The minimal solutions then typically also serve as an initial
estimate to be able to deploy a more sophisticated optimization algorithm, which
relies on inlier free data and good initialization. There is thus a need for fast
and numerically stable algorithms for solving particular systems of polynomial
equations.

The state-of-the-art method for numerical solution of polynomial equations
is based on calculations with Gröbner bases [76] and has many applications in
computer vision, but also in other �elds such as cryptology [29] and robotics [4].
A typical outline of such algorithms is that one �rst studies a speci�c geometric
problem and �nds out what structure the Gröbner basis of the ideal I has for
that problem, how many solutions there are and what the degrees of monomials
occurring in the Gröbner basis elements are. For each instance of the problem
with numerical data, the process of forming the Gröbner basis follows the same
steps and the construction of the Gröbner basis can be written down as a se-
quence of pre determined elimination steps using numerical linear algebra. The
Gröbner basis can then be used to construct an action matrix, which represents
multiplication in the quotient space C[x]/I. The solution to the problem is then
obtained through an eigenvalue decomposition of the action matrix.

Currently, the limiting factor in using these methods for larger and more
di�cult cases is numerical problems. For example in [80], where an algorithm
for optimal triangulation from three views is proposed, it was necessary to use
emulated 128 bit numerics to make the system work, which made the implemen-
tation very slow. This thesis improves on the state of the art of these techniques
making it possible to handle larger and more di�cult problems in a practical
way.

In the thesis we pin-point the main source of these numerical problems (the
conditioning of a crucial elimination step) and propose a range of techniques
for dealing with this issue. The main novelty is a new approach to the action
matrix method for equation solving, relaxing the need of adhering to a properly
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de�ned monomial order and a complete Gröbner basis. This unlocks substantial
freedom, which is used in a number of di�erent ways to improve stability.

Firstly, we show how the sensitive elimination step can be avoided by using
an overly large/redundant linear basis for C[x]/I to construct the action matrix.
This method yields the right solutions along with a set of false solutions that
can then easily be �ltered out by evaluation in the original equations.

Secondly, we show how a true linear basis for C[x]/I can be constructed from
a redundant basis in such a way that good numerical precision is retained. This
is done by attempting to �nd an optimal reordering or even linear combination
of the monomials and we investigate what conditions such a reordering/linear
combination needs to satisfy. We develop the tools needed to compute the
action matrix in a general linear basis for C[x]/I and propose two strategies for
selecting this basis which enhances the stability of the solution procedure.

The �rst of these is a fast strategy based on QR factorization with column
pivoting. The Gröbner basis like computations employed to solve a system
of polynomial equations can essentially be seen as matrix factorization of an
under-determined linear system. Based on this insight, we combine the robust
method of QR factorization from numerical linear algebra with the Gröbner
basis theory needed to solve polynomial equations. More precisely, we employ
QR factorization with column pivoting in the above mentioned elimination step
and obtain a simultaneous selection of linear basis and triangular factorization.

Factorization with column pivoting is a very well studied technique and there
exist highly optimized and reliable implementations of these algorithms in e.g
LAPACK [57], which makes this technique accessible and relatively straightfor-
ward to implement.

The second technique for basis selection goes one step further and employs
singular value decomposition (SVD) to select a general linear basis of polyno-
mials for C[x]/I. This technique is computationally more demanding than the
QR method, but yields even better stability.

Finally, we show how a redundant linear basis for C[x]/I can be combined
with the above basis selection techniques. In the QR method, since the pivot
elements are sorted in descending order, we get an adaptive criterion for where
to truncate the Gröbner basis like structure by setting a maximal threshold
for the quotient between the largest and the smallest pivot element. When the
quotient exceeds this threshold we abort the elimination and move the remaining
columns into the basis. This way, we expand the basis only when necessary.



Chapter 4

Theoretical Contributions

In this chapter we present a new way of looking at the action matrix method for
polynomial equation solving. The advantage of the new formulation is that it
yields more freedom in how the action matrix is computed allowing us to derive
numerically more stable algorithms.

4.1 A New Approach to the Action Matrix

Method

We start with a few examples that we will use to clarify the ideas of this chapter.

Example 3. In the �ve point relative orientation problem for calibrated cam-
eras, [51, 24, 66, 77], the calculation of the essential matrix using 5 image point
correspondences leads to 10 equations of degree 3 in 3 unknowns. These equa-
tions involve 20 monomials. By writing the equations as in (2.18) and using
a total degree ordering on the monomials we get a coe�cient matrix C of size
10× 20 and a monomial vector X = [xα1 . . .xαn ]T with 20 monomials. It turns
out that if we partition the monomials so that [C1 C2]

[
X1
X2

]
= 0, then the �rst

10 × 10 block C1 is in general of full rank and thus the �rst 10 monomials X1

can be expressed in terms of the last 10 monomials X2 as

X1 = −C−1
1 C2X2. (4.1)

This makes it possible to regard the monomials in X2 as representatives of a
linear basis for C[x]/I. It is now straightforward to calculate the action matrix
for Tx (the multiplication operator for multiplication by x) since monomials
in the linear basis are either mapped to monomials already in the basis or to
monomials in X1, which can be expressed in terms of the basis using (4.1). ut

In this example the linear basis X2 can be thought of as a basis for the space
of remainders after division with a Gröbner basis for one choice of monomial
order and this is how these computations have typically been viewed. However,
the calculations above are not really dependent on any properly de�ned mono-
mial order and it seems that they should be meaningful irrespective of whether
a true monomial order is used or not. Moreover, we do not use all the Gröbner
basis properties.
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Based on these observations we emphasize two important facts: (i) We are
not interested in �nding the Gröbner basis or a basis for the remainder space
relative to some Gröbner basis per se; it is enough to get a well de�ned mapping
f and (ii) it su�ces to calculate f on the elements x ·xαi , i.e we do not need to
be able to compute f for all f ∈ C[x]. These statements and their implications
will be made more precise further on.

Example 4. Consider the equations

f1 = xy + x− y − 1 = 0,
f2 = xy − x+ y − 1 = 0, (4.2)

with solutions (−1,−1), (1, 1). To this set we can add f3 = (f1− f2)/2 = x− y.
Now let B = {x, y, 1} be a set of representatives for the equivalence classes in
C[x]/I for this system. The set B does not constitute a proper basis for C[x]/I
since the elements of B represent linearly dependent equivalence classes. They
do however span C[x]/I. Now study the operator Ty acting on B. We have
Ty(1) = y, Ty(x) = xy ∼ x− y + 1 and Ty(y) = y2 ∼ xy ∼ x− y + 1 (where we
used �rst yf3 and then f2) which gives a multiplication matrix 1 1 0

−1 −1 1
1 1 0

 .
An eigendecomposition of this matrix yields the solutions (−1,−1), (1, 1), (−1, 0).
Of these the �rst two are true solutions to the problem, whereas the last one
does not satisfy the equations and is thus a false zero. ut

In this example we used a set of monomials B whose corresponding equiv-
alence classes spanned C[x]/I, but were not linearly independent. However, it
was still possible to express the image Ty(B) in terms of B. The elements of the
resulting action matrix are not uniquely determined. Nevertheless we were able
to use it to �nd the solutions to the problem. In this section we give general
conditions for when a set B can be used to construct a multiplication matrix
which produces the desired set of zeros, possibly along with a set of false zeros,
which need to be �ltered out.

More generally this also means that the chosen representatives of the linear
basis of C[x]/I need not be low order monomials given by a Gröbner basis. In
fact, they need not be monomials at all, but could be general polynomials.

Drawing on the concepts illustrated in the above two examples we de�ne a
solving basis, similar to B in Example 4. The overall purpose of the de�nition
is to rid our selves of the need of talking about a Gröbner basis and properly
de�ned monomial orders, thus providing more room to derive numerically stable
algorithms for computation of the action matrix and similar objects.

In the following we will also provide techniques for determining if a candidate
basis B constitutes a solving basis and we will give numerically stable techniques
for basis selection in too large (linearly dependent) solving bases, here referred
to as redundant bases.

4.1.1 Solving Bases

We start o� with a set of polynomial equations as in (2.10) and a assume a
(point) set of zeros V (f1, . . . , fm). Given this we make the following de�nition
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De�nition 5. Consider a �nite subset B ⊂ C[x] of the set of polynomials over
the complex numbers. If for each bi ∈ B and some p ∈ C[x] we can express pbi
as a linear combination of basis elements as

p(x)bi(x) = Σjmijbj(x), (4.3)

for some (not necessarily unique) coe�cients mij and where equality means
equality on V , then we call B a solving basis for (2.10) w.r.t p. ut

We now get the following for the matrix mp made up of the coe�cients mij .

Theorem6. Given a solving basis B for (2.10) w.r.t p, the evaluation of p on
V is an eigenvalue of the matrix mp. Moreover, the vector b = (b1, . . . , br)T

evaluated on V is an eigenvector of mp.

Proof. By the de�nition of mp, we get

p(x)b(x) =

pb1...
fbr

 =

Σjm1jbj
...

Σjmrjbj

 = mpb(x) (4.4)

for x ∈ V . ut

As will become clear further on, when B is a true basis for C[x]/I, then the
matrix mp de�ned here is simply the transposed action matrix for multiplication
by p.

Given a solving basis, the natural question to ask is: Under which circum-
stances may all solutions to the related system of equations be obtained from
an eigenvalue decomposition of mp? We next explore some conditions under
which this is possible. The general idea is that the vector of monomials b(x)
evaluated at a zero x̄ is only useful if we can determine x̄ uniquely (or at least
as member of a �nite set of possible values) from b(x̄). This is formalized in
the following de�nition.

De�nition 7. A solving basis B is called a complete solving basis if the inverse
image of the mapping x 7→ b(x) from variables to monomial vector is �nite for
all points. ut

A complete solving basis allows us to recover all solutions from mp as shown
in the following theorem.

Theorem8. Let B be a complete solving basis for (2.10) and mp as above and
assume that for all eigenvalues λi we have λi 6= λj for i 6= j. Then the complete
set of solutions to (2.10) can be obtained from the set of eigenvectors {vi} of
mp.

Proof. The vector b(x̄) for x̄ ∈ V is an eigenvector of mp. The number of
eigenvectors and eigenvalues of mp is �nite so we can compute all eigenvectors
{vi}. This means that now {b(x̄)}x̄∈V ⊂ {vi}. Applying b−1 to vi for all i thus
yields a �nite set of points containing V . Evaluation in (2.10) allows us to �lter
out the points of this set which are not solutions to (2.10) and keep only the
true solutions. ut
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If the inverse image is not �nite for some vi so that we get a parameter family
x corresponding to this eigenvector, then the correct solution can typically not
be obtained without further use of the equations (2.10) as illustrated in the
following example.

Example 9. Consider the polynomial system

y2 − 2 = 0
x2 − 1 = 0 (4.5)

with V = {(1,√2), (−1,
√

2), (1,
√

2), (−1,−√2), }. Clearly, B = {x, 1} with
monomial vector b(x, y) =

[
x 1

]T
, is a solving basis w.r.t x for this example

since 1 · x = x and x · x = x2 = 1 on V . Hence, b(x, y) evaluated on V is an
eigenvector of

mx =
[
0 1
1 0

]
, (4.6)

which is easily con�rmed. However, these eigenvectors do not provide any in-
formation about the y-coordinate of the solutions. We could try adding y to B
but this would not work since the values of xy on V cannot be expressed as a
linear combination of x and y evaluated on V . A better choice of solving basis
would be B = {xy, x, y, 1}. ut

At a �rst glance, Theorem 8 might not seem very useful since solving for x
from b(x) = vi potentially involves solving a new system of polynomial equa-
tions. However, it provides a tool for ruling out choices of B which are not
practical to work with. Moreover, there is usually much freedom in the choice
of B. In general, B can be a set of polynomials. However, it is often practical
to work with a basis of monomials. For each bi we then get the following result

Corollary 10. If B consists of monomials bi on the form bi(x) = xαi1
1 · · ·xαis

s

and the r × s matrix A with Aij = αij is of rank s, then all solutions to (2.10)
can be obtained from the eigenvectors of mxk

.

Proof. Taking the logarithm of bj(x) we get component wise

log(bi(x)) = Σjαij log(x̃j), (4.7)

where x̃j = ±xj if necessary. Using the matrix A, this can be written

log(b(x)) = A

log(x̃1)
...

log(x̃s)

 . (4.8)

If rank(A) = s then we can solve linearly for log(x̃) and theorem 8 yields the
conclusion. ut

We get an even more convenient situation if the right monomials are included
in B:

Corollary 11. If {1, x1, . . . , xs} ⊂ B, then all solutions to (2.10), can be directly
read o� from the eigenvectors of mxk

.
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Proof. Since the monomials {1, x1, . . . , xs} occur in B, they enter in the vector
b(x) and hence the mapping in De�nition 7 is injective with a trivial inverse. ut

The purpose of Theorem 6 and Corollaries 10 and 11 are to provide guar-
antees for when all information about the solutions can be obtained from the
multiplication matrices. Phrased a little di�erently, the idea behind these re-
sults is to consider the relation between a solution point x̄ and monomial vector
b(x̄). We know that a solution point x̄ always corresponds to a vector b(x̄)
which is an eigenvector of the corresponding multiplication matrix. The only
way we could miss some solutions would hence be if two di�erent zeros x̄1 and
x̄2 map to the same monomial vector. However, if the mapping x 7→ b(x) is
injective, this cannot happen and we are safe.

The situation in Corollary 11 is certainly the most convenient one. However,
even if not all variables are included as elements in B, we can often still express
each variable xk as a linear combination of the basis elements bi(x) for x ∈ V
by making use of the original equations. We thus again obtain a well de�ned
inverse to the mapping in De�nition 7.

Example 12. Consider the polynomial system (4.2) from Example 4. Subtract-
ing f1 and f2 and dividing by 2 we get a third polynomial f3 = x − y. Thus
B = {y, 1} constitutes a solving basis w.r.t x since Tx(1) = x = y (on V ) and
Tx(y) = xy = x−y+ 1 = 1 (on V ). The vector of monomials b(x, y) =

[
y 1

]T
seen as a mapping b : R2 7→ R2 is not invertible since it does not give any
information about the x coordinate. However, we can use f3 = x− y = 0 to get
the solutions from the eigenvectors. ut

Finally, we show how the concept of solving basis connects to the standard
theory of action matrices in the quotient space C[x]/I.

Theorem13. If the ideal I generated by (2.10) is radical, then a solving basis
B w.r.t to p for (2.10), with the additional properties that b(x) is injective and
that all eigenvalues of mp are distinct, spans C[x]/I.

Proof. Since I is radical, C[x]/I is isomorphic to C[V ], the ring of all polynomial
functions on V . Moreover, since V is �nite, all functions on V are polynomial
(see previous chapter) and hence C[V ] can be identi�ed with Cr, where r = |V |.
Consider now the matrix B =

[
b(x1), . . . ,b(xr)

]
. Each row of B corresponds

to a (polynomial) function on V . Hence, if we can show that B has row rank r,
then these functions together span C[V ] and we are done. Due to Theorem 6,
all b(xi) are eigenvectors of mp with eigenvalues p(xi). By the assumption
of distinct eigenvalues we have p(xi) 6= p(xj) whenever b(xi) 6= b(xj). Since
B is a complete solving basis we have b(xi) 6= b(xj) whenever xi 6= xj . This
means that the r points in V correspond to distinct eigenvalues and hence, since
eigenvectors corresponding to di�erent eigenvalues are linearly independent, B
has column rank r. For any matrix row rank equals column rank and we are
done. ut
The above theorem provides a correspondence between solving bases and linear
bases for C[x]/I and in principle states that under some extra restrictions, a
solving basis is simply a certain choice of linear basis for C[x]/I and then the
matrix mp turns into the transposed action matrix. However, relaxing these
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extra restrictions we get something which is not necessarily a basis for C[x]/I in
the usual sense, but can still be used to construct a matrix mp which encodes
the solutions. This is what we call a solving basis. Using the concept of a solving
basis provides two distinctive advantages:

(i) For a radical polynomial system with r zeros, C[x]/I is r-dimensional, so
a basis for C[x]/I contains r elements. This need not be the case for a solving
basis, which could well contain more than r elements, but due to Theorem 8
still provides the right solutions. This fact is exploited in Section 5.1.

(ii) Typically, the arithmetic in C[x]/I has been computed using a Gröbner
basis for I, which directly provides a monomial basis for C[x]/I in form of the
set of monomials which are not divisible by the Gröbner basis. In this work we
move focus from Gröbner basis computation to the actual goal of expressing the
products pbi in terms of a set of linear basis elements and thus no longer need
to adhere to the overly strict ordering rules imposed by a particular monomial
order. This freedom is exploited in Sections 5.2.1 and 5.2.2.

Finally, (i) and (ii) are combined in Section 5.2.3.

4.1.2 Solving Basis Computations using Numerical Linear
Algebra

We now describe the most straightforward technique for deciding whether a
candidate basis B w.r.t one of the variables xk, can be used as a solving basis
and simultaneously calculate the action of Txk

on the elements of B.
We start by generating more equations by multiplying the original set of

equations by a hand crafted (problem dependent) set of monomials. This yields
additional equations, which are equivalent in terms of solutions, but hopefully
linearly independent from the original ones. In Example 9, we could multiply
by e.g {x, y, 1}, yielding xy2 − 2x, x3 − x, y3 − 2y, x2y − y, y2 − 2, x2 − 1.

Given a candidate for a linear basis B of monomials one then partitions
the set of all monomials M occurring in the equations in to three parts M =
E ⋃R⋃B, where R = xkB\B is the set of monomials that need to be expressed
in terms of B to satisfy the de�nition of a solving basis and E = M\ (R⋃B)
is the set of remaining (excessive) monomials. Each column in the coe�cient
matrix represents a monomial, so we reorder the columns and write the system
of equations as

CX =
[
CE CR CB

] XE
XR
XB

 = 0, (4.9)

re�ecting the above partitioning. The E-monomials are not used in the action
matrix computation so we eliminate them by putting CE on row echelon form
using LU factorization

[
UE1 CR1 CB1

0 CR2 CB2

]XE
XR
XB

 = 0. (4.10)

We now discard the top rows and provided that enough linearly independent
equations were added in the �rst step so that CR2 is of full rank, we multiply
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by C−1
R2 from the left producing

[
I C−1

R2CB2

] [XR
XB

]
= 0 (4.11)

or equivalently

XR = −C−1
R2CB2XB, (4.12)

which means that the R-monomials can be expressed as a linear combination of
the basis monomials. Thus B is a solving basis and the matrix mxk

can easily
be constructed as in (4.3). In other words, given an enlarged set of equations
and a choice of linear basis B, the full rank of CR2 is su�cient to solve (2.10)
via eigendecomposition of mxk

. The above method is summarized in Solving
Basis Method and given the results of Section 4.1.1 we now have the following

Result 14. The algorithm Solving Basis Method yields the complete set of
zeros of a polynomial system, given that the postconditions are satis�ed.

Proof. The postcondition that CR2 is of full rank ensures that B is a solving
basis and Theorem 8 and Corollary 11 then guarantees the statement. ut

Example 15. Consider the equations from Example 2. Multiplying the second
equation by x and y yields the enlarged system


1 0 1 0 0 −1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0



x2

xy
y2

x
y
1

 = 0, (4.13)

withM = {x2, xy, y2, x, y, 1}. Choosing B = {y, 1} then gives R = {xy, x} and
E = {x2, y2}. After Step 9 and 10 of Algorithm Solving Basis Method we
have CR2 = [ 2 0

0 1 ] and CB2 =
[

0 −1
−1 0

]
and inserting into (5.11) we obtain

[
xy
x

]
=
[
0 1

2
1 0

] [
y
1

]
, (4.14)

which then allows us to construct mx for this example. ut
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Solving Basis Method(F, B, {Li})
// Compute a solving basis w.r.t xk and use it to solve a polynomial system.
Input: List of equations F = {f1, . . . , fm}, set of basis monomials B
containing the coordinate variables 1, x1, . . . xs, m lists of monomials {Li}mi=1.
Postcondition: CR2 is of full rank, eigenvalues of mxk

are distinct.
1 Fext ← F
2 for fi ∈ F
3 for xαj ∈ Li
4 Fext ← Fext

⋃{xαj · fi}
5 Construct coe�cient matrix C from Fext.
6 M← The set of all monomials occurring in Fext.
7 R ← xk · B \ B
8 E ←M\ (R⋃B)
9 Reorder and partition C: C̃ = [CE CR CB ].
10 LU-factorize to obtain CR2 and CB2 as in (4.10).
11 Use (4.12) to express xk · xαi in terms of B and store the coe�cients in mxk

.
12 Compute eigenvectors of mxk

and read o� the tentative set of solutions.
13 Evaluate in F to �lter out possible false zeros.

A typical problem that might occur is that some eigenvalues of mxk
are

equal, which means that two or more zeros have equal xk-coordinate. Then the
corresponding eigenvectors can not be uniquely determined. This problem can
be resolved by computing mxk

for several k and then forming a random linear
combination ma1x1+···+asxs

= a1mx1 + · · ·+asmxs
, which then with very small

probability has two equal eigenvalues.
As previously mentioned, computing mp for a larger problem is numerically

very challenging and the predominant issue is expressing pB in terms of B, via
something similar to (4.12). The reason for this is that without proper care,
CR2 tends to become very ill conditioned (condition numbers of 1010 or higher
are not uncommon). This was also the reason that extremely slow emulated 128
bit numerics had to be used in [80] to get a working algorithm.

In the next chapter we investigate techniques to circumvent this problem and
produce a well conditioned CR2, thus drastically improving numerical stability.

4.2 Related Work

The area of polynomial equation solving is currently very active. See e.g [19]
and references therein for a comprehensive exposition of the state of the art in
this �eld.

One of the oldest and still used methods for non-linear equation solving is
the Newton-Raphson method which is fast and easy to implement, but depends
heavily on initialization and �nds only a single zero for each initialization. In the
univariate case, a numerically sound procedure to �nd the complete set of roots
is to compute the eigenvalues of the companion matrix. However, if only real
solutions are needed, the fastest way is probably to use Sturm sequences [45].

In several variables a �rst method is to use resultants [23], which using a
determinant construct enables the successive elimination of variables. However,
the resultant grows exponentially in the number of variables and is in most



4.2. RELATED WORK 41

cases not practical for more than two variables. An alternative way of elim-
inating variables is to compute a lexicographical Gröbner basis for the ideal
generated by the equations which can be shown to contain a univariate polyno-
mial representing the solutions [23]. This approach is however often numerically
unstable.

A radically di�erent approach is provided by homotopy continuation meth-
ods [87]. These methods typically work in conjunction with mixed volume cal-
culations by constructing a simple polynomial system with the same number of
zeros as the actual system that is to be solved. The simple system with known
zeros is then continuously deformed into the actual system. The main draw-
back of these methods is the computational complexity with computation times
ranging in seconds or more.

At present, the best methods for geometric computer vision problems are
based on eigendecomposition of a multiplication matrices representing multipli-
cation in the quotient space C[x]/I as discussed in the chapter. The factors that
make this approach attractive is that it (i) is fast and numerically feasible, (ii)
handles more than two variables and reasonably high degrees and (iii) is well
suited to tuning for speci�c applications. To the authors best knowledge, this
method was �rst used in the context of computer vision by Stewénius et al [76]
even though Gröbner basis methods were used to some extent in [85] and were
also mentioned in [44].
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Chapter 5

Techniques for Polynomial

Equation Solving

Drawing on the ideas introduced in the previous chapter, this chapter presents
a range of techniques for improving the numerical stability of algorithms which
rely on eigenvalue decomposition of a multiplication matrix. These techniques
are based on e�cient and numerically stable methods from numerical linear
algebra. A bene�t of this is that such routines have a relatively long history and
are very well studied. Moreover, there exist highly optimized implementations
in free code libraries such as LAPACK [57].

5.1 Using Redundant Solving Bases - The Trun-

cation Method

As mentioned in Section 4.1.2, the sub matrix CR2 which appears in Equa-
tion 4.10 is a large cause of numerical problems in the equation solving process.
A typical situation with an ill conditioned or rank de�cient CR2 is that there
are a few problematic monomials where the corresponding columns in C are
responsible for the deteriorated conditioning of CR2. A straightforward way to
improve the situation is to simply include the problematic monomials in B, thus
avoiding the need to express these in terms of the other monomials. In practice
this means that some columns of CR are moved into CB. This technique is
supported by Theorem 8, which guarantees that we will �nd the original set
of solutions among the eigenvalues/eigenvectors of the larger mp found using
this redundant basis. The price we have to pay is performing an eigenvalue
decomposition on a larger matrix.

Given a system of equations which has been expanded by multiplication
with a set of monomials let, as before,M denote the complete set of monomials
for this particular expansion. Not all monomials from M can be included in
the basis B while still enabling the calculation of the necessary multiplication
matrices. In general it is a di�cult question exactly which monomials can be
used or even if there exists a set B among M, which can be used as a solving
basis. One can however easily see that given M, B has to be a subset of the
following set, which we denote the permissible monomials:

43
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De�nition 16. The set of permissible monomials is the set

P = {b ∈M : pb ∈M} (5.1)

of monomials which stay inM under multiplication by p.

Note that P is not �xed for a certain system of equations, but also depends
on the particular expansion which has been performed on that system. An ex-
ample of how the redundant solving basis technique can be used is provided by
the problem of L2-optimal triangulation from three views [80]. The optimum
is found among the up to 47 stationary points, which are zeros of a polynomial
system in three variables. In this example an enlarged set of 255 equations in
209 monomials were used to get a Gröbner basis. Since the solution dimension r
is 47 in this case, the 47 lowest order monomials were used as a basis for C[x]/I
in [80], yielding a numerically di�cult situation. In fact, as will be shown in
more detail in the experiments section, this problem can be solved by simply
including more elements in B. In this example, the complete permissible set P
contains 154 monomials. By including all of these in B leaving 55 monomials
to be expressed in terms of B, we get a much smaller and in this case better
conditioned elimination step. As mentioned above, this leads to a larger eigen-
value decomposition, but all true solutions can still be found among the larger
set of eigenvalues/eigenvectors. This is illustrated in Figure 5.1, where the set
of eigenvalues computed from mxk

for one instance are plotted in the complex
plane together with the actual solutions of the polynomial system.

5.2 Basis Selection

In the previous section we saw how it is possible to pick a �too large� (> r
elements) linear basis P and still use it to solve the equations. In this section
we show how one can select a true (linearly independent) basis as a subset of
P in a numerically stable way and thus gain both speed and stability. In the
following, P denotes any subset ofM with the property that the obtained CR2

is of full rank, thus making P a solving basis.
Since the set V of zeros of (2.10) is �nite with r points, P seen as a set

of functions on V contains at most r linearly independent elements. It should
therefore be possible to remove a subset P ′ ⊂ P such that the elements in P ′
can be expressed as linear combinations of elements in P \ P ′. By dropping P ′
from the solving basis, the set B = P \ P ′ would thus constitute a new tighter
solving basis w.r.t the same multiplier p and ideal I as P.

We now present two numerically stable techniques for constructing a true
basis B from a redundant solving basis P.

5.2.1 The QR Method

We start by selecting P as large as possible, still yielding a full rank CR2

and form [CE CR CP ]. Any selection of basis monomials B ⊂ P will then
correspond to a matrix CB consisting of a subset of the columns of CP .

By performing Gaussian elimination we again obtain (4.10), but with B
replaced by P, letting us get rid of the E-monomials by discarding the top rows.
Furthermore, the R-monomials will all have to be expressed in terms of the
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Figure 5.1: Eigenvalues of the action matrix using the redundant basis method
and actual solutions to the polynomials system plotted in the complex number
plane. The former are a strict superset of the latter.

P-monomials so we continue the elimination putting CR2 on triangular form,
obtaining [

UR CP1

0 CP2

] [
XR
XP

]
= 0. (5.2)

At this point we could simply continue the Gaussian elimination, with each new
pivot element representing a monomial expressed in terms of the remaining basis
monomials. However, this typically leads to poor numerical performance since,
as previously mentioned, the elimination might be very ill conditioned. This is
where the basis selection comes to play.

As noted above we can choose which of the p monomials in P to put in the



46CHAPTER 5. TECHNIQUES FOR POLYNOMIAL EQUATION SOLVING

basis and which to reduce. This is equivalent to choosing a permutation Π of
the columns of CP2,

CP2Π =
[
cπ(1) . . . cπ(p)

]
(5.3)

and then proceed using standard elimination. The goal must thus be to make
this choice so as to minimize the condition number κ(

[
cπ(1) . . . cπ(p−r)

]
) of

the �rst p−r columns of the permuted matrix. In its generality, this is a di�cult
combinatorial optimization problem. However, the task can be approximately
solved in an attractive way by QR factorization with column pivoting [35]. With
this algorithm, CP2 is factorized as

CP2Π = QU, (5.4)

where Q is orthogonal and U is upper triangular. By solving for CP2 in (5.4)

and substituting into (5.2) followed by multiplication from the left with
[

I 0
0 QT

]
,

we get [
UR CP1Π
0 U

] [
XR

ΠTXP

]
= 0. (5.5)

We observe that U is in general not square and write U =
[
UP′2 CB2

]
,

where UP′2 is square upper triangular. We also write CP1Π =
[
CP′1 CB1

]
and ΠTXP1 =

[
XP′1 XB

]T
yielding

[
UR CP′1 CB1

0 UP′2 CB2

]XR
XP′
XB

 = 0. (5.6)

Notice here that P has now split into the set B which is the new smaller basis
and P ′, which can now be expressed in terms of the elements in B. Finally the
expression [

XR
XP′

]
= −

[
UR CP′1
0 UP′2

]−1 [CB1

CB2

]
XB (5.7)

is analogous to (4.12) and amounts to solving r upper triangular equation sys-
tems which can be e�ciently done by back substitution.

The reason why QR factorization �ts so nicely within this framework is that
it simultaneously solves the two tasks of reduction to upper triangular form
and numerically sound basis selection and with comparable e�ort to normal
Gaussian elimination.

Furthermore, QR factorization with column pivoting is a widely used and
well studied algorithm and there exist free, highly optimized implementations,
making this an accessible approach.

Standard QR factorization successively eliminates elements below the main
diagonal by multiplying from the left with a sequence of orthogonal matrices
(usually Householder transformations). For matrices with more columns than
rows (under-determined systems) this algorithm can produce a rank-de�cient U
which would then cause the computations in this section to break down. QR
with column pivoting solves this problem by, at iteration k, moving the column
with greatest 2-norm on the last m − k + 1 elements to position k and then
eliminating the last m − k elements of this column by multiplication with an
orthogonal matrix Qk.
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5.2.2 The SVD Method

By considering not only monomial bases, but more general polynomial bases it
is possible to further improve numerical stability. In this subsection it is shown
how the singular value decomposition (SVD) can be used to construct a basis
for C[x]/I as r linearly independent linear combinations of elements in a solving
basis P.

As in Section 5.2.1 we start out by selecting an as large as possible (redun-
dant) solving basis and perform preliminary matrix operations forming (5.2),
where the aim is now to construct a linearly independent basis from P. We do
this by performing an SVD on CP2, writing

CP2 = UΣVT , (5.8)

where U and V are orthogonal and Σ is diagonal with typically r last elements
zero Σ =

[
Σ′ 0
0 0

]
for a system with r solutions.

Now inserting this into (5.2) and multiplying from the left with
[

I 0
0 UT

]
, we

get [
UR CP1V
0 Σ

] [
XR

VTXP

]
= 0. (5.9)

The matrix V induces a change of basis in the space spanned by P and we
write X̃P = VTXP = [ X′P XB ]T , where P ′ and B are sets of polynomials. Using
this notation we get UR 0 C̃P1

0 Σ′ 0
0 0 0

XR
XP′
XB

 = 0, (5.10)

where Σ′ is diagonal with n − r nonzero diagonal entries. The zeros above
Σ′ enter since Σ′ can be used to eliminate the corresponding elements without
a�ecting any other elements in the matrix. In particular this means that we
have {

XP′ = 0
XR = −U−1

R C̃P1XB
(5.11)

on V , which allows us to express any elements in span(M) in terms of XB,
which makes B a solving basis.

Computing the action matrix is complicated slightly by the fact that we
are now working with a polynomial basis rather than a monomial one. To
deal with this situation we introduce some new notation. To each element
ek of P̃ = P ′⋃B we assign a vector vk = [ 0 ... 1 ... 0 ]T ∈ R|P̃|, with a one
at position k. Similarly, we introduce vectors uk ∈ R|R

S P̃|, wk ∈ R|B| rep-
resenting elements of R⋃ P̃ and B respectively. Further we de�ne the linear
mapping R : span(R⋃ P̃) 7→ span(B), which using (5.11) associates an element
of span(R⋃ P̃) with an element in span(B). We represent R by a |B|× |R⋃ P̃|
matrix

R =
[−C̃T

P′U
−1T
R 0 I

]
, (5.12)

acting on the space spanned by the vectors uk.



48CHAPTER 5. TECHNIQUES FOR POLYNOMIAL EQUATION SOLVING

We also introduce the mapping Mp : span(P) 7→ span(R⋃P) given by
Mp(f) = p · f with the representation

(Mp)ij = I(xαi = p · xαj ), (5.13)

where I(·) is the indicator function.
Mp represents multiplication by p on P. In the basis P̃ induced by the

change of basis V we thus get

M̃p =
[
I 0
0 VT

]
MpV. (5.14)

Finally, we get a representation of the multiplication mapping from B to B
as

m̃T
p = RM̃pL, (5.15)

where L = [ 0I ] simply interprets the wk ∈ R|B| vectors as R|P̃|-vectors. The
transpose on m̃p in the above equation shows up because we derived the ex-
pression using the representation vectors uk, vk, wk rather than directly with
monomial vectors.

An eigendecomposition of m̃T
p yields a set of eigenvectors ṽ in the new basis.

It remains to inverse transform these eigenvectors to obtain eigenvectors of mT
p ,

which is the corresponding multiplication matrix in the space span(P). Writing[
XP̃
XB

]
=
[
VT

1

VT
2

]
XP ,

we get

m̃T
p = VT

2 mpV2. (5.16)

Assume now that ṽ is an eigenvector of m̃T
p . Using the above expression,

we can see directly that ṽ = VT
2 v is an eigenvector for m̃T

p matrix i� v is an
eigenvector of mT

p . This yields

v = V2ṽ (5.17)

and hence we have a way of going back to our original basis where we can read
o� the solutions to our equations.

As will be seen in the experiments, the SVD method is somewhat more
stable than the QR method, but signi�cantly slower due to the costly SVD
factorization.

5.2.3 Basis Selection and Adaptive Truncation

We have so far seen three techniques for dealing with the case when the sub
matrix CP2 is ill conditioned. By the method in Section 5.1 we avoid operating
on CP2 altogether. Using, the QR and SVD methods we perform elimination,
but in a numerically much more stable manner. One might now ask whether it
is possible to combine these methods. Indeed it turns out that we can combine
either the QR or the SVD method with a redundant solving basis to get an
adaptive truncation criterion yielding even better stability in some cases. The
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way to do this is to choose a criterion for early stopping in the factorization
algorithms. The techniques in this section are related to truncation schemes for
rank-de�cient linear least squares problems, cf [50].

A neat feature of QR factorization with column pivoting is that it provides a
way of numerically estimating the conditioning of CP2 simultaneously with elim-
ination. By design, the QR factorization algorithm produces an upper triangular
matrix U with diagonal elements uii of decreasing absolute value. The factor-
ization proceeds column wise, producing one |uii| at a time. If rank(U) = r,
then |urr| > 0 and ur+1,r+1 = · · · = unn = 0. However, in �oating point
arithmetic, the transition from �nite |uii| to zero is typically gradual passing
through extremely small values and the rank is consequently hard to determine.
For robustness it might therefore be a good idea to abort the factorization pro-
cess early. We do this by setting a threshold τ for the ratio |u11

uii
| and abort the

factorization once the value exceeds this threshold. A value of τ ≈ 108 has been
found to yield good results1. Note that this produces an equivalent result to
carrying out the full QR factorization and then simply discarding the last rows
of U. This is practical since o�-the-shelf packages as LAPACK only provide
full QR factorization, even though some computational e�ort could be spared
by modifying the algorithm so as not to carry out the last steps.

Compared to setting a �xed (redundant) basis size, this approach is bene�cial
since both rank and conditioning of CP2 might depend on the data. By the
above method we decide adaptively where to truncate and therefore how large
the linear basis for C[x]/I should be.

In the context of the SVD we get a similar criterion by looking at the singular
values instead and set a threshold for σ1

σi
, which for i = rank(CP2) is exactly

the condition number of CP2.

5.3 Other Techniques

We end the part on techniques in this chapter with two less involved but still
useful ideas.

5.3.1 A Single Elimination Step

In previous works which have been more closely connected to classical alge-
braic geometry using properly de�ned monomial orders etc, a Gröbner basis for
the particular ideal has typically been obtained by successive elimination and
addition of equations [76, 55]. This is also more similar to how the original
Buchberger's algorithm for computing a Gröbner basis works. We strongly ad-
vocate avoiding this and instead �rst adding all equations and then doing the
full elimination in one go. The reason for this is that, as mentioned often in this
text, the eliminations tend to be ill conditioned. If several elimination steps are
interleaved with addition of new equations, numerical errors accumulate and
the algorithms easily become unstable.

1Performance is not very sensitive to the choice of τ and values in the range 106 to 1010

yield similar results.
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5.3.2 Using Eigenvalues Instead of Eigenvectors

In the literature, the preferred method of extracting solutions using eigenvalue
decomposition is to look at the eigenvectors. It is also possible to use the
eigenvalues, but for a problem with s variables, this seemingly requires us to
solve s eigenvalue problems since each eigenvalue only gives the value of one
variable. However, there can be an advantage with using the eigenvalues instead
of eigenvectors. If there are multiple eigenvalues (or almost multiple eigenvalues)
the computation of the corresponding eigenvectors will be numerically unstable.
However, the eigenvalues can usually be determined with reasonable accuracy.
In practice, this situation is not uncommon with the action matrix.

Fortunately, we can make use of our knowledge of the eigenvectors to devise
a scheme for quickly �nding the eigenvalues of any action matrix on C[x]/I.
From Section 2.2 we know that the right eigenvectors of an action matrix is the
vector of basis elements of C[x]/I evaluated at the zeros of I. This holds for any
action matrix and hence all action matrices have the same set of eigenvectors.
Consider now a problem involving the two variables xi and xj . If we have
constructed mxi , the construction of mxj requires almost no extra time. Now
perform an eigenvalue decomposition mxi

= VDxi
V−1. Since V is the set of

eigenvectors for mxj
as well, we get the eigenvalues of mxj

by straightforward
matrix multiplication and then element wise division from

mxj V = VDxj . (5.18)

This means that with very little extra computational e�ort over a single eigen-
value decomposition we can obtain the eigenvalues of all action matrices we
need.

5.4 Experimental Validation

In this section we evaluate the numerical stability of the proposed techniques
on a range of typical geometric computer vision problems. The experiments
are mainly carried out on synthetic data since we are interested in the intrinsic
numerical precision of the solver. By intrinsic precision we mean precision under
perfect data. The error under noise is of course interesting for any application,
but for minimal data this is an e�ect of the problem formulation and not of the
particular equation solving technique.

In Section 5.4.1 all the main methods (standard, truncated, SVD and QR)
are tested on the problem of optimal triangulation from three di�erent views.
This problem was �rst studied in [80] where emulated 128 bit arithmetics was
necessary to get usable results. Later, with the techniques presented in this
thesis the problem was given an e�cient implementation in standard IEEE
double precision. Details of this are given in Chapter 6. However, this example
provides such a nice illustration of the relative bene�ts and drawbacks of the
di�erent techniques so we take the liberty of borrowing some of the results and
present them already in this section.

Apart from the triangulation example, the improved methods are tested on
the problems of relative pose with unknown but common focal length [78] and
relative pose for generalized cameras [79]. Signi�cant improvements in stability
are shown in all cases.
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5.4.1 Optimal Three View Triangulation

The triangulation problem is formulated as �nding the world point that min-
imizes the sum of squares of the reprojection errors in the three views. We
do this by computing the gradient of the sum of squares error and setting it
to zero. This yields three sixth degree polynomial equations in three variables
(the X, Y and Z coordinates of the unknown point) and using e.g a computer
algebra system one can check that the system has 47 (real and complex) zeros.
After some preliminary manipulations described in Chapter 6 we expand the
set of equations up to degrees 9 (see the beginning of Section 4.1.2) yielding 225
equations in 209 di�erent monomials.

The synthetic data used in the validation was generated with three randomly
placed cameras at a distance around 1000 from the origin and a focal length of
around 1000. The unknown world point was randomly placed in a cube with
side length 1000 centered at the origin. The methods have been compared on
100,000 test cases.

Numerical Experiments

The �rst experiment investigates what improvement can be achieved by simply
avoiding the problematic matrix elimination using the techniques of Section 5.1.
For this purpose we choose the complete set of permissible monomials P as a re-
dundant basis and perform the steps in the algorithm Solving Basis Method.
In this case we thus get a redundant basis of 154 elements and a 154× 154 mul-
tiplication matrix to perform eigenvalue decomposition on. In both cases the
eigenvectors are used to �nd the solutions. The results of this experiment are
shown in Figure 5.2. As can be seen, this relatively straightforward technique
already yields a large improvement in numerical stability.
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Figure 5.2: Histogram of errors over 100,000 points. The improvement in stabil-
ity using the redundant basis renders the algorithm feasible in standard IEEE
double precision.

Looking closely at Figure 5.2 one can see that even though the general stabil-
ity is much improved, a small set of relatively large errors remain. It is unclear



52CHAPTER 5. TECHNIQUES FOR POLYNOMIAL EQUATION SOLVING

what causes these errors. However, by doing some extra work using the QR
method of Section 5.2.1 to select a true basis as a subset of P, we improve sta-
bility further in general and in particular completely resolve the issue with large
errors, cf Figure 5.3. Moreover, we get a smaller eigenvalue decomposition and
hence reduce computational complexity.
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Figure 5.3: Histogram of errors for the standard, redundant basis and QR meth-
ods. The QR method improves stability in general and in particular completely
removes the small set of large errors present in both the standard and redundant
basis methods.

In Figure 5.4, the performance of the QR method is compared to the slightly
more stable SVD method which selects a polynomial basis for C[x]/I from the
monomials in P. In this case, errors are typically a factor ∼ 5 smaller for the
SVD method compared to the QR method.

The reason that a good choice of basis improves the numerical stability is
that the condition number in the elimination step can be lowered considerably.
Using the basis selection methods, the condition number is decreased by about a
factor 105. Figure 5.5 shows a scatter plot of error versus condition number for
the three view triangulation problem. The SVD method displays a signi�cant
decrease and concentration in both error and condition number. In theory,
there could be many possible sources of numerical error in the complete solving
procedure. It is therefore interesting to note that to a reasonable approximation
we have a linear trend between the �nal error and the condition number of
CR2. This can be seen since we have a linear trend with slope one in the
logarithmic scale. Moreover, we have a y-axis intersection at about 10−13, since
the coordinates are around 1000 in magnitude this means that we have a relative
error ≈ 10−16κ = εmachκ. This observation justi�es our strategy of minimizing
the condition number of CR2.

As mentioned in Section 5.3.2, it might be bene�cial to use the eigenvalues
instead of eigenvectors to extract solutions.

When solving this problem using eigenvalues there are two extra eigenvalue
problems of size 50× 50 that need to be solved. The impact of the switch from
eigenvectors to eigenvalues is shown in Figure 5.6. For this example we gain
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Figure 5.4: Comparison between the SVD and QR methods. The SVD method
improves somewhat over the QR method at the cost of the computationally
more demanding SVD factorization.

some stability at the cost of having to perform three eigenvalue decompositions
(one for each coordinate) instead of only one. Moreover, we need to sort the
eigenvalues using the eigenvectors to put together the correct triplets.

However, we can use the trick of Section 5.3.2 to get nearly the same accuracy
using only a single eigenvalue decomposition. Figure 5.7 shows the results of
this method. The main advantage of using the eigenvalues is that we push down
the number of large errors considerably.

Finally we study the combination of basis selection and early stopping which
yields a redundant solving basis for the three view triangulation problem. The
basis size was determined adaptively as described in Section 5.2.3 with a thresh-
old τ = 108. Table 5.1 shows the distribution of basis sizes obtained when this
method was used. Since the basis is chosen minimal in 94% of the cases for
the SVD-method and 95% for the QR method the time consumption is almost
identical to the original basis selection methods, but as can be seen in Table 5.2
the number of large errors are reduced. This is probably due to the fact that
truncation is carried out only when the matrices are close to being singular.

50 51 52 53 54 ≥ 55
SVD 94.0 3.5 0.8 0.4 0.3 1.0
QR 95.0 3.0 0.7 0.3 0.2 0.8

Table 5.1: Basis sizes for the QR and SVD methods with variable basis size. The
table shows the percentage of times certain basis sizes occurred during 100,000
experiments.

To conclude the numerical experiments on three view triangulation two ta-
bles with detailed error statistics are given. The acronyms STD, QR, SVD and
TRUNC respectively denote the standard method, QR method, SVD method
and redundant basis method. The su�xes eig, fast and var respectively denote
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Figure 5.5: Error versus condition number for the part of the matrix which is
inverted in the solution procedure.
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Figure 5.6: Error histograms showing the di�erence in precision between the
eigenvalue and eigenvector methods.
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Figure 5.7: This graph shows the increase in performance when the fast eigen-
value method is used instead of the eigenvector method.
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the eigenvalue method, the fast eigenvalue method (Section 5.3.2) and the use
of a variable size basis (Section 5.2.3). Table 5.2 shows how many times the
error was larger than some given levels for several solvers. This is interesting for
example in the context of RANSAC a process. As can be seen, the QR-method
with adaptive basis size is the best method for reducing the largest errors but
the SVD-method with the use of eigenvalues is the best in general. Table 5.3
shows the median and the 95:th percentile errors for the same methods as in the
previous table. Notable in here is that the 95:th percentile is improved with as
much as factor 107 and the median with a factor 105. The SVD-method with
eigenvalues is shown to be the best but the QR-method gives almost as good
results.

Method > 10−3 > 10−2 > 10−1 > 1
STD 35633 24348 15806 9703
STD:eig 29847 19999 12690 7610
SVD 1173 562 247 119
SVD:eig 428* 222* 128* 94
SVD:fast 834 393 178 94
SVD:var+fast 730 421 245 141
TRUNC 6712 4697 3339 2384
TRUNC:fast 5464 3892 2723 2015
QR 1287 599 269 127
QR:eig 517 250 149 117
QR:fast 1043 480 229 106
QR:var+fast 584 272 141 71*

Table 5.2: Number of errors out of 100,000 experiments larger than certain
levels. The QR-method with adaptive basis size yields the fewest number of
large errors. The best result in each column is marked with an *.

Method 95th 50th
STD 1.42 · 101 9.85 · 10−5

STD:eig 5.30 · 100 3.32 · 10−5

SVD 1.19 · 10−5 6.09 · 10−9

SVD:eig 1.20 · 10−6∗ 1.29 · 10−9∗
SVD:fast 4.37 · 10−6 2.53 · 10−9

SVD:var+fast 2.34 · 10−6 2.50 · 10−9

TRUNC 6.55 · 10−3 1.40 · 10−8

TRUNC:fast 1.87 · 10−3 3.27 · 10−9

QR 1.78 · 10−5 1.06 · 10−8

QR:eig 1.70 · 10−6 2.08 · 10−9

QR:fast 6.97 · 10−6 3.64 · 10−9

QR:var+fast 3.41 · 10−6 3.61 · 10−9

Table 5.3: The 95th percentile and the median error for various methods. The
improvement in precision is up to a factor 107. The SVD method gives the best
results, but the QR-method is not far o�. The best result for each column is
marked with an *.



5.4. EXPERIMENTAL VALIDATION 57

Speed Comparison

The main motivation for using the QR-method rather than the SVD-method
is that the QR-method is computationally less expensive. To verify this the
standard, SVD and QR-methods were run and the time was measured. Since the
implementations were done in Matlab it was necessary to take care to eliminate
the e�ect of Matlab being an interpreted language. To do this only the time
after construction of the coe�cient matrix was taken into account. This is
because the construction of the coe�cient matrix essentially amounts to copying
coe�cients to the right places which can be done extremely fast in e.g a C
language implementation.

In the routines that were measured no subroutines were called that were not
built-in functions in Matlab. The measurements were done with the Matlab
pro�ler.

The time measurements were done on an Intel Core 2 2.13 GHz machine with
2 GB memory. Each algorithm was executed with 1000 di�erent coe�cient
matrices constructed from the same type of scene setups as previously. The
same set of coe�cient matrices was used for each method. The result is given in
Table 5.4. Our results show that the QR-method is approximately three times
faster than the SVD-method but 50% slower than the standard method. The
reason that the redundant basis method is more than twice as slow as the QR
method is the larger eigenvalue decomposition which dominates the computation
time.

Method Time per call / ms Relative time
SVD 66.89 1
TRUNC 55.84 0.83
QR 24.45 0.37
STD 16.44 0.25

Table 5.4: Time consumption in the solver part for the three di�erent methods.
The time is an average over 1000 function calls.

5.4.2 Relative Pose with Unknown Focal Length

Relative pose for calibrated cameras is a well known problem and the standard
minimal case for this is �ve points in two views. There are in general ten
solutions to this problem. For the same problem but with unknown focal length,
the corresponding minimal case is six points in two views, which was solved by
Stewénius et al using Gröbner basis techniques [78].

Following the same recipe as Stewénius et al it is possible to express the
fundamental matrix as a linear combination,

F = F0 + F1l1 + F2l2. (5.19)

Then setting f−2 = p one obtains nine equations from the constraint on the
essential matrix [71]

2EETE − tr(EET )E = 0. (5.20)
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A 10th equation is obtained by making use of the fact that the fundamental
matrix i singular, i.e det(F ) = 0. These equations involve the unknowns p, l1
and l2 and are of total degree 5. The problem has 15 solutions in general.

We set up the coe�cient matrix C by multiplying these ten equations by p
so that the degree of p reaches a maximum of four. This gives 34 equations in
a total of 50 monomials.

The validation data was generated with two cameras of equal focal length
of around 1000 placed at a distance of around 1000 from the origin. The six
points were randomly placed in a cube with side length 1000 centered at the
origin. The standard, SVD, and QR-methods have been compared on 100,000
test cases and the errors in focal length are shown in Figure 5.8. In this case
the QR-method actually yields slightly better results than the SVD-method.
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Figure 5.8: The error in focal length for relative pose with two semi calibrated
cameras with unknown but common focal length.

5.4.3 Relative Pose for Generalized Cameras

Generalized cameras provide a generalization of the standard pin-hole camera
in the sense that there is no common focal point through which all image rays
pass, cf [72]. Instead the camera captures arbitrary image rays or lines. Solving
for the relative motion of a generalized camera can be done using six point
correspondences in two views. This is a minimal case which was solved in [79]
with Gröbner basis techniques. The problem equations can be set up using
quaternions to parameterize the rotation, Plücker representation of the lines
and a generalized epipolar constraint which captures the relation between the
lines. After some manipulations one obtains a set of sixth degree equations
in the three quaternion parameters v1, v2 and v3. For details, see [79]. The
problem has 64 solutions in general.

To build our solver including the change of basis we multiply an original set
of 15 equations with all combinations of 1, v1, v2, v3 up to degree two. After this
we end up with 101 equations of total degree 8 in 165 di�erent monomials.
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We generate synthetic test cases by drawing six points from a normal dis-
tribution centered at the origin. Since the purpose of this investigation is not
to study generalized cameras under realistic conditions we have not used any
particular camera rig. Instead we use a completely general setting where the
cameras observe six randomly chosen lines each through the six points. There
is also a random relative rotation and translation relating the two cameras. It
is the task of the solver to calculate the rotation and translation.

The methods have been compared on a data set of 10,000 randomly generated
test cases. The results from this experiment are shown in Figure 5.9. As can
be seen, a good choice of basis yields drastically improved numerical precision
over the standard method.
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Figure 5.9: The angular error for relative pose with generalized cameras.

5.5 Discussion

We have introduced some new theoretical ideas as well as a set of techniques
designed to overcome numerical problems encountered in state-of-the-art meth-
ods for polynomial equation solving. We have shown empirically that these
techniques in many cases yield dramatic improvements in numerical stability
and further permits the solution of a larger class of problems than previously
possible.

The techniques for solving polynomial equations that are used in this work
can be summarized as follows. The original equations are �rst expanded by
multiplying the polynomials with a set of monomials. The resulting equations
is expressed as a product of a coe�cient matrix C and a monomial vector X.
Here we have some freedom in choosing which monomials to multiply with. We
then try to �nd a solving basis B for the problem. For a given candidate basis
B we have shown how to determine if B constitutes a solving basis. If so then
we can use numerical linear algebra to construct the action matrix and get a
fast and numerically stable solution to the problem at hand. However, we do
not know (i) what monomials we should multiply the original equations with
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and (ii) what solving basis B should be used to get the simplest and most nu-
merically stable solutions. Are there algorithmic methods for answering these
questions? For a given expansion CX can one determine if this allows for a
solving basis? Such questions can be answered to some extent using existing
theory for Gröbner bases and exact arithmetic. However in the context of gen-
eral (possibly overcomplete) bases for C[x]/I and non-strict monomial orderings
there is so far much less we can say. A concise theoretical understanding and
practical algorithms for these problems would certainly be of great aid in the
work on polynomial problems and is an interesting subject for future research.
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Chapter 6

Optimal Triangulation

In this chapter we consider the problem of globally optimal triangulation from
three separate views. Whereas, the two-view case has a relatively simple closed
form solution, the three-view case has just the right complexity to make it an
excellent target for the techniques introduced in Chapter 5. For four or more
views though, optimization by solving a polynomial is still more or less infeasible.

Figure 6.1: The unknown location of a point can be reconstructed using its
projection in a sequence of images if the location and orientation of the cameras
are known. This is usually called triangulation.

6.1 Introduction

Triangulation, referring to the act of reconstructing the 3D location of a point
given its images in two or more known views, is an important part of numer-
ous computer vision systems. Albeit conceptually simple, this problem is not
completely solved in the general case of n views and noisy measurements.

There exist fast and relatively robust methods based on linear least squares
[40]. These methods are however sub-optimal. Moreover, the linear least squares
formulation does not have a clear geometrical meaning, which means that in
unfortunate situations, this approach can yield very poor accuracy.

The most desirable, but non-linear, approach is instead to minimize the L2

norm of the reprojection error, i.e the sum of squares of the reprojection errors.
The reason for this is that the L2 optimum yields the maximum likelihood
estimate for the 3D point under the assumption of independent Gaussian noise
on the image measurements [39]. This problem has been given a closed form
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solution1 by Hartley and Sturm in the case of two views [39]. However, the
approach of Hartley and Sturm is not straightforward to generalize to more
than two views.

In the case of n views, the standard method when high accuracy is needed is
to use a two-phase strategy where an iterative scheme for non-linear least squares
such as Levenberg-Marquardt (Bundle Adjustment) is initialized with a linear
method [86]. This procedure is reasonably fast and in general yields excellent
results. One potential drawback, however, is that the method is inherently local,
i.e �nds local minima with no guarantee of being close to the global optimum.

An interesting alternative is to replace the L2 norm with the L∞, norm
cf [49]. This way it is possible to obtain a provably optimal solution with a
geometrically sound cost function in a relatively e�cient way. The drawback is
that the L∞ norm is suboptimal under Gaussian noise and it is less robust to
noise and outliers than the L2 norm.

The most practical existing method for L2 optimization with an optimality
guarantee is to use a branch and bound approach as introduced in [2], which,
however, is a computationally expensive strategy. 2

In this work, we propose to solve the problem of L2 optimal triangulation
from three views using a method introduced by Stewénius et al in [80], where the
optimum was found by explicit computation of the complete set of stationary
points of the likelihood function. This approach is similar to that of Hartley
and Sturm [39]. However, whereas the stationary points in the two view case
can be found by solving a sixth degree polynomial in one variable, the easiest
known formulation of the three view case involves solving a system of three sixth
degree equations in three unknowns with 47 solutions. Thus, we have to resort
to more sophisticated techniques to tackle this problem.

Stewénius et al used algebraic geometry and Gröbner basis techniques to an-
alyze and solve the equation system. However, as previously mentioned, Gröb-
ner basis calculations are known to be numerically challenging and they were
forced to use emulated 128 bit precision arithmetics to get a stable implemen-
tation, which rendered their solution too slow to be of any practical value.

Using the new techniques presented in this thesis, we are now able to give
the Gröbner basis method a fast implementation using standard IEEE dou-
ble precision. By this we also show that global optimization by calculation
of stationary points is indeed a feasible approach and that Gröbner basis like
techniques provide a powerful tool in this pursuit.

6.2 Three View Triangulation

The main motivation for triangulation from more than two views is to use the
additional information to improve accuracy. In this section we brie�y outline the
approach we take and derive the equations to be used in the following sections.

1The solution is actually not entirely on closed form, since it involves the solution of a
sixth degree polynomial, which cannot in general be solved on closed form. Therefore one has
to go by e.g the eigenvalues of the companion matrix, which implies an iterative process.

2Since the main part of the material of this chapter was written, a faster version of the
branch and bound algorithm for L2 optimal triangulation has been published [62] that prob-
ably has comparable running time to the method presented here, even though exact running
times are not available for the case of three views. However, the new branch and bound
method also generalizes to n views and is therefore probably a more practical choice.
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This part is essentially identical to that used in [80]. We assume a linear pin-
hole camera model, i.e projection in homogeneous coordinates is done according
to λixi = PiX, where Pi is the 3× 4 camera matrix for view i, xi is the image
coordinates, λi is the depth and X is the 3D coordinates of the world point to
be determined. In standard coordinates, this can be written as

xi =
1

Pi3X

[
Pi1X
Pi2X

]
, (6.1)

where e.g Pi3 refers to row 3 of camera i.
As mentioned previously, we aim at minimizing the L2 norm of the repro-

jection errors. Since we are free to choose coordinate system in the images, we
place the three image points at the origin in their respective image coordinate
systems. With this choice of coordinates, we obtain the following cost function
to minimize over X

ϕ(X) =
(P11X)2 + (P12X)2

(P13X)2
+

(P21X)2 + (P22X)2

(P23X)2
+

(P31X)2 + (P32X)2

(P33X)2
.

(6.2)
The approach we take is based on calculating the complete set of stationary
points of ϕ(X), i.e solving ∇ϕ(X) = 0. By inspection of (6.2) we see that
∇ϕ(X) will be a sum of rational functions. The explicit derivatives can easily
be calculated, but we refrain from writing them out here. Di�erentiating and
multiplying through with the denominators produces three sixth degree poly-
nomial equations in the three unknowns of X = [X1 X2 X3]T . To simplify the
equations we also make a change of world coordinates, setting the last rows of
the respective cameras to

P13 = [1 0 0 0], P23 = [0 1 0 0], P33 = [0 0 1 0]. (6.3)

Since we multiply with the denominator we introduce new stationary points
in our equations corresponding to one of the denominators in (6.2) being equal
to zero. This happens precisely when X coincides with the plane through one
of the focal points parallel to the corresponding image plane. Such points have
in�nite/unde�ned value of ϕ(X) and can therefore safely be removed.

To summarize, we now have three sixth degree equations in three unknowns.
The remainder of the theoretical part of the chapter will be devoted to the
problem of solving these.

6.3 A Numerical Solution to the Three View Tri-

angulation Problem

As discussed in Section 6.2, we optimize the L2 cost function by calculation of
the stationary points. This yields three sixth degree polynomial equations in
X = [X1 X2 X3]T . In addition to this, we add a fourth equation by taking
the sum of our three original equations. This cancels out the leading terms,
producing a �fth degree equation which will be useful in the subsequent calcu-
lations [80]. These equations generate an ideal I in C[X]. We start this section
out by going through the previous method of trying to compute a Gröbner ba-
sis for I and explain where this method runs into problems. This serves as a
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starting point for employing the methods of Chapter 5 to get a fast and stable
algorithm.

First, however, we need to deal with the problem where one or more of
Xi = 0. When this happens, we get a parametric solution to our equations.
As mentioned in Section 6.2, this corresponds to the extra stationary points
introduced by multiplying up denominators and these points have in�nite value
of the cost function ϕ(X). Hence, we would like to exclude solutions with any
Xi = 0 or equivalently X1X2X3 = 0. The algebraic geometry way of doing this
is to calculate the saturation sat(I,X1X2X3) of I w.r.t X1X2X3, consisting of
all polynomials f(X) s.t. (X1X2X3)k · f ∈ I for some k.

Computationally it is easier to calculate sat(I,Xi) for one variable at a time
and then joining the result. This removes the same problematic parameter
family of solutions, but with the side e�ect of producing some extra (�nite)
solutions with Xi = 0. These do not present any serious di�culties since they
can easily be detected and �ltered out.

Consider one of the variables, say X1. The ideal sat(I,X1) is calculated in
three steps. We order the monomials according to X1 but take the monomial
with the highest power of X1 to be the smallest, e.g X1X

2
2X3 ≥ X2

1X
2
2X3. With

the monomials ordered this way, we perform a few steps of the Gröbner basis
calculation, yielding a set of generators where the last elements can be divided
by powers of X1. We add these new equations which are �stripped� from powers
of X1 to I.

More concretely, we multiply the equations by all monomials creating equa-
tions up to degree seven. After the elimination step two equations are divisible
by X1 and one is divisible by X2

1 .
The saturation process is performed analogously for X2 and X3 producing

the saturated ideal Isat, from which we extract our solutions.
The �nal step is to calculate a multiplication matrix for Isat, at this point

generated by a set of nine �fth and sixth degree equations. To be able to do this
we multiply with monomials creating 225 equations in 209 di�erent monomials
of total degree up to nine. The last step thus consists of putting the 225 by 209
matrix C on reduced row echelon form.

This last part turns out to be a delicate task though due to generally very
poor conditioning. In fact, the conditioning is often so poor that round-o� errors
in the order of magnitude of machine epsilon (approximately 10−16 for doubles)
yield errors as large as 102 or more in the �nal result. This is the reason one
had to resort to emulated 128 bit numerics in [80].

Using the new techniques for computing the action matrix though, we can
now more or less completely avoid these conditioning problems. By extensive
experimentation (see Section 5.4) we have found that using the QR method
(Section 5.2.1) with an adaptive basis size (Section 5.2.3) yields the best stabil-
ity/speed trade-o�, see Table 6.1.

6.4 Experiments

The algorithm described in this chapter has been implemented in Matlab which
suggests that further gains in speed could be made by implementing it in e.g
C. However, the main time consuming parts of the algorithm are the LU and
QR factorizations and the eigenvalue decomposition of the action matrix and
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QR Standard Standard, 128 bit
Running time: 14ms 10ms 30s
Stability: Good Very poor Good

Table 6.1: Overview of running time and stability characteristics for the new
QR-based algorithm, for the previous method in double precision and for the
previous method implemented in emulated 128 bit arithmetics. The previous
method is only stable in the higher precision, which makes it very slow (a factor
300 slower). Using the QRmethod we get a fast and stable algorithm in standard
double precision.

Matlab uses LAPACK and BLAS for these operations which contain state-of-
the-art implementations of the above mentioned linear algebra operations. Care
has been taken to make the Matlab code for the remaining operations as e�cient
as possible.

Experimental results for the triangulation problem have already been pre-
sented in Chapter 5, but we repeat some of them here for completeness of the
chapter with the purpose of demonstrating the speed and numerical precision
of the method. We have run the algorithm on both real and synthetically
generated data using a 2.0 Ghz AMD Athlon X2 64 bit machine. With this
setup, triangulation of one point takes approximately 13 milliseconds using the
new method. This is to be contrasted with the previous implementation by
Stewénius et al [80], which needs 30 seconds per triangulation with their setup.
The branch and bound method of [2] is faster than [80] but exact running times
for triangulation are not given in [2]. However, based on the performance of this
algorithm on similar problems, the running time for three view triangulation is
probably at least a couple of seconds using their method.

6.4.1 Synthetic Data

To evaluate the intrinsic numerical stability of the solver the algorithm has
been run on 100,000 randomly generated test cases. World points were drawn
uniformly from the cube [−500, 500]3 and cameras were placed randomly at
a distance of around 1000 from the origin with focal length of around 1000
and pointing inwards. We compare the approach presented here to that of [80]
implemented in double precision here referred to as the standard method since
it is based on straightforward Gröbner basis calculation. A histogram over the
resulting errors in estimated 3D location is shown in Figure 6.2. As can be seen,
the error is typically around a factor 105 smaller with the new method.

Since we consider triangulation by minimization of the L2 norm of the error,
ideally behavior under noise should not be a�ected by the algorithm used. In the
second experiment we assert that the algorithm behaves as expected under noise.
We generate data as in the �rst experiment and apply Gaussian noise to the
image measurements in 0.1 pixel intervals from 0 to 5 pixels. We triangulate
1000 points for each noise level. The median error in 3D location is plotted
versus noise in Figure 6.3. There is a linear relation between noise and error,
which con�rms that the algorithm is stable also in the presence of noise.
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Figure 6.2: Histogram of errors for the standard, redundant basis and QR meth-
ods. The QR method improves stability in general and in particular completely
removes the small set of large errors present in both the standard and redun-
dant basis methods. Compared to the standard method, precision is improved
by about a factor 105.
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Figure 6.3: Error in 3D location of the triangulated point X as a function of
image-point noise. The behavior under noise is as expected given the problem
formulation.

6.4.2 A Real Example

Finally, we evaluate the algorithm under real world conditions. The Oxford
dinosaur [25] is a familiar image sequence of a toy dinosaur shot on a turn table.
The image sequence consists of 36 images and 4983 point tracks. For each point
visible in three or more views we select the �rst, middle and last view and
triangulate using these. This yields a total of 2683 point triplets to triangulate
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Figure 6.4: The Oxford dinosaur reconstructed from 2683 point triplets using
the QR-method with variable basis size. The reconstruction was completed in
approximately 34 seconds.

from. The image sequence contains some erroneous tracks which we deal with
by removing any points reprojected with an error greater than two pixels in any
frame. The whole sequence was processed in approximately 34 seconds and the
resulting point cloud is shown in Figure 6.4.

We have also run the same sequence using the previous method implemented
in double precision, but the errors were too large to yield usable results. Note
that [80] contains a successful triangulation of the dinosaur sequence, but this
was done using extremely slow emulated 128 bit arithmetic yielding an estimated
running time of 20h for the whole sequence.

6.5 Conclusions

In this chapter we have shown how a typical problem from computer vision,
triangulation, can be solved for the globally optimal L2 estimate using Gröbner
basis like techniques. With the new techniques for equation solving, we have
taken this approach to a state where it can now have practical value in actual
applications. In all fairness though, linear initialization combined with bundle
adjustment will probably remain the choice for most applications since this is
still signi�cantly faster and gives excellent accuracy. However, if a guarantee
of �nding the provably optimal solution is desired, we provide a competitive
method.

More importantly perhaps, by this example we show that global optimization
by calculation of the stationary points using Gröbner basis techniques is indeed
a possible way forward. This is particularly interesting since a large number of
computer vision problems ultimately depend on some form of optimization.
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Chapter 7

Hybrid Minimal Problems

Camera estimation tasks are usually divided into (i) absolute orientation esti-
mation, where a set of world points with known coordinates correspond to a
set of image points and the task is to determine the exact pose of the camera
and (ii) relative orientation estimation, where two or more cameras view the
same scene and a set of corresponding points between images are given. In this
chapter we investigate the mathematics of cases that fall in between those two
extremes, i.e we consider a camera which captures some points with known 3D
coordinates and some points which are not known but give partial information
since they are seen by other known cameras. The application we have in mind
is global image-based localization.

7.1 Introduction

Localization refers to the ability of automatically inferring the pose of an ob-
server relative a model [7]. Solving this problem using an image-based approach
amounts to �rst establishing tentative correspondences between an input image
and the model, �ltering out outliers and computing the camera location and
orientation. The need to understand and solve minimal setups thus arises in a
manner very similar to that of Chapter 8. The model or the map of the envi-
ronment can be anything from a single room in a building to a complete city.
In general, one image will be used as a query image, but in principle several
images can be used as input. No prior knowledge of the observer's position is
assumed and therefore the problem is often referred to as global localization
whereas local versions assume an approximate position. The mapping of the
environment can be regarded as an o�-line process since it is generally done
once and for all. Such a mapping can be done using standard Structure from
Motion (SfM) algorithms [40], or by some other means.

The key idea of this work is to use a mixture of 2D and 3D features si-
multaneously for localization. A 3D feature here refers to a point with known
location in the room with associated features. A 2D feature is a feature point
detected in one view with known camera matrix, this gives a feature with the
3D position known up to a line in 3D. If one were to rely solely on 3D matches,
one is restricting the set of possible correspondences to fewer correspondences
and a relatively rich 3D model would be required in order to be successful. On

71
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the other hand, using only 2D features requires relatively many correct corre-
spondences to generate a single hypothesis. In addition, with existing methods
such as the seven point algorithm for two views [40], one is limited to picking
all the 2D correspondences from one single image in the model. Again, one
is restricting the set of correspondences to a smaller subset. Furthermore, the
absolute scale cannot be recovered solely from 2D correspondences of one query
image and one model image.

Using hybrid correspondence sets for generating hypotheses gives a number
of advantages. We can make use of all possible correspondences simultaneously,
even from di�erent 2D model images. Compared to approaches using only 2D
correspondences, the scale relative to the 3D map can be recovered and, more
importantly, the number of correspondences is smaller which is preferable when
using RANSAC. One can argue that in most cases, traditional methods would
work �ne. However, if one accepts possibly somewhat longer computation times,
using hybrid correspondence sets (as well as traditional ones) provides a strictly
greater chance of obtaining an outlier-free point set and there is hence no reason
why the extra information should not be used.

The main contributions of this chapter are:

1. A complete list of minimal hybrid cases is given. For most the number of
possible solutions is given.

2. Algorithms for e�ciently computing the solutions of two of the minimal
cases are given. One of these cases was only solvable using the techniques
of Chapter 5.

7.2 Problem Formulation

With the localization application in mind, we are interested in solving the fol-
lowing problem:

Under the assumption that for a query image, there are m potential corre-
spondences to image points in views with known absolute orientation and n
potential correspondences to scene points with known 3D coordinates, �nd the
largest subset of the correspondences that admits a solution to the absolute
orientation problem within a speci�ed accuracy.

The method that we use to solve the localization problem is based on
hypothesize-and-test with RANSAC [30] and local invariant features [61]. This
involves solving minimal structure and motion problems with hybrid correspon-
dence sets.

7.3 Minimal Hybrid Correspondence Sets

The classical absolute orientation problem (also known as camera resectioning)
for calibrated cameras for three known points can be posed as �nding the matrix
P = [R t], such that λiui = PUi, i = 1, 2, 3. Here R is a 3 × 3 rotation matrix
and t is a 3-element translation vector. Thus, the camera matrix encodes six
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degrees of freedom. Each point gives two constraints and therefore three points
form a minimal case. In general there are four possible solutions [40].

We will study the absolute orientation problem for both calibrated cameras
as above, for the case of unknown focal length and for the uncalibrated camera
case. Furthermore we will consider both known 3D-2D correspondences (Ui, ui)
as above and 2D-2D correspondences (vi, ui) with features vi in other views.
Here we will assume that the camera matrices of the other views are known,
so that a 2D-2D correspondence can be thought of as a 3D-2D correspondence
where the unknown 3D point Ui lies on a line expressed in Plücker coordinates.
Here, the (m,n) case denotes the case of m 2D-2D correspondences and n
3D-2D correspondences. Notice that each 2D-2D correspondence imposes one
constraint and each 2D-3D correspondence imposes two constraints. We begin
with an overview of all possible minimal cases in this family and some brief
comments for each case. After that we go into some more detail on how they
can be analyzed and solved.

Calibrated Cameras For calibrated cameras there are six degrees of freedom,
three for orientation and three for position. One way of parameterizing the
camera matrix is to use a quaternion vector [a b c d]T for rotation, i.e

P=

a2+b2−c2−d2 2bc− 2ad 2ac+ 2bd x
2ad+ 2bc a2−b2+c2−d2 2cd− 2ab y
2bd− 2ac 2ab+ 2cd a2−b2−c2+d2 z

 . (7.1)

Potential minimal cases are:
The (0,3) case. This is the well known resectioning problem, cf [40] with

up to four solutions in front of the camera.
The (2,2) case. This case is given a numerical solution in Section 7.4.2. The

algorithm works equally well if the 2D-2D correspondences are to the same or
to di�erent cameras. There are up to 16 solutions.

The (4,1) case. There are two cases here. In the �rst case all 2D-2D corre-
spondences are to the same view. In this �rst case the problem can be solved
by �rst projecting the 3D point in the known camera and then using the �ve
point algorithm to solve for relative orientation, (hence up to 10 solutions), cf.
[52]. The scale is then �xed using the 2D-3D correspondence. The second case
is when the 2D-2D correspondences are to at least two di�erent views. This
is studied in this chapter and there are up to 32 solutions for this case. No
numerical algorithm is presented.

The (6,0) case. This cannot be solved for absolute orientation if all points
are from the same model view. However, if the correspondences come from
di�erent views, it is equivalent to the relative orientation problem for generalized
cameras, cf [79], which has up to 64 solutions.

Unknown Focal Length For calibrated cameras with unknown focal length
there are seven degrees of freedom, three for orientation, three for position and
one for the focal length. One way of parameterizing the camera matrix is as

P=

a2+b2−c2−d2 2bc− 2ad 2ac+ 2bd x
2ad+ 2bc a2−b2+c2−d2 2cd− 2ab y

2f(bd− ac) 2f(ab+ cd) f(a2−b2−c2+d2) fz

 . (7.2)
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Potential minimal cases are
The (1,3) case. This case is given a numerical solution in Section 7.4.4.

There are 36 solutions.
The (3,2) case. This is studied in this chapter and we have found the number

of solutions to be up to 40 in the general case. No numerical algorithm is
presented.

The (5,1) case. There are two cases here. In the �rst case all 2D-2D corre-
spondences are to the same view. In this �rst case the problem can be solved by
�rst projecting the 3D point in the known camera and then using the six point
algorithm to solve for relative orientation and focal length [78]. The scale is
then �xed using the 2D-3D correspondence. There are up to 15 solutions. The
second case is when the 2D-2D correspondences are to at least two di�erent
views. This is studied in this chapter and with the aid of Macaulay2, we have
found that there are potentially up to 112 solutions. No numerical algorithm is
presented.

The (7,0) case. This cannot be solved for absolute orientation if all points
are to the same view. For the case of correspondence to di�erent views, �nding
the number of solutions is an open problem. For this case the calculations turned
out to be too complex to handle for the computer algebra system.

Uncalibrated Cameras For the uncalibrated camera case there are 11 de-
grees of freedom. Each 2D-2D correspondence gives one constraint and each
2D-3D correspondence gives two constraints. Potential minimal cases are

The (1,5) case. This can be solved by hand-calculations as follows. Using the
�ve 3D-2D correspondences, the camera matrix can be determined up to a one-
parameter family P = P1 +νP2, where P1 and P2 are given 3×4 matrices and ν
is an unknown scalar. The remaining 2D correspondence can be parameterized
as a point on a line U = C+µD for some unknown parameter µ. The projection
equation gives λu = PU = (P1 + νP2)(U1 + µU2). Using resultants, it follows
easily that there are two solutions for the unknowns λ, ν, µ.

The (3,4) case. There are eight solutions, unless all four 2D-2D correspon-
dences are from the same model view, in which the standard seven-point-two-
view algorithm can be used. There are then up to three solutions. No numerical
algorithm is presented.

The (1+2k,5-k) case with k = 2, 3, 4. These cannot be solved for absolute
orientation if all points originate from one model view. However, for the case
of correspondences from di�erent model views, there are 2(1+2k) solutions. The
solutions procedure is analogous to the (1,5) case above and can be obtained
using resultants. No numerical algorithm is presented.

Summary We conclude this section by summarizing all the minimal cases for
hybrid 2D and 3D feature correspondences, see Table 7.1. We state an upper
bound on the number of physically realizable solutions. In practice though, as we
shall see later in Section 7.4.3, the number of plausible solutions is much smaller.
In the next section, we give the remaining justi�cations to these claims. This will
also lead to e�cient algorithms for computing the solutions. Algorithms in Mat-
lab for solving the (2,2) and (1,3) cases, that later are evaluated in this paper,
are available for download at http://www.maths.lth.se/vision/downloads/.
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2D-2D 2D-3D number of camera
corresp. corresp. solutions setting

0 3 4 calibrated
2 2 16 calibrated
4 1 32 or 10∗ calibrated
6 0 64 calibrated
1 3 36 unknown focal
3 2 40 unknown focal
5 1 112 or 15∗ unknown focal
7 0 ? unknown focal
1 5 2 uncalibrated
3 4 8 or 3∗ uncalibrated

1 + 2k 5− k 21+2k uncalibrated

Table 7.1: Minimal hybrid cases for structure from motion. The number of solu-
tions indicates an upper bound of the number of physically realizable solutions.
The solution numbers marked with asterisk �∗� correspond to cases where all
2D-2D correspondences originate from a single (model) view, whereas for other
cases, it is implicitly assumed that the correspondence set covers multiple views.
Note that one case is still an open problem (marked with �?�).

7.4 Solving Hybrid Minimal Cases with Algebraic

Geometry

As we have seen in previous chapters, minimal structure and motion problems
typically boil down to solving a system of polynomial equations in a number
of unknowns. This is the case for all problems studied in this chapter as well.
We now give the details concerning how the various hybrid problems are for-
mulated and solved using a combination of algebraic geometry and numerical
linear algebra. We in turn consider calibrated, semi-calibrated and uncalibrated
cameras.

7.4.1 Symbolic Calculations

For a speci�c application problem the structure of the polynomial system is
�xed. Thus the number of solutions to a structure and motion problem typically
depends only on the type of problem at hand.

To analyze the problems listed in this chapter we have used the computer
algebra system Macaulay2 [36] which uses Gröbner Basis techniques with integer
coe�cients by projecting the equations from C[x] to Zp[x], where p represents
a large prime number and computing the Gröbner basis there.

In [44] it is shown that an upper bound on the number of solutions to a
problem can be found by solving a single instance of the problem. That is, if
you �nd the solution to a problem for one instance that gives an upper bound
on the number of solutions in the general case. There can still exist degenerate
con�gurations with a higher number of solution but the probability to end up in
such a solution is very small for random coe�cients. Based on this theoretical
result, it is enough to work with integer coe�cient in Zp[x] to determine the
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number of solutions.

7.4.2 Calibrated Cameras

A calibrated camera can be parameterized using quaternions as shown in (7.1).
We now study the (2,2) case in more detail, i.e assume that we have two corre-
spondences between image points and scene points

u1 ∼ PU1, u2 ∼ PU2.

Since there is a freedom in choosing coordinate systems both in the scene and
in the images, without loss of generality we can assume

U1 =


0
0
0
1

 , u1 =

0
0
1

 , U2 =


1
0
0
1

 , u2 =

1
0
u

 .
This gives us the following constraints

x = 0, y = 0, ad = −bc,
z = u(a2 + b2 − c2 − d2)− 2bd+ 2ac.

As the overall scale of the camera matrix is irrelevant, one can set a = 1 and
eliminate d as d = −bc. This makes it possible to parameterize the camera
matrix as

P=

(1+b2)(1−c2) 4bc 2c(1−b2) 0
0 (1−b2)(1+c2) −2b(1+c2) 0

−2c(1+b2) 2b(1−c2) (1−b2)(1−c2) z

 .
By setting a = 1 two things happen. First the scale of the camera matrix

is �xed, hence the left-hand 3 × 3 sub matrix in (7.1) will only be a rotation
matrix up to scale. This will not have any further impact on the problem since
the measurement equations are homogeneous. The second consequence is that
solutions with a = 0 will not be included. The probability of obtaining a = 0 by
chance is very small, but there might be problems as well if a is close to zero.
However, as the synthetic experiments will show this causes no serious problems
for the end result.

Assume now that we have two correspondences between image points and
points that have been seen in only one other model image. This gives two points
on the viewing line Ci and Di associated to a point vi in the query image. If the
line is represented with Plücker coordinates [40] and the camera is converted
to the corresponding Plücker camera the constraints above converts to a single
equation. It is furthermore easy to see that every nonzero element in the Plücker
camera has a common factor 1 + b2. After removing the common factor, the
constraint polynomials (p1, p2) are of order 2 in b and order 4 in c.

The dimension of the quotient space C[b, c]/I is 16 with I = {p1, p2} which
can be checked with computer algebra. By multiplying the polynomials with
{1, b, c, bc} we obtain 8 equations in 24 monomials. It is then possible to express
8 of the monomials in terms of the remaining 16 monomials

{bc4, b3c2, c4, bc3, b2c2, b3c, c3, bc2, b2c, b3, c2, bc, b2, c, b, 1},
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Figure 7.1: Statistics from the evaluation of the solver for the (2,2) case for
calibrated cameras. The solver was run on 10,000 randomly generated cases.
Left: Histogram over the error in Frobenius norm between the estimated camera
P ′ and the true camera P . The error is plotted on a logarithmic scale. Right:
Histogram over the number of real valued solutions yielding positive depths.

which then form a basis for the quotient space C[b, c]/I. From this it is straight-
forward to construct the 16×16 multiplication matrix mc. From the eigenvalue
decomposition of the matrix mc the 16 solutions are obtained. Since this prob-
lem is of relatively low degree with only two variables, the eliminations are well
conditioned as they are and there is no pressing need to apply any stabilizing
techniques.

Gröbner basis calculations with a computer algebra system show that there
are 32 solutions for the (4,1) case, but we have not implemented a numerical
solver for this case.

7.4.3 Experimental Results for the (2,2) Case

The purpose of this section is to evaluate the stability of the algorithm for
solving the (2, 2) case. To this end we use synthetically generated data in the
form of randomly generated cameras and points. This allows us to measure the
typical errors and the typical number of plausible solutions, over a large range
of cases.

The point features are drawn uniformly from the cube ±500 units from
the origin in each direction. The cameras (two known and one unknown) are
generated at approximately 1000 units from the origin pointing roughly in the
direction of the center of the point cloud.

The algorithm has been run on 10,000 randomly generated cases as described
above. To evaluate the accuracy of the solution we take the minimal error (over
the plausible solutions) of the Frobenius norm ‖P ′−P‖ of the di�erence between
the estimated camera P ′ and the true camera P . The cameras were normalized
by setting the last element to one. The result is illustrated in Figure 7.1. As can
be seen, the errors typically stay as low as 10−15 to 10−10, but occasionally larger
errors occur. However, since the solver is used as a subroutine in a RANSAC
engine, which relies on solving a large number of di�erent instances, these very
rare cases with poor accuracy are not a serious problem.
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As shown in Section 7.4 the (2,2) calibrated case in general has 16 solutions.
Since obviously only one of these solutions is the correct one it is interesting to
investigate how many plausible solutions are typically obtained. With plausible
solutions we mean real valued camera matrices which yield positive depths for all
four problem points. In Figure 7.1 a histogram which shows the typical number
of plausible solutions is given. As can be seen the most common situation is
one to four plausible solutions. In one of the 10,000 cases, the algorithm was
unable to �nd a real solution with positive depths for all points. This is probably
due to numerical problems when the points and/or cameras are unfortunately
positioned (two or more real solutions irrespective of the sign of the depths
were found in all cases). In three of the cases seven solutions were found and in
one case eight plausible solutions were found. The average number of plausible
solutions was 2.6 and the average number of real solutions was 6.4. In some of
the cases all 16 solutions were real.

7.4.4 Unknown Focal Length

For the case of unknown focal length we have one additional unknown and we
thus need one extra constraint. There are several interesting minimal cases:
(1,3), (3,2) and (5,1). However, for the last case (assuming that all the �ve
points were in correspondence with the same view) one could solve the relative
orientation problem using the six point algorithm [78] and then �x the scale
using the known 3D correspondence.

Using (7.2) as parameterization for the camera matrix and assuming that
two of the 3D point correspondences are with

U1 =


0
0
0
1

 , U2 =


1
0
0
1

 , u1 =

1
0
1


it is possible to eliminate y = 0 and x = zf = g(b, c, d, f). We �x the scale by
setting a = 1. For both the (1, 3) case and the (3, 2) case we get polynomial
constraints in the �ve remaining unknowns (b, c, d, z, f). Calculations with com-
puter algebra show that there are 36 solutions for the (1, 3) case, 40 solutions
to the (3, 2) case and 112 in the (5, 1) case.

A numerical algorithm for the (1, 3) case has been obtained as follows. The
above parameterization gives four equations in four unknowns. The unknowns
are the three quaternion parameters and the focal length. The equation derived
from the line correspondence is of degree 6 and those obtained from the 3D
points are of degree 3. The coe�cient matrix C is then constructed by expanding
all equations up to degree 10. This means that the equation derived from the
line is multiplied with all monomials up to degree 4, but no single variable
in the monomials is of higher degree than 2. In the same manner the point
correspondence equations are multiplied with monomials up to degree 7 but
no single variable of degree more than 5. The described expansion gives 980
equations in 873 monomials. All of these equations were necessary to get a
working solution to the problem.

Whereas the (2, 2) case was reasonably well conditioned in itself, the (1, 3)
case is signi�cantly more complicated as can be seen by the number of equations
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that need to be generated and we were not even able to construct a numerical
solver using previous methods. As it turned out, truncation had to be used (i.e
a redundant basis for C[x]/I) to avoid a rank de�cient elimination step.

Proceeding as in Chapter 5 we partition and reorder the monomials into
excessive monomials (E), monomials to reduce (R) and permissible basis mono-
mials (P). In this problem CP corresponds to all monomials up to degree 4
except f4 where f is the focal length, which gives 69 columns in CP . The part
CR corresponds to the 5:th degree monomials that appear when the monomials
in P are multiplied with the �rst of the unknown quaternion parameters.

7.4.5 Experimental Results for the (1,3) Case

The synthetic examples for the (1,3) problem were generated in the same manner
as for the (2,2) case. Here, this gives one unknown camera with three point
correspondences and one line correspondence. The experiment was run 10,000
times.

Figure 7.2 gives the distribution of relative errors in the estimated focal
length. It can be seen that both the SVD method and the faster QR method
give useful results. We emphasize that we were not able to construct a solver
with the standard method and hence no error distribution for that method is
available.

In Figure 7.3 the distribution of basis sizes is shown for the QR method with
variable basis size. For the SVD method the basis size was identical to the QR
method in over 97% of the cases and never di�ered by more than one element.
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Figure 7.2: Error histogram for the (1,3) case with unknown focal length. The
standard method is omitted since we did not manage to construct a standard
solver due to numerical problems.
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Figure 7.3: The distribution of basis sizes for the (1,3) problem with unknown
focal length solved with the QR method with variable basis size. The number
of solutions are 36 and since we always add three dimensions to the truncated
ideal the minimal possible basis size is 39.

7.5 Conclusions

In this chapter we have presented new minimal cases for the resection problem.
These use a mixture of correspondences to known 3D points and correspondences
to points that have only been found in one image in the model. In all except one
of these minimal cases we have given an upper bound on the possible number
of solutions with Gröbner basis techniques. In two of the cases we have also
presented and evaluated numerical solvers. The �rst of these cases is the (2,2)
problem that �nds the pose for a calibrated camera. The solution with Gröbner
basis techniques leads to a fast and numerically stable algorithm. We also
present a solver for the (1,3) case for cameras with unknown focal length. This
problem is signi�cantly more complicated than the (2,2) problem but we can
still present a numerically sound and computationally e�cient algorithm with
Gröbner basis methods.



Chapter 8

Epipolar Geometry Under

Radial Distortion

In this chapter we study the problem of estimating relative camera motion be-
tween two frames in the presence of potentially heavy radial distortion. E�cient
and reliable solutions to the relative motion problem serve as the core of many
computer vision systems. Traditionally, one has assumed a linear camera model
and at best compensated for radial distortion towards the end of the process.
In this chapter it is indicated how radial distortion can be taken into account
already from the outset. In particular, two minimal cases of structure from
motion with radial distortion are derived and solved.

8.1 Introduction

Estimating camera motion and inner calibration parameters from sequences of
images is a challenging computer vision problem with a broad range of applica-
tions. Typically one starts with a noisy set of tentative image point correspon-
dences. The �rst step then is to make decisions about inliers and outliers and get
a good initial estimate to be able to deploy a more sophisticated optimization
algorithm on the set of all inliers.

Two robust and widely used techniques for this purpose are RANSAC [30]
and kernel voting [59], both relying on solving a large number of instances of
the underlying problem, each with a small number of point correspondences.
There is thus a need to develop fast and stable algorithms for solving geometric
computer vision problems with a minimal number of points. Typically this
amounts to solving a system of polynomial equations in several variables.

Traditionally, minimal problems have been formulated assuming a linear pin-
hole camera model with di�erent restrictions on the inner calibration parameters
etc. However, for some cameras such �sh-eye lenses this can be insu�cient and
one might need to handle strong radial distortions already from the outset.

Solving for the fundamental matrix under radial distortion was �rst studied
in [5], where a non-minimal algorithm based on 15 point correspondences was
given for a pair of uncalibrated cameras. More recently, in [55, 56], a number
of di�erent minimal problems with radial distortion have been studied and
practical solutions have been given in some cases.

81



82 CHAPTER 8. EPIPOLAR GEOMETRY AND RADIAL DISTORTION

Figure 8.1: Left: Input images with di�erent radial distortions. Right: Images
corrected using the method described here. Images from sources with di�erent
amounts of distortion are shown. Top: 66% cutout from an omnidirectional
image. Bottom: standard perspective camera.

Leveraging on the new techniques presented in this thesis, fast and numer-
ically stable algorithms for two minimal problems with radial distortion previ-
ously unsolved in �oating point arithmetic are formulated and solved:

1. The problem of estimating a one-parameter radial distortion model and
epipolar geometry from image point correspondences in two uncalibrated
views with di�erent radial distortions in each image.

2. The problem of estimating a one-parameter radial distortion model and
epipolar geometry from image point correspondences in two partially cal-
ibrated views.

These two problems were previously studied in [56] and found to be numerically
very challenging. In [56] the authors provide solutions to these problems com-
puted in exact rational arithmetic only. This results in very long computational
times and is not usable in practical applications. Here we show that these two
problems can be e�ciently solved in �oating point arithmetic.

The speed and intrinsic numerical stability as well as robustness to noise
of the proposed algorithms is demonstrated using both synthetic data and real
images.



8.2. UNCALIBRATED CASE 83

8.2 Uncalibrated Case

In this case, we study the situation with two uncalibrated cameras and two
di�erent unknown radial distortion parameters. We use the same formulation
of the problem as in [56]. This formulation assumes a one-parameter division
model [31] given by the formula

u ∼ x/(1 + λ|x|2) (8.1)

where u = (u1, u2, 1)T and x = (x2, x2, 1)T are the corresponding undistorted,
resp. distorted, image points, and |x| (with a slight abuse of notation) is the
radius of x w.r.t. the distortion center.

The minimal set of constraints needed to uniquely solve for relative motion
for uncalibrated cameras with di�erent radial distortion λ1 and λ2 is 9 point
correspondences with epipolar constraints

uTi (λ1)F u′i (λ2) = 0, i = 1, . . . , 9 (8.2)

and the singularity of the fundamental matrix F

det (F ) = 0. (8.3)

Assuming f3,3 6= 0 we can set f3,3 = 1 and obtain 10 equations in 10 unknowns.
By linear elimination, these 10 equations can be reduced to 4 equations in

4 unknowns (one of 2nd degree, two of 3rd degree and one of 5th degree). For
more details see [56] where it was shown that this problem has 24 solutions.

The numerical solver is constructed starting with the four remaining equa-
tions in the four unknowns f3,1, f3,2, λ1 and λ2. The �rst step is to expand
the number of equations, as outlined in Section 4.1.2, by multiplying them by
a handcrafted set of monomials in the four unknowns, in this case yielding 393
equations in 390 monomials. See Section 8.2.1 for details.

We now stack the coe�cients of the equations in a matrix C. Following
this, we order the monomials and correspondingly the columns of C as in (4.9).
The sets E and R depend on which variable is used to create the multiplication
matrix. For this problem f3,1 was used as multiplier variable. The classical
method is thereafter to choose the linear basis B of C[x]/I to be the 24 lowest
monomials (w.r.t some monomial order). This is enough to get a solution to
the problem, but we can use the methods of Chapter 5 to select a basis of linear
combinations of monomials from a larger set and thereby improve numerical
stability. Empirically, we have found that the linear basis can be selected from
the set of all monomials up to degree four excluding the monomial λ4

1. The setR
then consists of monomials of degree �ve that are reached when the monomials
of degree four are multiplied with f3,1. The set E contains the remaining 285
monomials.

Putting the part of C corresponding to E andR on triangular form by means
of an LU decomposition now produces Equation 4.10. We can then remove all
equations that include excessive monomials and still have enough information
to construct the multiplication matrix.

Finally, we use the QR method to select a linear basis for C[x]/I and con-
struct the matrix mf3,1 from which the solutions are extracted.
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8.2.1 Details on the Expansion Step for the Uncalibrated
Case

We have found in experiments that to compute reduction to the solving basis
as described in Chapter 4 and hence obtain the multiplication matrix mf3,1 ,
we need to generate polynomials up to total degree eight. Thus, the 2nd de-
gree polynomial has to be multiplied with all monomials up to degree six and
corresponding numbers for the 3rd and 5th degree polynomials.

Further investigations have shown that not exactly all monomials up to
degree eight are needed, so in the implementation, the 2nd degree polynomial
was only multiplied with monomials up to degree �ve and each variable was not
allowed to got to a higher degree than four. Furthermore, λ1 was not multiplied
with higher degrees than two. For the other polynomials it was possible to limit
the degree of each individual variable to one lower than the total degree.

These multiplications yield 393 equations in 390 monomials. Without the
last �ne tuning of the degrees, the number of equations and monomials will
be larger but all extra monomials will be in the set E and will make no real
di�erences to the solver except slightly longer computation times.

8.3 Calibrated Case

We now turn to the setup with two calibrated cameras and one common un-
known radial distortion parameter. To solve the corresponding minimal prob-
lem, we make use of the epipolar constraint for 6 point correspondences

uTi (λ)E u′i (λ) = 0, i = 1, . . . , 6, (8.4)

the singularity of the essential matrix E

det (E) = 0 (8.5)

and the trace condition, which says that two singular values of the essential
matrix are equal

2
(
EET

)
E − trace(EET )E = 0. (8.6)

Again assuming e3,3 6= 0, we can set e3,3 = 1 and obtain 16 equations in
9 unknowns. In analogy with the uncalibrated case, these equations can be
rewritten as 11 polynomial equations in 4 unknowns (one of 3rd degree, four of
5th degree and six of 6th degree). In [56] it was shown that this problem has 52
solutions.

The numerical solution of this problem largely follows that of the uncali-
brated version. In the �rst expansion, all equations are multiplied with mono-
mials to reach degree eight. This gives 356 equations in 378 monomials. As in
the uncalibrated case it is possible to reduce the number of monomials by �ne
tuning the degrees we need to go to, in this case yielding 320 equations in 363
monomials.

The next step is to reorder the monomials and columns as in equation (4.9).
Once again, the linear basis of C[x]/I can be constructed from the monomials of
degree four and lower. R will then consist of those monomials of degree �ve that
are reached when the degree four monomials are multiplied with the variable
e3,1, which is used as multiplier variable.
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As before, C is transformed to triangular form by LU decomposition and
after that we only consider those equations that do not include any of the mono-
mials in E . Hence C holds all necessary information to choose representatives
in C[x]/I and create the multiplication matrix with respect to multiplication by
e3,1.

8.4 Experiments

We have tested the algorithms for the uncalibrated and calibrated minimal
problems on synthetic images with various levels of noise, outliers and radial
distortions as well as on real images.

The algorithms proposed here are signi�cantly more stable than the algo-
rithms presented in [56] which ran in exact rational arithmetic only. Since doing
the computations in exact arithmetic is extremely slow (minutes instead of mil-
liseconds), such implementations are of very little practical value and we have
hence not evaluated the numerical performance of these.

Both problems are solved by �nding the roots of a system of polynomial
equations which means that we obtain several potentially correct answers, 52 in
the calibrated case and 24 in the uncalibrated case. In general we obtain more
than one real root, in which case we need to select the best one, i.e the root
which is consistent with most measurements. To do so, we treat the real roots
obtained by solving the equations for one input as real roots from di�erent inputs
and use kernel voting [59] for several inputs to select the best root among all
generated roots. The kernel voting is done using a Gaussian kernel with �xed
variance. The estimate of λ1 and λ2 in the uncalibrated case and λ in the
calibrated case is found as the position of the largest peak [59, 55].

8.4.1 Tests on Synthetic Images

For both problems treated here, the same synthetic experiments were carried
out to evaluate the quality of the solvers.

In all simulated experiments we generate synthetic data using the following
procedure:

1. Generate a 3D scene consisting of 1000 points distributed randomly within
a cube. Project M% of the points onto the image planes of the two
displaced cameras. Let each such pair of projections be stored as a match.
In both image planes, generate (100 −M)% random points distributed
uniformly in the image and let random pairs of these represent mismatches.

2. Apply di�erent radial distortions to the undistorted correspondences in
each image and in this way generate noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the distorted points.

Uncalibrated case

In the �rst two experiments we study the robustness of the algorithm for the
uncalibrated case to Gaussian noise added to the distorted points.

The �rst experiment investigates the estimation error of λ as a function of
noise. The ground truth radial distortions parameters were λ1 = −0.2, λ2 =
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Figure 8.2: Uncalibrated case: Relative errors of estimated values (Left) λ1 and
(Right) λ2 as a function of noise. Ground truth (Top) λ1 = −0.2, λ2 = −0.3
and (Bottom) λ1 = −0.01, λ2 = −0.7. Blue boxes contain values from 25% to
75% quantile.

−0.3 in the �rst case and λ1 = −0.01, λ2 = −0.7 in the second case. See
Figure 8.2. The noise varied from 0 to 2 pixels. For each noise level relative
errors for 2000 λs (estimated as closest values to the ground truth value from all
solutions) were computed. The results in Figure 8.2 for the estimated λ1 (Left)
and λ2 (Right) are presented by the Matlab function boxplot which shows values
25% to 75% quantile as a blue box with red horizontal line at median. The red
crosses show data beyond 1.5 times the interquartile range.

For noiseless data we obtain very accurate estimates of radial distortion pa-
rameters even for very di�erent λs. For larger noises the log10 relative errors are
much higher (mostly around 10−1). However obtained λs are still satisfactory
and mostly di�er from the ground truth value in the second decimal place. The
main point is however not to use a minimal point set to get a good estimate, but
to repeatedly draw minimal con�gurations from a larger set of potential matches
and then use e.g kernel voting to get a more reliable estimate. Finally, the result
can be further enhanced using the obtained estimate as a good starting guess
in a large scale bundle adjustment. The e�ect of kernel voting is studied in the
second experiment.

In this experiment we did not select the root closest to the ground truth
value for each run of the algorithm, instead we used kernel voting to select the
best λs among all generated roots from several runs. The ground truth radial
distortion parameters were as in the previous experiment (λ1 = −0.2, λ2 = −0.3
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Figure 8.3: Uncalibrated case, kernel voting: Estimated (Left) λ1 and (Right)
λ2 as a function of noise, (Top) ground truth λ1 = −0.2, λ2 = −0.3 (green
lines), 90% of inliers and 100 samples in kernel voting and (Bottom) ground
truth λ1 = −0.01, λ2 = −0.7, 100% of inliers and 50 samples in kernel voting.

in the �rst case and λ1 = −0.01, λ2 = −0.7 in the second case) and the level
of noise varied from 0 to 2 pixels. Moreover, in the �rst case there were 10% of
outliers in the image (M=90).

The testing procedure was as follows:

1. Repeat K times (We use K from 50 to 100).

(a) Randomly choose 9 point correspondences from a set of N potential
correspondences (6 point correspondences for the calibrated case).

(b) Normalize image point coordinates to [−1, 1].
(c) Find 24 (54) roots using the presented algorithm.

(d) Select the real roots in the feasible interval, i.e −1 < λ1, λ2 < 1 and
the corresponding F 's.

2. Use kernel voting to select the best root.

Figure 8.3 shows λs computed using the algorithm for the uncalibrated case
as a function of noise. In the �rst case with outliers Figure 8.3 (Top) 100 λs
were estimated using kernel voting for roots computed from 100 (K = 100)
9-tuples of correspondences randomly drawn for each noise level. In the second
case Figure 8.3 (Bottom) 200 λs were estimated using kernel voting for roots
computed from 50 (K = 50) 9-tuples of correspondences. This means that for
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Figure 8.4: Calibrated case: (Left) relative errors of λ as a function of noise,
ground truth λ = −0.3. (Right) kernel voting: Estimated λ using kernel voting
for roots computed from 200 6-tuples of correspondences randomly drawn for
each noise level. Ground truth λ = −0.3 (green line).

each noise level the algorithm ran 10,000 times in both cases. The results are
again presented by the Matlab function boxplot.

Calibrated case

The same synthetic experiments were carried out for the calibrated solver.
The results of the �rst experiment which shows relative errors of the es-

timated λ as a function of noise are shown in Figure 8.4. The ground truth
radial distortion was λ = −0.3. For noiseless data we again obtain very precise
estimates of radial distortion parameter λ. For larger noise levels the log10 rel-
ative errors are slightly larger than for the uncalibrated case. However, using
kernel voting we can still obtain good estimates. This is shown by the second
experiment.

In this experiment λ was estimated 50 times using kernel voting for roots
computed from 200 6-tuples of correspondences randomly drawn for each noise
level, Figure 8.4. The median values for λ are again very close to the ground
truth value λ = −0.3 for all noise levels from 0 to 2 pixels. However the variances
of this for the calibrated case are larger, especially for higher noise levels, than
the variances for the uncalibrated case. This means that for good estimates of
λ this algorithm requires more samples in the kernel voting procedure than in
the uncalibrated case.

8.4.2 Time Consumption

To evaluate the speed of the new algorithms, reasonably optimized versions for
both the uncalibrated and calibrated cases were implemented. The implemen-
tation was done in Matlab so rewriting the algorithm in a compiled language
such as C should reduce the execution time further.

The algorithm was run 10,000 times and the time consumption was measured
using the Matlab pro�ler. The experiments were performed on an Intel Core 2
CPU 2.13 GHz machine with 2 GB of memory. The estimated average execution
time for solving one instance of the uncalibrated problem was 16 milliseconds
and the corresponding time for the calibrated problem was 17 milliseconds.
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Figure 8.5: Real data, 60% cutouts from omnidirectional images. (Left) In-
put images with di�erent radial distortions for camera 1 (Top) and camera 2
(Bottom). (Right) Corrected images.

These results are to be compared with the execution times given for the same
problem in [56], where solutions were computed in exact rational arithmetic.
There, the processing time for one problem instance was 30s for the uncalibrated
case and 1700s for the calibrated case.

8.4.3 Tests on Real Images

The algorithm for uncalibrated cameras with di�erent radial distortions has
been tested on several di�erent sets of images. In the �rst experiment the input
images with di�erent relatively large distortions in each image, Figure 8.5 (Left),
were obtained as 60% cutouts from �sh-eye images taken with two di�erent
cameras with di�erent radial distortions. Tentative point matches were then
found by the wide base-line matching algorithm [63]. They contained correct
as well as incorrect matches. Distortion parameters λ1 and λ2 were estimated
using the algorithm for uncalibrated cameras with di�erent radial distortions
and the kernel voting method for 100 samples. The input images (Left) and
corrected images (Right) are presented in Figure 8.5. Figure 8.6 shows the
distribution of real roots for images from Figure 8.5, from which λ1 = −0.301
and λ2 = −0.368 were estimated. The peaks from kernel voting are sharp and
the λ's are estimated accurately.
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Figure 8.6: Distribution of real roots obtained by kernel voting for images in
Figure 8.5. Estimated λ1 = −0.301 and λ2 = −0.368.
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Figure 8.7: Distribution of real roots obtained by kernel voting for images in
Figure 8.1. Estimated λ1 = −0.926 and λ2 = 0.0025.

In the second experiment the algorithm was tested on images with signi�-
cantly di�erent distortions. The left image Figure 8.1 (Left), was obtained as a
66% cutout from a �sh-eye image and the right image was taken with a standard
perspective camera. Since these images had a rather large di�erence in radial
distortion, the tentative point correspondences contained a larger number of
mismatches. Distortion parameters λ1 and λ2 were again estimated using the
algorithm for uncalibrated cameras with di�erent radial distortions and the ker-
nel voting method. The input (Left) and corrected (Right) images are presented
in Figure 8.1. Figure 8.7 shows the distribution of real roots for these images
from which λ1 = −0.926 and λ2 = 0.0025 were estimated. As can be seen the
peaks obtained by kernel voting are not so sharp but still su�cient to get good
estimates of the λ's even from only 100 samples.

8.5 Discussion

In this chapter we have given fast and robust algorithms for two minimal prob-
lems previously unsolved in �oating point arithmetic. The two problems of
simultaneously solving for relative pose and radial distortion were, due to nu-
merical problems, previously solved in exact rational arithmetic only, yielding
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them too time consuming to be of practical value. With the �oating point al-
gorithm presented here we have reduced the computation time from minutes to
milliseconds. Moreover, we have veri�ed that this is done without loss of nu-
merical precision by extensive experiments both on synthetic and real images.

In the experiments we have also demonstrated that the radial distortion
estimation is reasonably robust both to outliers and noise when kernel voting is
used over several runs. Finally we have shown that large di�erences in distortion
between the two images can be handled.
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Chapter 9

Panoramic Stitching

In this chapter, we present a solution to panoramic image stitching of two images
with coinciding optical centers, but unknown focal length and radial distortion.
The algorithm is a direct application of polynomial techniques introduced in
the previous chapters and operates with a minimal set of corresponding points
(three) which means that it is well suited for use in any RANSAC style algorithm
for simultaneous estimation of geometry and outlier rejection. The proposed
algorithm has been integrated in a complete multi image stitching system and
we evaluate its performance on real images with lens distortion. We demonstrate
both quantitative and qualitative improvements compared to state of the art
methods.

9.1 Introduction

Given a sequence of images taken from a single point in space, but with varying
orientations, it is possible to map the images into a common reference frame
and create a perfectly aligned larger photograph with a wider �eld of view. This
is normally referred to as panoramic image stitching. In this chapter we extend
previous work to account for camera distortion throughout the stitching process.
This is in contrast to most previous approaches which have assumed a traditional
pin-hole camera model. Stitching images with large radial distortion is useful
in a practical context, as it allows the user to create 360 degree panoramas with
wide angle lenses (often su�ering from heavy radial distortion), using only a
few exposures. Furthermore, radial distortion occurs frequently in both cheap
consumer cameras and high-end lenses depending on the type of lens etc.

In essence, a typical stitching pipeline consists of the following three parts

1. Image matching: Point matches across images are established and an ini-
tial estimate of the image geometry is computed. A RANSAC type algo-
rithm is a popular choice here [30].

2. Bundle adjustment: The estimate of inner and outer calibration parame-
ters is re�ned using non-linear optimization.

3. Rendering: The estimated camera parameters are used to project the
images into a common reference frame.

93
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Figure 9.1: Top: Two images with heavy radial distortion taken with a common
focal point. Bottom: The same two images after recti�cation and alignment
using the stitching pipeline presented here.

Here, we mainly deal with Step 1. At the core of the RANSAC loop is
an algorithm which solves for calibration and geometry given a small set of
corresponding points. As discussed in previous chapters, ideally one would like
a solver which operates with the minimum possible number of correspondences.
For instance, consider two images taken with a pin-hole camera calibrated up to
focal length. We then need to estimate rotation (3 dof) and focal length (1 dof).
Each point match yields two constraints, which means that the minimal solver
should use two points. This problem was solved by Brown et al in [8]. The
rationale for using a minimal point set is that a smaller number of points yields
a smaller probability of selecting a set contaminated by outliers. Furthermore,
since we are solving directly for the parameters of interest, there is no need for an
error-prone autocalibration process to extract the underlying camera parameters
needed for multi-view non-linear techniques (i.e. bundle adjustment) to proceed.

9.1.1 Relation to Previous Work

The problem of image stitching is relatively well studied and a good overview
of the literature and techniques can be found in the tutorial by Szeliski [81]. A
complete stitching system representative of the state of the art in this area was
presented by Brown and Lowe in [9].

A direct inspiration for this work is the two-point algorithm for estimating
rotation and focal length by Brown et al [8]. This algorithm does however not
handle any distortion and we show that for non-standard lenses, this might be
insu�cient.

A related algorithm which does account for radial distortion due to Fitzgib-
bon [31] estimates homography and radial distortion using �ve correspondences.
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Two disadvantages of this approach is that (i) a homography is usually too gen-
eral since in most cases one can assume square pixels and zero skew etc and
(ii) the algorithm is not minimal. Our algorithm operates with three correspon-
dences making it easier to �nd outlier-free sets.

Most closely related to our approach is the work by Jin [46]. Jin formulates
the same problem as we do. However, Jin notes that solvers of polynomial equa-
tions are often numerically unstable and therefore abandons a direct solution
approach. Instead he resorts to an iterative optimization based scheme. This
is problematic since (i) convergence to a solution cannot be guaranteed (local
minima) and (ii) even if a solution is found, this will only be one of the possi-
ble solutions and one cannot be sure to have found the right one. The actual
problem has 18 (possibly complex) solutions and the only way to resolve this am-
biguity is to test with additional points. Indeed, Jin reports poor performance
of his algorithm for moderate to heavy distortions.

In this work we make use of the new polynomial techniques presented in this
thesis to provide a numerically stable true solver for the polynomial system,
which is guaranteed to �nd all solutions.

9.2 Models for Panoramic Stitching

We consider a setup with two cameras P1 and P2 with a common focal point.
We �x a coordinate system where the common focal point coincides with the
origin and such that the �rst 3x3 part of the matrix P1 is the identity. Moreover,
we have a set of world points {Xj} and corresponding image projections {u1j}
and {u2j}. In most cases it is bene�cial for stability to assume some partial
calibration. A common choice is to assign square pixels, zero skew and centered
principal point [40]. With this assumption we obtain the following relations

λ1ju1j = KXj , λ2ju2j = KRXj , (9.1)

where K =
[ f

f
1

]
, R is a rotation matrix and the λs are the depths. By

normalizing to remove the dependence on λij and solving for Xj we can write
down the constraints

〈K−1u1j ,K
−1u1k〉2

|K−1u1j |2|K−1u1k|2 = 〈Xj ,Xk〉2
|Xj |2|Xk|2 = 〈K−1u2j ,K

−1u2k〉2
|K−1u2j |2|K−1u2k|2 , (9.2)

where R has vanished from the right hand side since the scalar products and
norms are invariant to rotations. The expression is squared to remove the square
roots from the vector norms in the denominators. In the above equation f only
occurs in even powers and hence we set p = f2. Moreover we multiply through
with p2 to remove any 1/p2 terms. Finally we multiply up the denominators.
At a �rst glance, this seems to yield a 4th degree polynomial in p but the 4th
degree terms cancel out leaving a 3rd degree polynomial in p. We next show
how to modify this expression to include radial distortion.

9.2.1 A Three Point Minimal Solution for Distortion and
Focal Length

Let x denote measured image coordinates a�ected by radial distortion and let
u denote the corresponding pin-hole coordinates. As before, we model radial



96 CHAPTER 9. PANORAMIC STITCHING

distortion using Fitzgibbon's division model

|x| = (1 + λ|x|2)|u|, (9.3)

where | · | is the vector length and λ is the radial distortion coe�cient. This
means that in homogeneous coordinates we can write

u ∼ x+ λz, (9.4)

where z = [ 0 0 x2
1 + x2

2 ]T .
We now simply insert (9.4) into (9.2) and obtain a polynomial of degree 3 in

p and degree 6 in λ (the 8th and 7th degree terms in λ cancel out). One more
unknown means that we need more constraints. With an additional point we
can form three independent constraints of type (9.2). This situation is actually
a little unsatisfactory since we cannot make use of all available information.
Using all three constraints would yield an overdetermined system and hence
there would be no solution in general. One possibility would be to introduce an
extra unknown, but we found no natural way to do this and instead settled for
selecting two of the three constraints to get a system of two equations in two
unknowns. The experiments con�rm that this strategy works well. We used the
computer algebra software Macaulay2 [36] to check solvability and number of
solutions for the system which is 18 in this case.

9.2.2 Alternative Minimal Setups for Distortion and Focal
Length

In addition to the setup mentioned above, there are three other related possible
formulations of the problem. As mentioned, three points yield six constraints so
we could actually solve for rotation, focal length, distortion and one additional
parameter. Two possible choices here could be either to let the focal length
vary between the images or to let the distortion vary. This can be done using
the exact same equations as above, but inserting one more unknown. We have
checked these two formulations using Macaulay2 and found that the �xed fo-
cal length, varying distortion case has 96 solutions and that the varying focal
length, �xed distortion case has 62 solutions. Both of these formulations seem
a bit arti�cial though, since it is generally impossible to change the focal length
without a�ecting the distortion and vice versa.

Perhaps a bit more interesting is the case where we have two di�erent fo-
cal lengths f1, f2 and two di�erent distortions λ1, λ2. This problem could in
principle be solved using four correspondences with the same formulation as for
the three-point algorithm. Using Macaulay2 we have found that this case has
52 solutions. Apart from the fact that more parameters makes the formulation
inherently less stable and hence more sensitive to noise, this setup still looks
potentially interesting. However, the larger number of solutions and higher com-
plexity of the equations in general seem to make this problem signi�cantly more
di�cult to handle numerically. We managed to write a solver for this case, but
in the process had to use an expanded coe�cient matrix (see the next section)
of about 1000 × 2000 elements. This makes the solver too slow (seconds per
iteration compared to milliseconds for the three point solver) to be of practical
value. Hence we have not performed any further experiments with the four
point case.
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9.3 A Numerical Solution using Gröbner Basis

Techniques

In the current application, we are faced with a system of two equations in two
unknowns (f, λ) occurring up to degrees 3 and 6 respectively and 18 solutions.
To handle this system we start o� with the basic method described in Chapter 5.
We order the monomials in grevlex order and multiply the two equations with
all possible monomials up to degree 8, yielding a 90× 132 coe�cient matrix C.

However, with the straightforward method of [76] we were not able to solve
the problem and we had to employ the redundant solving basis method. As
described in Chapter 4, with this method one �pretends� to have a system with
more solutions which is easier to solve. This produces all the right solutions
along with a set of false solutions which have to be �ltered out by evaluation in
the original equations. By using this technique and setting the solution set to
25 zeros (18 for the true system), we were able to get a stable solution.

An interesting comparison would be to run the automatic solver generator by
Kukelova et al [53]. This solver does not include any of the stabilizing methods
mentioned above and might therefore fail, but this is yet to be investigated.

The algorithm has been implemented in MATLAB, which is not ideal for
speed. However, the running time is dominated by an LU factorization and an
eigenvalue decomposition which are fast in MATLAB so our implementation
should not be too far behind a fully native implementation. The running time
is about 13 milliseconds/instance on a standard 2 Ghz machine. The code is
available for download at http://www.maths.lth.se/vision/downloads.

9.4 System Overview

The image stitching system implemented for this study follows the typical pat-
tern of modern geometric computer vision systems. We start o� by �nding
matching points pair wise across images using the SIFT descriptor/detector [61]
together with RANSAC for outlier rejection [30]. Thereafter we perform �rst a
pair-wise and subsequently a global bundle adjustment step to get an accurate
estimate of geometry and calibration parameters [40]. Finally we render the
images onto an enclosing cylinder which can be cut and unfolded to the �nal
panoramic image.

9.5 Experiments

In this section, we study the basic properties of the new algorithm on synthetic
data and also assess its performance as part of a complete stitching system.
For this purpose we have collected two data sets using a lens with signi�cant
non-linear distortion. The data sets referred to as City and University consist
of 9 and 10 photographs respectively and both cover 360 degrees. In addition, a
reference set called Canal consisting of 8 images was shot with a low distortion
lens. The �nal result after matching, bundle adjustment and basic blending
is shown in Figure 9.6. In all cases with image data we normalized the pixel
coordinates to make the width of the image fall in the interval [−1, 1]. This
makes values for λ independent of image resolution.
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Figure 9.2: Error versus noise on synthetic data for the new three point algo-
rithm and the �ve point algorithm for distortion and homography. Despite being
over determined, the �ve point algorithm shows a slightly larger sensitivity to
noise, probably due to the fact that the underlying model has more degrees of
freedom.

9.5.1 Robustness to Noise

We �rst did a basic sanity check of our new algorithm on synthetic data to study
its behavior under noise compared to Fitzgibbon's �ve-point algorithm for ho-
mography and distortion. Since Fitzgibbon's algorithm estimates more degrees
of freedom than needed to express a transformation with focal length, rotation
and distortion, we expect to see some more sensitivity to noise than with our
exact solver. For this experiment we randomly generated two views separated
by a random rotation and drew three and �ve world points respectively from
a normal distribution. The points were projected into the two views to form
image point correspondences and a distortion of λ = −0.5 was applied. Finally
varying degrees of noise (equivalent to the interval 0 to 4 pixels in an 800 pixels
wide image) was added to the projected coordinates and the distortion param-
eter was estimated using each algorithm. This experiment was repeated 10000
times for each noise level and median errors were calculated. The median error
was chosen since both algorithms (and in particular the �ve point algorithm)
occasionally produce gross errors for unfortunate point con�gurations. This
makes the average errors uninformative. The results are shown in Figure 9.2.
As expected, both algorithms work well at low noise levels, but the �ve-point
algorithm is slightly less robust at high noise levels.

9.5.2 Relation to Jin's Work

Since the work of Jin [46] is most closely related to the work presented here, a
direct comparison would have been ideal, but we have not been able to obtain an
implementation of Jin's method which is a little unsatisfactory. However, this
should not be too serious, since under the assumption that Jin's method �nds
the right solution, the results should be virtually identical to ours. The problem
is that Jin's method is not guaranteed to produce the desired solution. Figure
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1 in [46] shows statistics of how often Jin's algorithm �nds the correct solution.
For distortions below −0.2 this rate is down to below 40%. In comparison, our
solver is guaranteed to �nd the right solution for all distortions with no serious
sacri�ce in speed.

9.5.3 Performance in RANSAC

The main motivation for the three point algorithm presented in this here is that
it can be used to improve the RANSAC part in a stitching pipeline. With a re-
�ned inner step for geometry estimation, we hope to recover a larger proportion
of inliers, at a higher rate and to a higher precision. In the next experiment we
study the rate at which inliers are discovered as the RANSAC loop progresses.
In addition to the �ve point algorithm, we now also compare our algorithm to
the two-point algorithm of Brown et al [8], which solves for focal length but
not distortion. Brown et al show in [8] that their algorithm is superior to the
standard four point DLT algorithm for estimating a homography and hence we
omit a comparison with the DLT. We �xed the threshold for outlier rejection
to 3 pixels and ran each algorithm in turn for 400 RANSAC iterations, keep-
ing track of the largest inlier set found so far. We repeated this 100 times on
noisy point matches from the City data set and computed averages. To study
the in�uence of varying degrees of outlier contamination we also repeated the
whole process for cases with 10%, 25% and 50% outliers. The results of this
experiment are shown in Figure 9.3. As can be seen, the two-point algorithm
is not competitive on this sequence and recovers half as many or fewer inliers
compared to our algorithm in all cases. The behavior of the �ve-point algorithm
is more interesting. For the case with very few inliers its performance in terms
of inliers is virtually as good as for the minimal algorithm. This is because the
quality of the inlier point matches is quite high in terms of pixel accuracy, which
means that as long as we �nd a set of good quality inliers we are well served
by either algorithm. For the case with 25% outlier rate we already observe a
signi�cant di�erence and for outlier rates of 50% and more our algorithm is
clearly superior. The running time for the �ve point algorithm is slightly lower
at around 10 milliseconds/instance in our implementation compared to 13 mil-
liseconds for the three point algorithm. With a moderate degree of outliers in
the process, this speed gain is easily eaten up by the extra RANSAC iterations
required.

Although the two-point algorithm recovers less inliers than e.g the three
point algorithm, it still �nds a substantial number of correct matches. How-
ever, the problem is that these matches are exactly the matches which agree
with the assumption of zero distortion. In Figure 9.4 one can see the quali-
tative di�erence between correspondences produced by the three point method
(with distortion) and the two-point method (no distortion). Whereas the three
point solver produces matches well spread out over the images, the two-point
solver recovers points grouped together near the centers of the images where
the projection is reasonably well approximated by a pin-hole camera. This is
problematic for two reasons, (i) the initial estimate of camera parameters will
be poor and (ii) points located closely together make for poor conditioning of
the bundle adjustment step.

It should be mentioned that there are other possible ways around this prob-
lem. One could e.g set an arti�cially high threshold of outlier rejection hoping
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Figure 9.3: Number of inliers found as a function of the number of RANSAC
iterations for di�erent percentages of outliers. From top to bottom, the algo-
rithms have been run on examples with 10%, 25% and 50% outliers taken from
the City data set. In all cases the RANSAC algorithm was run 100 times and
mean values were calculated. As can be seen, for moderate to large numbers
of outliers, the minimal solver is superior to the overdetermined solver for ho-
mography and distortion. In neither case is the two-point solver for focal length
competitive. This is expected since the two-point solver assumes zero distortion.
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Figure 9.4: Point matches generated using the 2-point algorithm (top), versus
our new 3-point algorithm including radial distortion (bottom). Note that the
2-point algorithm is only able to �nd matches in the central, undistorted portion
of the images whereas the 3-point algorithm �nds matches all the way to the
image edge. This allows for a much more robust image alignment procedure in
the presence of radial distortion.



102 CHAPTER 9. PANORAMIC STITCHING

Figure 9.5: Top row: Close-ups on two mistakes made by Autostitch on the
sequence City. Bottom row: Results obtained using the system presented here.

to recover more inliers, but at the same time increasing the risk of accepting
a false match as an inlier. One could also look for inliers in multiple passes
by alternating bundle adjustment and inlier selection, but this process is more
costly and prone to ending up in local minima. For comparison we ran the Au-
tostitch software by Brown and Lowe [9] on the City, and University data sets.
Despite not explicitly accounting for radial distortion, Autostitch was actually
able to stitch together both sequences. However the �nal result contains visible
artifacts which using the system presented in this thesis we were able to avoid.
Close-ups of two examples are shown in Figure 9.5.

9.6 Conclusions

We have presented a solution to the problem of estimating rotation, focal length
and radial distortion from two images of the same scene undergoing pure ro-
tation using the minimal setup with three point correspondences. The main
contribution is that compared to a previous method for this problem, we are
able to guarantee that the correct solution is found for all cases. Moreover, we
have shown that including radial distortion at the RANSAC stage is bene�cial
compared to distortion free approaches in terms of number of inliers found and
overall precision. An advantage of our algorithm is the ability to recover inliers
evenly over the whole image where an algorithm which does not model distortion
will only keep point matches close to the centers of the images. Having point
matches in the center as well as close to the edges improves recognition perfor-
mance as well as stability in the subsequent bundle adjustment stage. Compared
to a non-minimal algorithm, we in particular do much better at higher outlier
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(a) City

(b) University

(c) Canal

Figure 9.6: 360 degree panoramic stitching of the sequences City, University
and Canal using the system described in this chapter. The �rst two sequences
were shot using a �sh-eye lens while the last sequence was shot with a normal
lens. The stitching pipeline includes the following steps: A RANSAC stage
where good point matches are established and an initial guess for geometry and
calibration is estimated, a pair wise bundle adjustment step to polish the initial
estimate, a global bundle adjustment step to further re�ne internal and external
calibration parameters and �nally a rendering step with basic blending.
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rates since a smaller correspondence set yields a smaller risk of hitting an outlier
or a poor quality match.

Finally, we have investigated the practical value of the algorithm on real-
istic data sets and demonstrated qualitative improvements in the end result
compared to a recently published stitching system.



Chapter 10

Pose Estimation

In this application chapter we study the problem of pose estimation, while tak-
ing radial distortion and a potentially large number of outliers into account. We
give an algorithm that solves for radial distortion, focal length and camera pose
using a minimal set of four point correspondences between 3D world points and
image points. We use a RANSAC loop to �nd a set of inliers and an initial esti-
mate for bundle adjustment. As in the preceding chapters, the main advantage
compared to previous methods is that the presented minimal solver allows us to
handle large radial distortions already at the RANSAC stage. We demonstrate
that with the inclusion of radial distortion in an early stage of the process, a
broader variety of cameras can be handled than was previously possible. In
the experiments, no calibration has been applied to the cameras. Instead we
assume square pixels, zero skew and centered principal point and then proceed
to estimate only position, orientation, focal length and radial distortion. Al-
though the assumptions are not strictly true, we show that good results are still
obtained and thus conclude that in practice, the proposed method is applicable
to uncalibrated photographs.

10.1 Introduction

The ability to �nd the position and the direction in which a camera points based
on image information is a classic problem in computer vision. The typical way
to solve the problem is to �nd correspondences between an image taken with a
camera with unknown position and a three dimensional model. This method has
for example been used in Photo tourism [74]. In this paper we choose to follow
the same outline of the algorithm but add one extra component to the model,
radial distortion. The enhancement with radial distortion makes it possible to
use photos taken with �sheye lenses and other heavily distorted images. See
Figure 10.1 for an example.

The oldest papers on localization are from the time before the research �eld
of computer vision existed. Already in 1841 Grunert [37] showed that there
can be up to four real solutions to the problem of pose estimation if inner
calibration of the camera is known and there are three correspondences between
image points and known three dimensional points. For an easier description of
the problem and how to solve it, [38] is recommended.

105
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Figure 10.1: Left: An image taken with a �sheye lens. Right: The same image
recti�ed when kernel voting is used to determine the radial distortion

If the inner (linear) calibration is unknown one needs six correspondences
between the image and the 3D model. In that case a linear method to �nd
the camera position exists [40]. This method usually gives poor results since
digital cameras have square pixels and the principal point close to the center of
the image. By not imposing these assumptions on the camera model, too many
degrees of freedom are used which makes the model unnecessarily sensitive to
noise. These assumptions can however be incorporated and the problem is
then to �nd the pose along with an unknown focal length. In 1995 Abidi and
Chandra [1] presented a solution to this problem that worked on planar scenes.
Four years later Triggs [85] gave a solution to the same problem that worked
well on non-planar scenes. In the same paper he also presented a solution to
the same problem but without any assumptions on the principal point of the
camera. In 2008 the latest paper [10] on this problem was presented. In this
paper Bujnak et al presents a solution that works on both planar and non-planar
data. In that solution Gröbner basis methods were used to solve the system of
polynomial equations that arises in their solution. Gröbner bases were also
mentioned in the paper by Triggs and to the authors knowledge this is the �rst
paper in the computer vision community that uses Gröbner basis methods to
solve a system of polynomial equations. This is also the method that will be
used in this paper to solve the systems of polynomial equations arising in the
problem.

The problem of pose estimation with unknown focal length is not a true
minimal case with four points, hence no exact solution can be found. In [10] the
fact that the problem is over constrained is resolved by ignoring one equation in
an early step of the solver and then using the last equation to verify which of the
multiple solutions to use. An alternative method to �nd the focal length is the
(2,2) solver in Chapter 7. There a correspondence to another image replaced
one of the correspondences to a three dimensional point. That method can also
be used for the four points problem if one of the points is substituted by an
arbitrary line through that point. In this work we include radial distortion into
the model. This adds one degree of freedom and hence the four points problem
becomes minimal.

Our contribution here is to incorporate radial distortion already in the
RANSAC step in the problem of absolute pose estimation.
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10.2 The Camera Model

As in the previous chapters, we employ the standard pinhole camera model [40]
with the projection equation

µu = PX, (10.1)

Where, P is the camera matrix and µ is the depth (we have used µ for the depth
here since λ will be used for the distortion parameter). The camera matrix is
now factorized as,

P = K[R | t], (10.2)

where R is a rotation matrix and holds the information in which direction the
camera is pointing and t gives information of camera position. K is the cali-
bration matrix of the camera. Given our basic assumptions the matrix has the
form:

K =

f 0 0
0 f 0
0 0 1

 , (10.3)

where f represents the focal length of the camera.
As in the previous chapters, the pinhole camera model is extended with

radial distortion suggested by Fitzgibbon [31]. Let x denote the image coordi-
nates a�ected by distortion and let u be the undistorted coordinates. Then in
homogeneous coordinates we have u ∼ x + λz, where z = [0 0 x2

1 + x2
2]T and

λ is the distortion parameter. To get a consistent radial distortion independent
of image size all image coordinates are initially scaled with a factor of

scale =
2

max(width, height)− 1
, (10.4)

which maps all image coordinates to be between minus one and one.

10.3 Pose with Radial Distortion

The setup with unknown radial distortion, focal lengths and pose has eight
degrees of freedom; one distortion parameter, the focal length, three translation
parameters and three rotation angles. To simplify the calculations we write the
calibration matrix as

K =

1 0 0
0 1 0
0 0 1/f

 (10.5)

and substitute 1/f by w. This can be done since the camera matrix is only
given up to scale.

The rotation is parameterized with quaternions. This gives the following
rotation matrix,

R=

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2

. (10.6)

Finally, the translation is parameterized by a vector t =
[
x y z

]T
. Using this

model, the projection equation becomes

µ(x + λz) = PX. (10.7)
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At this stage the number of unknowns is nine. But since the camera matrix
is only de�ned up to scale, the number of unknowns can be reduced by one
by setting the quaternion parameter a to one. This will result in the rotation
matrix also including a scale factor and that the scale of the camera matrix will
be �xed. Setting a = 1 could potentially yield a poorly conditioned problem for
setups where a is close to zero compared to the other rotation parameters. We
have however not noted any such problems in the experiments, but this issue
could possibly be studied further.

The number of unknowns is now down to eight. Every correspondence be-
tween an image point and a world point will give rise to three equations and
one additional unknown. Hence four correspondences are necessary to solve the
problem. This is a true minimal case were all equations are necessary and in
the next two sections we go into detail on how to solve this problem.

10.4 Solving the Minimal Setup

To solve the system generated by (10.7) the equations are �rst simpli�ed using
the freedom in choice of coordinate system. In three dimensional space any sim-
ilarity transform can be applied without a�ecting the solutions of the equations.
This freedom is used to put the �rst 3D point at the origin and the second at[
1 0 0

]
. In the image space, only rotation and scaling is allowed (not trans-

lation) since the focal length is unknown. Hence, the �rst point is moved to[
1 0

]
. To summarize, the following will hold for every problem setup,

X1 =


0
0
0
1

 , X2 =


1
0
0
1

 , x1 =

1
0
1

 . (10.8)

This choice of coordinate system leads to several simpli�cations. Firstly,
we can express the translation coordinate x in measured image points and the
quaternion parameters as follows,

x = g1(a, b, c, d) =
x̂21

x̂22
(2ad+ 2bc)− (a2 + b2 − c2 − d2). (10.9)

Here, x̂22 and ux̂22 are the coordinates of the second image point. Secondly, y
can be set to zero. Finally, the product between the inverted focal length and z
can be expressed in the quaternion parameters and the distortion parameter as

zw = x(1 + λ), (10.10)

where x is given by Equation (10.9).
The next step is to include the last two point correspondences and the last

information from the second point x2. This is done by eliminating µ in equa-
tion (10.7). The elimination is done by multiplying PX with the following
matrix from the left,

B =

 0 −x3 x2

−x3 0 x1

−x2 x1 0

 , (10.11)
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where x3 = 1 + λ(x2
1 + x2

2). This is a rank 2 matrix so not all rows need to be
used from the equation BPX = 0. For the second image point only the second
row of B is used and for the other two the �rst and the last row are used. This
results in �ve equations in the �ve unknowns b, c, d, w and λ.

10.5 Gröbner Basis Solver

To solve the system of polynomial equations constructed above, Gröbner basis
methods are used.

As previously discussed, the �rst step in constructing a Gröbner basis solver
is to �nd out the number of solutions of the system. This can be done once
and will hold for all geometrical setups of the same minimal problem. For this
case, the computer algebra software Macaulay 2 [36] reports 24 solutions with
the given formulation. However, the focal length occurs only in even powers so
we will never obtain more than 12 geometrically plausible solutions.

The second step is to expand the initial set of equations. This is done
by multiplying the initial equations with a set of monomials. This results in
more linearly independent equations with the same solution set and by that it
is possible to construct the Gröbner basis. In the problem at hand, the two
original equations of lowest degree resulting from multiplication with the last
row of B in equation (10.11), are multiplied with λ and w. After that all the
nine equations, at this stage, are multiplied with all monomials up to degree
four in the unknowns. The result of this expansion is 1134 equations and 720
di�erent monomials. We write this as,

CexpXexp = 0, (10.12)

where Cexp is a 1134 × 720 matrix holding all coe�cients and Xexp is a 720
elements long column vector with all occurring monomials.

Here, we apply the QR method (with column pivoting and adaptive trunca-
tion) described in Chapter 5 . A truncation threshold of 10−8 was used.

To construct the multiplication matrix, the permissible monomials and the
multiplier variable need to be given. In this application we choose all monomials
up to degree three to be in the permissible set and b to be the multiplier variable.
The number of permissible monomials with the given choice is 56.

Matlab code for the solver used in this paper is available online at
http://www.maths.lth.se/vision/downloads.

10.6 Experiments on Synthetic Data

In this section we study some basic properties of the presented algorithm on
synthetic data. We start o� with a straightforward test on noise free data to
check stability and the distribution of plausible solutions. In this experiment,
random scenes were generated by drawing four points uniformly from a cube
with side length 1000 centered at the origin. A camera was then placed at a
distance of 1000 from the origin pointing approximately at the center. The
camera was calibrated except for the focal length that was set to around 1000.
Radial distortion was then added to the projected points where the distortion
parameter was uniformly drawn from the interval [−0.5, 0]. Our new minimal
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Figure 10.2: Left: Histogram of errors over 10000 runs on noise free data. Right:
Histogram over the number of solutions with real positive focal lengths found
on the same data.

solver was run on 10000 such instances. Figure 10.2 displays the results of this
experiment. The numerical error stays low for most cases. A small number of
examples show larger errors, but these do not pose any serious problem since
the intended application is RANSAC where lots of instances are solved and
only the best one is kept. As previously mentioned, the largest possible number
of plausible solutions (real positive focal length) is 12. However, the largest
observed number of plausible solutions for the 10000 random instances was 10
and in all but a few exceptions we got 6 solutions or fewer.

To verify that the solver does give accurate results and not just adapts to
noise we made an experiment where we measured the relative error in focal
length as a function of noise. The setup was the same as in the previous experi-
ment and the standard deviation of the noise was varied between (the equivalent
of) zero and three pixels on a 1000×1000 pixel image. For each noise level, 1000
problem instances were tested. The results are given in Table 10.1 and show
that our method is robust to noise. Even with as large errors as three pixels,
the median error in focal length is less than seven percent.

Noise Median 75th percentile
0.0 1.5 · 10−11 5.1 · 10−10

0.5 1.4 · 10−2 4.1 · 10−2

1.0 2.3 · 10−2 6.8 · 10−2

2.0 5.2 · 10−2 1.5 · 10−1

3.0 6.7 · 10−2 1.5 · 10−1

Table 10.1: The relative error of the focal length for di�erent levels of noise.
The noise is given in pixels.

The time consumption of the solver was also measured. On an Intel Core 2
machine with clock rate of 2.13 GHz the average time for a call over 1000 tests
was 60 ms in our Matlab implementation.

The next synthetic experiment was designed to investigate how important it
is to include radial distortion in the minimal solver. To do that, a setup with 80
inliers and 120 outliers was constructed. Radial distortion was then added to
all image points. Three di�erent levels of radial distortion were used, 0, −0.07
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and −0.2. Zero distortion was included to test our algorithm compared to a
method that assumes no radial distortion. A distortion of −0.07 was used since
the normal lens later used in the real experiments has roughly this distortion.
This lens is shipped with a consumer level SLR camera. The last value, −0.2,
corresponds to the distortion of the �sheye lens used later in the experiments.
Noise corresponding to one pixel in a 1000×1000 image was added to each image
point. We ran RANSAC on this data and the number of inliers was counted.
In the RANSAC loop a point was considered to be an inlier if the reprojection
error was less than 0.01 times the mean value of all coordinates of all points
given that the origin is in the center of the image. One hundred individual
scenes were used for each distortion level. All distortion levels were tested both
on the proposed method and on the method of Bujnak et al [10]. The algorithm
of Bujnak et al solves for pose and focal length using four points. The results of
this experiment are shown in Figure 10.3 with increasing radial distortion from
top to the bottom. Our method is plotted with a solid blue line and Bujnak's
in dashed red. The results show as expected that for zero radial distortion it
is slightly better not to estimate it. The two other plots show that the use of
radial distortion estimation gives a large boost in performance for cases where
non-negligible distortion is present. Note especially the large di�erence even
with the small distortion of a standard SLR camera lens.

10.7 Experiments on Real Data

The real world experiments were done in a leave one out manner: We �rst
created a model of a scene using the Photo tourism system �bundler� [74]. To
build the model, 93 images from a shopping street were used covering around
one hundred meters. An example of one of those images is shown to the right
in Figure 10.4. In all these images a regular lens was used. For 29 of these
images a second image was taken from the exact same position (a tripod was
used to �xate the position) with a �sheye lens. See Figure 10.4 (left) for an
example. Then one image at a time (of those images with a corresponding
�sheye image) were removed from the model. The pose of the removed image
was estimated using the proposed method both for the �sheye image and the
regular image. The positions were then compared with the positions estimated
by Photo tourism. Note that Photo tourism does not give an exact solution
and the authors do not know the precision, but it will still be used as ground
truth in this work. The results of this experiment were also compared with the
method by Bujnak et al .

The pose estimation procedure is carried out in the typical manner. First
SIFT features are computed from the image for which the pose should be esti-
mated. Thereafter potential correspondences between the image and the model
are established using a nearest neighbor lookup. A point is considered a corre-
spondence if the distance to the closest point times 0.9 is not smaller than the
distance to the second closest point. Finally, a RANSAC stage removes false
correspondences and local optimization is performed.

The �rst evaluation on real data is an inliers versus RANSAC iterations
comparison. The threshold for a point to be considered an inlier is the same
as in the corresponding synthetic experiment. In Figure 10.5 the result of this
study is shown. To the left is the result using the �sheye lens and to the right
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is the result for the regular lens. The graphs show an average over one hundred
trials for the images in Figure 10.4. It is obvious that the use of radial distortion
boosts the performance signi�cantly. In some of the tests the method without
distortion almost fails to get more inliers than the minimal set. This shows that
the use of radial distortion already in the RANSAC step is an important way
to increase the performance of the pose estimation. The result con�rms what
we found in the synthetic experiments.

We next evaluate the proposed method compared to the Photo tourism re-
construction. To do this, the inliers, position, focal length and radial distortion
given by the RANSAC step are used for local optimization. The optimization
is done for all the unknown parameters. The result is compared with the result
when Bujnak's method is used. For that method the same local optimization
is performed with the radial distortion initiated with λ = 0. The scale of the
model in this experiment is adjusted so that the errors roughly correspond to
meters in camera position. Each of the 29 camera positions used in the experi-
ment is estimated one hundred times so the pose estimation has been performed
2900 times. In Figure 10.6 the result of this experiment is shown. To the left
is the result when the �sheye lens is used and to the right is the result for the
regular lens.

The precision of Photo tourism that is used for the error measurements is
unknown to the authors. Due to that, the result for the smallest errors are
hard to interpret. We estimate that on this data set, Photo tourism achieves
roughly an accuracy of one to a couple of meters. Thus error measurements
below that are not reliable. Nevertheless, one can see clearly that our new
minimal algorithm gives much more accurate results compared to the previous
method which does not take distortion into account in the RANSAC process.

The results for �sheye lenses was also compared with the result when the
regular lens was used. In Figure 10.7 the outcome of that comparison is shown.
In the �gure, the blue solid line shows the result with the �sheye lens and the
red dashed line shows the result with the regular lens. The plot shows that the
amount of radial distortion gives almost no impact on the result.

The last experiment is a kernel voting experiment where the distorted image
in Figure 10.1 (left) was used. The image was localized 500 times with the
minimal solver and the results of the estimations of the radial distortion were
used in a kernel voting scheme to �nd the radial distortion. The results of the
kernel voting is shown in Figure 10.8. The peak of the curve is at λ = −0.20 and
that value was used to remove the distortion from the original �sheye image.
The undistorted image is shown in Figure 10.1 (right). Notice how the curved
lines in the original image have been straightened in the undistorted image.
This shows that the estimated radial distortion is reasonably accurate.

10.8 Conclusions

In this chapter a method to estimate the position, rotation, focal length and
radial distortion from a minimal set of correspondences to a 3D model has been
presented. The parameterization used in this paper gives a system of polynomial
equations which we have solved with Gröbner basis methods. This gives a fast
and numerical stable method that can be used in a RANSAC loop.

Previous methods have not taken radial distortion into account during the
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RANSAC process and in this paper it is shown that the bene�ts of using radial
distortion in the core of the RANSAC loop are signi�cant. This is shown both
on synthetic and real data. The large improvements with the �sheye lens come
as no surprise due to the heavy radial distortion in that case. More surprising
are the large improvements for a regular lens of the SLR camera. The reason
for this improvement is probably that there is some radial distortion even in
those kinds of lenses and evidently, that distortion can have a large impact on
the estimated position.
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Figure 10.3: Number of inliers given the number of RANSAC iterations for an
example with 80 inliers and 120 outliers. Noise was set to correspond to one
pixel in a 1000× 1000 pixels image. The distortion parameter, λ, was �xed to,
from top to bottom, 0, −0.07, −0.2 and one hundred examples were evaluated
for each level of distortion. The blue solid line is the method of this paper and
the dashed red line is the method proposed by Bujnak et al .
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Figure 10.4: Test images used for the experiment whose results are shown in
Figure 10.5. The images were taken at the exact same position.
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Figure 10.5: Number of inliers versus the number of RANSAC iterations. To
the left, a �sheye lens was used and to the right a regular lens was used. The
blue solid line is for the method proposed in this paper and the dashed red line
is for the method which does not include distortion.
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Figure 10.6: The percentage of images with an estimated position further away
then a given distance to the position given by Photo tourism. The error is
roughly given in meters. Notice the logarithmic scale. The blue solid line is for
the proposed method and the red dashed represents method without distortion.
The left plot is for the �sheye lens and the right is for a regular lens.
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Figure 10.7: Percentage of images estimated with an error (in meters) lower
than a varying threshold. The blue solid line represents the distorted images
and the red dashed line shows the result for images taken with a regular lens.
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Figure 10.8: Result after kernel voting for radial distortion. The standard
deviation of the Gaussian kernel was �xed to 1/3 and the peak of the curve is
at λ = −0.20.
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Chapter 11

Background and Related

Work

Bundle adjustment refers to the accurate re�nement of camera and 3D structure
parameters based on minimization of the reprojection errors. Typically bundle
adjustment is applied once a rough initial reconstruction has been found. Such
initial estimates may be obtained in a number of di�erent ways including the use
of minimal solvers in a RANSAC framework, incremental resection-intersection
approaches, linear estimation of fundamental or trifocal tensors etc or using
factorization techniques. However, bundle adjustment is much more than only
a �nal polishing step. As noted in among other [26, 86], bundle adjustment
is critical in any incremental or online structure from motion system to pre-
vent build-up of errors and will often make the di�erence between success and
complete failure in the reconstruction process.

In this chapter we cover basic aspects of bundle adjustment and provide
some motivation for the original research presented in the following chapters.

11.1 Introduction

It is nowadays safe to say that bundle adjustment is a critical component of any
image based 3D reconstruction system. This includes both large scale o� line
batch systems and e.g real time SLAM 1 systems.

In bundle adjustment, the reconstruction task is cast as a non-linear opti-
mization problem. The 3D structure and camera parameters are simultaneously
re�ned by adjusting them to minimize the discrepancy between the observations
and the image of the 3D model projected into the estimated cameras.

Recently there has been an increased interest in solving for the geometry of
very large camera systems with applications such as modelling of large photo
collections [74] and urban 3D reconstructions [64, 21]. In trying to achieve
such large scale reconstructions, the bundle adjustment stage is commonly a
bottle neck and with methods in use today time and memory requirements
typically grow cubically in the number of cameras and features [86]. To meet
the demand for dealing with increasingly large systems there is thus a need to

1Simultaneous localization and mapping
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develop methods, which potentially scale better with problem size. This will be
the topic of Chapters 12 and 13.

11.2 Problem Formulation

We consider a setup with m cameras C = (C1, . . . , Cm) observing n points
U = (U1, . . . , Un) in 3D space. An index set I keeps track of which points are
seen in which views by (i, j) ∈ I i� point j is seen in image i. If all points
are visible in all views then there are mn projections. This is not the case in
general and we denote the number of image points nr = |I|. The observation
model f(Ci, Uj) yields the 2D image coordinates of the point Uj projected into
the view Ci. The input data is a set of observations f̂ij such that

f̂ij = f(Ci, Uj) + ηij , (11.1)

where ηij is measurement noise drawn from a suitable distribution. The un-
known parameters x = (C,U) are now estimated given the set of observations
by adjusting them to produce a low re-projection error as realized in the follow-
ing non-linear least squares problem

x∗ = argmin
x

∑
(i,j)∈I

‖f̂ij − f(Ci, Uj)‖2. (11.2)

This cost function can be motivated in a statistical sense by assuming that the
errors are iid samples from a Gaussian distribution. Estimating x in a maximum
likelihood (ML) sense

x∗ = argmax
∏

(i,j)∈I
P[f(Ci, Uj) = f̂ij |Ci, Uj ], (11.3)

then yields (11.2) if one takes the usual route of minimizing the negative log
likelihood instead. Later on we will see how other statistical assumptions on the
noise might actually be more reasonable. Luckily these can be �t into the same
optimization framework and since the least squares formulation is the cleanest
to work with we will stick with that one for now.

11.3 Overview of Optimization Strategies

Arguably, the most popular algorithm for dealing with the non-linear least
squares problem is the Gauss-Newton algorithm. Rewriting (11.2) in tidier
notation, our task is to solve the following optimization problem

x∗ = argmin
x

r(x)T r(x), (11.4)

where r is the vector of individual residuals rij = f(Ci, Uj) − f̂ij stacked in a
column vector. A second order Taylor expansion of c(x) = r(x)T r(x) around x
yields

c(x+ δx) ≈ rT r + 2((∂xr)T r)T δx+ δxT (
∑
i

(∂2
xri)ri + (∂xr)T (∂xr))δx. (11.5)
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By introducing J(x) = ∂xf = ∂xr and Hi(x) = ∂2
xfi = ∂2

xri for the Jacobian
and Hessian respectively, we obtain

c(x+ δx) ≈ rT r + 2(J(x)T r)T δx+ δxT (
∑
i

Hi(x)ri + J(x)TJ(x))δx. (11.6)

If we have a reasonable starting guess so that the residuals ri are small, then the
contribution of the term

∑
iHi(x)ri(x) to the Hessian will be small compared

to JTJ and can thus be dropped from the expression yielding

c(x+ δx) ≈ rT r + 2(JT r)T δx+ δxTJTJδx. (11.7)

Di�erentiating w.r.t δx and setting the expression equal to zero now yields the
equation for the update step in the Gauss-Newton algorithm

J(x)TJ(x)δx = −J(x)T r(x). (11.8)

The recursion {
J(xk)TJ(xk)δxk = −J(xk)T r(xk)
xk+1 = xk + δxk

(11.9)

is then iterated until convergence.
Alternatively, we can do a �rst order expansion inside the norm in the non-

linear sum of squares expression to arrive at a linear least squares problem

min
x
‖r(x+ δx)‖2 ≈ ‖r(x) + J(x)δx‖2, (11.10)

where solving for δx in the usual least squares sense yields exactly (11.8).

11.3.1 The Levenberg-Marquardt Algorithm

One of the main issues in an implementation of the Gauss-Newton algorithm
is solving the update equation (11.8). Apart from the fact that this might be
a very large system of equations, the system matrix JTJ might not have full
rank, or it might have something very close to a non-trivial nullspace. If this
is the case then we cannot reliably solve for the update step (at least not using
standard methods). A common solution, known as the Levenberg-Marquardt
algorithm, is to add a damping term λI to JTJ and solve the damped system

(JTJ + λI)δx = −JT r, (11.11)

which guarantees a unique solution to the update equation (see pseudo code).
The larger λ is chosen the closer one gets to a step in the negative gradient
direction, hence one can see this approach as interpolating between the Gauss-
Newton step and the steepest descent step. Moreover, the larger λ is the shorter
the update step will be. It can therefore be a good idea to set λ to a larger
value during the initial iterations when one is far from the optimum and the
residuals are large. As x gets closer to the optimum, λ can then be decreased to
have faster convergence. One such strategy by Nielsen [41], which is also used in
the SBA package [60] is given in pseudo code in the Levenberg-Marquardt
procedure. What happens in each iteration is that the state vector and the
damping parameter λ gets updated. The line xnew = x+δx should be interpreted
as �x is updated with δx� and depending on which parameterization is used, this
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step might involve some non-linear manipulations. The damping parameter λ
is updated by multiplying with a factor between 1

3 and 2 depending on how well
the predicted linear decrease in residual norm agrees with the actual decrease.
The degree of correspondence is measured by ρ. If an increase in objective
function value is obtained then the step is rejected, λ is multiplied by ν and ν
is multiplied by 2. This means that λ will grow very quickly if a sequence of
rejected steps would occur.

The L-M algorithm is a continuous optimization algorithm and hence needs
a stopping criterion to terminate. Common choices include terminating once the
magnitude of the gradient falls below a certain threshold, the relative change
of residual error falls below a threshold or a maximum number of iterations is
reached. Since convergence is quadratic near the optimum (for zero damping
and small residuals), the thresholds can usually be set very low without adding
many extra iterations. It is often a good idea to combine a threshold criterion
with a bound on the number of iterations to avoid extremely long running times
in unfortunate cases with poor convergence.

Levenberg-Marquardt(x0, f̂)
x = x0

r = f(x)− f̂
ν = 2
Initialize λ
while not converged

compute J(x)
solve for δx: (JTJ + λI)δx = −JT r
xnew = x+ δx

rnew = f(xnew)− f̂
if ‖rnew‖ < ‖r‖

ρ = (‖r‖2 − ‖rnew‖2)/(δxT (λδx− JT r))
r = rnew

x = xnew

λ = λ ∗max( 1
3 , 1− (2ρ− 1)3)

ν = 2
else

λ = νλ
ν = 2ν

11.3.2 Trust Regions and Powel's Dog Leg Method

In the Gauss Newton method we are dealing with a non-linear least squares
problem by solving a sequence of linear approximations. It is natural to ask
how far these can be trusted. In the trust region method a region of trust Ω for
the linear approximation is estimated after each iteration. Typically this is done
by comparing the decrease in residuals predicted by the linear approximation
to the actual decrease obtained by the update step. The idea is then to solve
the following constrained least squares problem in each iteration

min
δx
‖Jδx+ r‖ (11.12)

s.t. ‖δx‖ ∈ Ω
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A common choice for Ω is a ball of radius ∆ centered around the current pa-
rameter vector x, where ∆ is updated after each iteration. There is a close
connection to the Levenberg-Marquardt algorithm with this type of trust re-
gion. If δx of the non-damped equations fall outside the trust region, then one
can show that there is a damping parameter λ such that the solution to the
damped system (11.11) is exactly the solution to (11.12) cf [67] and there are
strategies for selecting such λs. However, once we are su�ciently close to the
optimum so that δx lies within the trust region, then the damped system will
not yield the same result, causing slower convergence. Based on the insight that
the damped G-N step can be seen as an interpolation between steepest descent
and the regular G-N step, Powel suggested the following strategy: Compute the
G-N step δxG−N. If the G-N step is inside Ω then we are done. Otherwise
compute the steepest descent step αδxSD (where α is the optimal step length
in the steepest descent direction). If this step also falls outside Ω then simply
truncate it to be inside Ω and take this as δxDL. If not then move on to take a
linear combination of αδxSD and δxG−N, δxDL = αδxSD + β(δxG−N − αδxSD),
with β selected such that ‖δxDL‖ = ∆.

11.4 Sparsity Structure of the Jacobian

The system matrix in (11.8) is N×N with N equal to the number of unknowns.
In problems with a large number of points and cameras this can lead to extremely
large equation systems. Solving a linear equation system in general has time
complexity O(N3) and this step thus forms the major computational bottle neck
in the algorithm. To handle the complexity it is vital to make use of the special
sparsity structure of the Jacobian. If we partition the Jacobian into a camera
part JC and a point part JP and order the residuals �rst by 3D point and then
by image so that

r = [r11, r12, . . . , r1n1 , r21, r22, . . . , r2n2 , . . . , rm1, rm2, . . . , rmnm ],

then the Jacobian will have the following block structure

J = [JC JP ] =


A1 B1

A2 B2

...
. . .

An Bn

 , (11.13)

where

Aj =


A1j

A2j

. . .
Amj

 (11.14)

and

Bj =


B1j

B2j

...
Bmj

 . (11.15)
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Figure 11.1: Sparsity pattern of the Jacobian for an example with m = 4
cameras and n = 20 3D points. Not all points are visible in all views.

Here, the A blocks correspond to camera parameters and the B blocks corre-
spond to 3D point variables. Each block row in (11.15) and (11.14) corresponds
to one image projection fij and thus to two rows in J . If we parameterize a
camera with 6 parameters (3 for position and 3 for orientation) and a 3D point
with 3 parameters (X, Y, Z) then the size of an Aij block will be 2 × 6 and a
Bij block will have dimension 2×3. This means that each observed image point
adds 18 entries to J .

The particular structure of the Jacobian is due to the fact that an image
point (feature) fij depends on the parameters of a single camera Ci and a single
3D point Uj only. Hence any partial derivative ∂xi′j′ fij will vanish where either
i′ 6= i or j′ 6= j. In practice, there will be missing block rows in (11.15) and
(11.14) owing to the fact that not all cameras observe all 3D points. An example
of the sparsity pattern of J can be found in Image 11.1.
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The sparsity pattern of J induces some interesting structure in the system
matrix JTJ for the normal equations of the update step as well.

JTJ =
[
JTCJC JTCJP
JTP JC JTP JP

]
(11.16)

where

JTCJC =


∑n
j=1A

T
1jA1j ∑n

j=1A
T
2jA2j

. . . ∑n
j=1A

T
mjAmj

 , (11.17)

JTP JP =


∑m
i=1B

T
i1Bi1 ∑m

i=1B
T
i2Bi2

. . . ∑m
i=1B

T
inBin

 (11.18)

and

JTCJP = [AT1 B1 A
T
2 B2 . . . A

T
nBn] =


AT11B11 AT12B12 . . . AT1nB1n

AT21B21 AT22B22

...
. . .

ATm1Bm1 ATmnBmn


(11.19)

Note here that block ij will be missing from (11.19) whenever point j is not
visible in view i. An example of the structure of JTJ is shown in Figure 11.2.

11.4.1 Solving the Sparse Normal Equations

We now show how the sparsity patterns of J and JTJ can be used to simplify
the procedure of solving for δx in (11.8). We introduce U = JTCJC , V = JTP JP
and W = JTCJP thus obtaining[

U W
WT V

] [
δxC
δxP

]
= −JT r =

[
bC
bP

]
. (11.20)

Next we perform block-wise Gaussian elimination from the bottom up producing[
U −WV −1WT 0

WT V

] [
δxC
δxP

]
=
[
bC −WV −1bP

bP

]
, (11.21)

which can be solved for δx in two steps by �rst solving

(U −WV −1WT )δxC = bC −WV −1bP (11.22)

and then substituting the obtained value of δxC into

V δxP = bP −WT δxC (11.23)

and solving for δxP . This procedure is often referred to as Schur complementa-
tion and the matrix S = U −WV −1WT is called the Schur complement. Note
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Figure 11.2: Sparsity pattern of JTJ for the same example as in Figure 11.1

here that multiplication with V −1 is easily computed since V is block diagonal.
This reduces the computational load from solving a (6m + 3n) × (6m + 3n)
system to solving a 6m× 6m system followed by a quick substitution and block
diagonal solve. In applications m is usually much smaller than n (about a factor
100 is common) so this typically means substantial savings. For systems with
up to a couple of hundred cameras, the most expensive step actually often lies in
forming WV −1WT , since W is often quite dense. However, for larger problems
the cost of solving the Schur system will dominate the computations.

11.4.2 Complexity and Storage of the Di�erent Steps

To design an e�cient bundle adjustment algorithm it is important to have an
understanding of the time and memory complexity of the di�erent steps in
the iteration. The steps of the Levenberg-Marquardt algorithm which involve
signi�cant computations are in order of increasing complexity: computing r,
computing J and solving for the update step δx. Computing r and J is linear
in the number of image projections nr with J requiring roughly 10 times that of
r in time and storage (depending on how many parameters the camera model
has etc.).

Since solving (11.8) is the dominant part of the algorithm it is worth break-
ing this step down further. Denote by nc and nP the number of camera and 3D
point parameters respectively (nc = 6 in the case of calibrated cameras). Com-
puting JTJ can be said to consist of three parts; computing the block diagonal
matrices U and V and computing the o�-diagonal blocks W . By inspecting
Equations 11.17, 11.18 and 11.19 we see that each image projection fij will re-
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Operation Time complexity Memory complexity Relative time
r O(nr) O(nr) 0.1
J O(nr) O(nr) 1
JTJ O(nr) O(nr) 2-3
WV −1WT O(nl2) O(nq2) 10∗

Solving for δxC O(m3) O(m3) N/A
Solving for δxP O(n+ nr) O(n+ nr) 1

Table 11.1: Complexity of the various steps that make up one bundle adjustment
iteration. ∗This �gure is only relevant under certain circumstances as discussed
in the text and may vary depending on problem structure.

quire computing the nC×nC block ATijAij in U , the nP ×nP block BTijBij in V
and the nC × nP block ATijBij in W . Hence we can conclude that forming JTJ
is also O(nr) for time and storage. Empirically, JTJ takes about a factor 2-3 to
compute compared to J , but in an implementation J and JTJ can bene�cially
be computed simultaneously to optimize cache usage.

Dealing with V −1 is best done via Cholesky factorization of V , which is
O(n) since V is block diagonal. As previously mentioned, computing the part
WV −1WT of the Schur complement can be a rather demanding step. The Schur
complement will have a block-sparse structure with non-zero nC × nC blocks
for each pair of cameras (Ci, Cj) which share 3D points. Each such block will
be an outer product over camera parameters summed over all shared 3D points.
This means that estimating the complexity of this step is a little more involved.
If we can assume a representative track length l (the typical number of views
which see a given 3D point) then computing WV −1WT has time complexity
O(l2n). This will behave a little di�erently depending on the problem type.
If we consider a setup where we cover a successively larger area with cameras,
but with the same type of imagery and roughly equal spacing between images,
then we can expect the typical track length to stay approximately constant and
the number of 3D points to grow linearly with the number of cameras yielding
O(n) or alternatively O(m) complexity. However, if we consider a case where we
cover roughly the same geographic are with an increasing number of cameras,
then with some mild assumptions we will see a track length which grows in
proportion to the number of new views yielding a faster growing complexity. In
practice, the time needed to compute the Schur complement is commonly about
a factor 10 longer than that needed to compute J .

The memory complexity for the Schur complement is slightly di�erent. The
storage required will be proportional to the number of connected views which
cannot be directly calculated from a typical track length. However we can
introduce a typical number of neighboring views q which behaves qualitatively in
the same manner as l in the above two cases yielding linear/quadratic complexity
in the cases with large sparsely covered area vs small densely covered area.

For moderate to large size problems the dominant step in the procedure is
solving Equation 11.22, which in the general case has time complexity O(m3).
Finally (11.23) with complexity O(n+nr) is done easily by applying V −1 block
wise.
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11.5 Handling Gauge Freedoms

An issue that must be dealt with when designing a bundle adjuster is the choice
of coordinate system. Depending on the problem type the cost function c(x) will
be invariant to a group of coordinate transformations such as e.g translation,
rotation and scale in the case of calibrated cameras. Choosing a particular
coordinate frame is known as selecting the gauge to work in and the invariance
to coordinate transformations is called gauge freedom.

Let ng be the number of degrees of freedom in coordinate system (7 in the
calibrated case), then there is an ng dimensional manifold N parameterized by
z ∈ Rng locally around the current parameter vector x such that for ∀x′ ∈
N , c(x) = c(x′). This simply means that if for instance x′ were obtained by say
translating all coordinates in x by the same amount in a given direction, then
the value of the cost function would not change.

While mathematically harmless, this presents an algorithmic problem. Con-
sider g(z) ∈ N and denote ∂zg(z) = G (which is an nr × ng matrix). We
then have ∂zc(g(z)) = J(y)G = 0, i.e G is an ng-dimensional null space of J .
In particular this causes JTJ to be rank de�cient and the consequence is that
out-of-the-box Cholesky factorization will break down. There are basically two
di�erent strategies for handling this problem. We can either (i) �x the gauge
explicitly via parameterization or implicitly by constraining the optimization or
(ii) leave the gauge free and try to deal with a rank de�cient JTJ .

The most common approach is to select a number of parameters equal to the
number of gauge freedoms and simply �x these, which would fall into category
(i). In the calibrated case one can for instance set one of the camera matrices
Pi to Pi = [I 0] and �x the distance between this camera and any arbitrary
other one to the unit distance. This is sometimes referred to as the trivial
gauge and often works well in practice. A potential problem can occur here if
the gauge �xing camera happens to be relatively ill determined relative to the
other cameras in the starting guess. Correcting this camera then amounts to
adjusting all other cameras (since this one is �xed) potentially resulting in poor
conditioning.

Other more sophisticated ways of �xing the gauge involve more global pa-
rameterizations or adding constraints to the update vector (e.g no translation,
rotation, scaling) and solving the resulting constrained optimization problem.
The issue with these approaches is that they tend to ruin the sparsity structure
of JTJ , thus signi�cantly increasing time and memory requirements.

An easy way out is available if one uses damping to solve for δx. Then
the damped matrix JTJ + λI will have full rank irrespective of any gauge
freedoms and one can often simply forget that there exists such a thing as
gauge freedoms. Once the optimization is �nished one can then map the result
to any suitable coordinate frame. This approach is however not recommended
since the damping term slows convergence and if the damping term is used to
amend the gauge problem, then it will not be possible to let the damping term
go to zero near the optimum.
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11.6 Parameterization

In general, the state x of the bundle optimization will live on some non-linear
manifold. To compute the Jacobian etc for optimization we need a parame-
terization of this. However, it is not necessarily needed to provide a global
parameterization. A local parameterization around the current state will do
just as �ne as long as we can update the current state with a local displacement
δx. The main issue in parameterizing the system of cameras typically lies in
how to handle rotations. Rotations in R3 form a 3-dimensional manifold (Lie
group) known as SO(3) and some options for parameterization are quaternions,
Euler angles and exponential maps.

As long as the update steps are not too large and singularities in the param-
eterizations can be avoided, then the choice of parameterization is usually not
critical. In this work we have chosen exponential maps as the tool for param-
eterizing rotations. Let Q be a 3 × 3 rotation matrix. Then there is a unique

antisymmetric 3× 3 matrix X =
[ 0 x1 x2−x1 0 x3−x2 −x3 0

]
such that Q = eX . However, we

can also obtain a local parameterization around a rotation Q0 as Q(x) = Q0e
X ,

with Q(0) = Q0. This can now be di�erentiated w.r.t x as

∂x1Q(x) = [Q1 Q2 Q3]
[

0 1 0−1 0 0
0 0 0

]
= [−Q2 Q1 0], (11.24)

∂x2Q(x) = [Q1 Q2 Q3]
[

0 0 1
0 0 0−1 0 0

]
= [−Q3 0 Q1], (11.25)

∂x3Q(x) = [Q1 Q2 Q3]
[

0 0 0
0 0 1
0 −1 0

]
= [0 −Q3 Q2]. (11.26)

11.7 Robust Error Functions

As mentioned above, the least squares formulation corresponds to an assump-
tion of Gaussian noise on the image measurements. In practice this assumption
is often violated. The most important deviation from the Gaussian noise model
is the occurrence of outliers which is a statistical term referring to samples which
deviate markedly from the rest of the data or from the observation model. In the
Gaussian distribution such samples are extremely unlikely and are thus heavily
penalized in the cost function to the extent that a single bad outlier may ruin the
whole reconstruction. Typically the estimation is done in to stages with a �rst
step of outlier removal with some combinatorial/randomized algorithm such as
RANSAC [30] for outlier removal followed by the bundle adjustment step. Nev-
ertheless, outliers may �nd their way into the bundle adjustment stage. The
most common source of outliers are errors in the matching algorithm which
produce incorrect correspondences between points in images. Such outliers typ-
ically produce very large errors and are often relatively easy to detect. More
challenging are correspondences which are correct, but of low quality perhaps
due to severe viewpoint or lighting changes. For these reasons it is usually a
good idea to consider distributions with heavier tails than the Gaussian. These
induce cost functions, known as robust norms ρ(r), which do not penalize large
errors as heavily as the L2 norm; typically with the form

cρ(x) =
∑
ij∈I

ρij(‖fij − f̂ij‖), (11.27)
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although there are some alternative forms. The Gauss-Newton approximation
can be generalized to such robust cost functions yielding the robust Gauss-
Newton algorithm. This can be done in a few di�erent ways yielding di�erent
update rules with varying convergence properties. However, since robust statis-
tics in bundle adjustment is not a central topic in this thesis we refer the reader
to e.g [86] for details. Two common robust norms are the Huber norm (hybrid
L1/L2)

ρH(ri) =
{ | ri

2γ |2 |ri| ≤ γ
|ri|+ 1

4 − γ |ri| > γ

and the Cauchy norm
ρC(ri) = ln(1 + |ri

γ
|2).



Chapter 12

Iterative and Approximate

Solutions to the Normal

Equations

In this chapter, new techniques are introduced for fast solution of the bundle
adjustment problem using iterative linear solvers. As mentioned in Chapter 11,
classical bundle adjustment runs into di�culties on large scale problems. In
the standard Gauss-Newton method the dominant step is forming and solving
the normal equations typically using (sparse) Cholesky factorization, which has
cubic complexity in the number of variables.

However, it has been hypothesized that for large problems the method of
conjugate gradients could be a better choice [86, 65]. So far, this has not been
observed and one has mostly obtained rather disappointing convergence rates.
This is likely due to a number of reasons. Firstly, it is di�cult to select suitable
preconditioners, which are widely agreed to be necessary for the conjugate gradi-
ent method to work well [42]. Secondly, the conjugate gradient method needs to
be modi�ed to show its full potential on the least squares problem. To the best
knowledge of the author, this has not yet been done in the context of bundle
adjustment. Thirdly, bundle adjustment is a non-linear problem usually solved
by a sequence of linear approximations. Thus the conjugate gradient algorithm
can be applied at two di�erent levels; in the non-linear outer iteration or in an
inner iteration as a linear solver for the normal equations. The best approach
here is to go for a hybrid of the two via inexact Gauss-Newton methods.

We will begin this chapter by a brief review of the linear and non-linear
conjugate gradient algorithms. After this we will address the above mentioned
issues. Our main contributions are:

• We apply the CGLS algorithm (instead of the standard CG algorithm),
which allows us to avoid forming JTJ , where J is the Jacobian, thus saving
time and space and improving precision.

• A QR factorization based block-preconditioner, which can be computed
in roughly the same time it takes to compute the Jacobian.

• We note that the preconditioned system has �property A� in the sense of

131
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Young [88], allowing us to cut the work per iteration in roughly half.

• An experimental study which sheds some new light on when iterative
solvers for the normal equations may be successfully used.

12.1 The Linear and Non-Linear Conjugate Gra-

dient Algorithms

The conjugate gradient algorithm is an iterative method for solving a symmetric
positive de�nite system of linear equations

Ax = b, (12.1)

introduced by Hestenes and Stiefel [43, 35]. It is also a member of the wider
family of Krylov subspace methods. In its basic form it requires only multi-
plication of the matrix A with a vector, i.e no matrix-matrix multiplications
and no matrix factorizations. The basic way to apply the conjugate gradient
algorithm to the bundle adjustment problem is to form the normal equations
JTJδx = −JT r and set A = JTJ, b = −JT r.

A neat way of approaching iterative methods for symmetric linear systems
is to consider minimization of the quadratic form

q(x) =
1
2
xTAx− bTx. (12.2)

The gradient of q(x) is easily seen to be the residual of (12.1), ∇q(x)T = Ax−b,
and by setting the gradient equal to zero we see that the minimizer of q(x) is
x∗ = A−1b. This means that to solve (12.1) we can instead solve (12.2) using
any optimization method we like. Applying straightforward steepest descent
yields the iteration

xk+1 = xk + αk(b−Axk) = xk + αksk,

where αk is a suitable step length at iteration k and sk = b − Axk 1. This is
known as the Richardson iteration and with the right step length this procedure
will converge, but typically at a very slow rate. Much faster convergence can be
obtained by searching in a direction pk which is a combination of the negative
gradient sk and the previous search direction pk−1, pk = sk + βk−1pk−1. In the
conjugate gradient algorithm, βk−1 is selected so that search directions pk are
mutually A-orthogonal meaning 〈pi, pj〉A = pi

T
Apj = 0, ∀i 6= j (see pseudo

code below). Due to this, in theory the optimum will be found in at most n
iterations when A is of dimension n × n. Due to round-o� errors this is not
the case in practice and what we obtain is an approximation. However, if A is
reasonably conditioned, the approximate solution xk will often reach machine
precision with k � n, thus constituting an e�ective way to solve (12.1) to the
same precision as a direct method.

1b−Axk is usually denoted rk in the context of conjugate gradients, but to avoid confusion
we reserve rk for the residuals of the main least squares problem.
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Conjugate Gradient Algorithm(x0, A, b)
// An initial solution x0 (possibly zero) has to be provided
s0 = b−Ax0, p0 = s0, k = 0
while |sk| > threshold

αk = skT
sk

pkTApk

xk+1 = xk + αkpk

sk+1 = sk − αkApk
βk = sk+1T

sk+1

skT sk

pk+1 = sk+1 + βkpk

k = k + 1

As mentioned, the conjugate gradient algorithm was originally introduced to
solve a system of linear equations, via optimization of the associated quadratic
form. However, Fletcher and Reeves generalized the procedure to non-quadratic
functions yielding the non-linear conjugate gradients algorithm [32]. Here, only
the function f(x) and its gradient ∇f(x) are available (and not the matrix
A). This forces a couple of modi�cations to the above algorithm. Firstly, in the
linear version, the step length αk is computed analytically to yield the minimum
in the search direction pk. In the non-linear case αk has to be found using line
search. Secondly, sk+1 can not be found by updating sk and hence has to be
computed anew at each iteration as sk+1 = ∇f(xk+1). Thirdly, βk can now
be computed in a couple of di�erent ways, yielding slightly di�erent behavior.
In the original paper by Fletcher and Reeves, the exact same formula as in
the linear algorithm was used. However, a slightly di�erent version known as
Polak-Ribiere is now more popular

βk =
sk+1T (sk+1 − sk)

sk
T
sk

.

12.2 Conjugate Gradients for Least Squares

A naive implementation of the conjugate gradient algorithm for the normal
equations would require forming A = JTJ which as discussed in Chapter 11 is a
relatively expensive operation. However, we can rewrite the updating formulas
for αk and sk+1 as

αk =
sk
T
sk

(Jpk)T (Jpk)
, (12.3)

sk+1 = sk − αkJT (Jpk), (12.4)

implying that we only need to compute the two matrix-vector multiplications
wk = Jpk and JTwk in each iteration. The resulting algorithm is known as
CGLS [6]. The conjugate gradient method belongs to the wider family of Krylov
subspace optimizing algorithms. An alternative to CGLS is the LSQR algorithm
by Paige and Saunders [70], which is based on Lanczos bidiagonalization. Math-
ematically CGLS and LSQR are equivalent, but LSQR has in some cases been
observed to be slightly more stable numerically. However, in our bundle ad-
justment experiments these two algorithms have produced virtually identical
results. Since LSQR requires somewhat more storage and computation than
CGLS we have stuck with the latter.
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12.3 Inexact Gauss-Newton Methods

As previously mentioned, there are two levels where we can apply conjugate gra-
dients. Either we use linear conjugate gradients to solve the normal equations
JTJdx = −JT r and thus obtain the Gauss-Newton step or we apply non-linear
conjugate gradients to directly solve the non-linear optimization problem. Solv-
ing the normal equations at each step gives us the good convergence properties
of the Gauss-Newton algorithm, but at the expense of running potentially very
many conjugate gradient iterations. Applying the non-linear version allows us
to quickly take many non-linear steps, but we are likely to need many of these
as well and at each step the gradient has to be recomputed. For large systems,
computing the gradient will itself be relatively expensive.

However, by making use of the fact that we are dealing with a non-linear
least squares problem, we can strike a balance between these two approaches.
Since c(x) = rT (x)r(x), we get ∇c(x) = −JT (x)r(x) and we see that computing
∇c implies computing the Jacobian J of r. Once we have computed J (and r)
we might as well run a few more iterations keeping these �xed. But, since the
Gauss-Newton step is anyway an approximation to the true optimum, there
is no need to solve the normal equations very exactly and it is likely to be a
good idea to abort the linear conjugate gradient method early, going for an
approximate solution. This leads to the topic of inexact Newton methods (see
e.g [67] for more details). In these methods a sequence of stopping criteria are
used to abort the inner iterative solver for the update step early. The logical
termination quantity here is the relative magnitude of the residual of the normal
equations |sk| (not to be confused with the residual of the least squares system
r). A common choice is to terminate the inner CG iteration when

|sk|
|∇c(xj)| < ηj ,

where the sequence ηj ∈ (0, 1) is called a forcing sequence. Simply selecting
ηj < η < 1, ∀j will ensure convergence, but not at any particular rate. If
ηj → 0 then we are guaranteed superlinear convergence. We have chosen ηj =
min(0.5,

√‖∇c(xj)‖) as recommended in [67].

12.4 Preconditioning

The success of the conjugate gradient algorithm depends largely on the condi-
tioning of the matrix A. Whenever the condition number κ(A) is large conver-
gence will be slow. In the case of least squares, A = JTJ and thus κ(A) = κ(J)2,
so we will almost inevitably face a large condition number 2. In these cases one
can apply preconditioning, which in the case of the conjugate gradient method
means pre-multiplying from left and right with a matrix E to form

ETAEx̂ = ET b.

The idea is to select E so that Â = ETAE has a smaller condition number than
A. Often E is chosen so that EET approximates A−1 in some sense. Explicitly

2Note that even if we avoid forming A = JT J explicitly, A is still implicitly the system
matrix and hence it is the condition number κ(A) we need to worry about.
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forming Â is expensive and usually avoided by inserting M = EET in the right
places in the conjugate gradient method obtaining the preconditioned conjugate
gradient method. Two useful preconditioners can be obtained by writing A =
L + LT − D, where D and L are the diagonal and lower triangular parts of
A. Setting M = D−1 is known as Jacobi preconditioning and M = L−TDL−1

yields Gauss-Seidel preconditioning.

12.4.1 Block QR Preconditioning

The Jacobi and Gauss-Seidel preconditioners alone do not make use of the spe-
cial structure of the bundle adjustment Jacobian. Assume for a moment that
we have the QR factorization of J , J = QR and set E = R−1. This yields the
preconditioned normal equations

R−TJTJR−1δx̂ = −R−TJT r,

which by inserting J = QR reduce to

δx̂ = −R−TJT r

and δx̂ is found in a single iteration step (δx is then obtained from δx = R−1δx̂).
Applying R−1 is done very quickly through back-substitution. The problem here
is of course that computing J = QR is exactly the sort of expensive operation
we are seeking to avoid. However, we can do something which is similar in spirit.
Consider again the partitioning J = [JC , JP ] used in Chapter 11. Using this,
we can do a block wise QR factorization in the following way:

JC = QCRC , JP = QPRP .

Due to the special block structure of JC and JP respectively we have

RC = R(JC) =


R(Ã1)

R(Ã2)
. . .

R(Ãn)


and

RP = R(JP ) =


R(B1)

R(B2)
. . .

R(Bn)

 ,
where

Ãk =


Ak1

Ak2

...
Akn

 .
In other words, we can perform QR factorization independently on the block
columns of JC and JP , making this operation very e�cient (linear in the number
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of variables) and easy to parallelize. The preconditioner we propose to use thus
becomes

E =
[
R(JC)−1

R(JP )−1

]
.

Similar preconditioners were used by Golub et al in [34] in the context of satellite
positioning.

A useful property of this preconditioner is that there is no need to form
JTJ , which takes time and may introduce round-o� errors. To precondition
the inexact trust region method described above, one can simply insert J(Ex)
instead of Jx wherever a multiplication between J and a vector x occurs.

12.4.2 Property A

A further important aspect of the bundle adjustment Jacobian is that the pre-
conditioned system matrix ĴT Ĵ has �property A� as de�ned by Young in [88].

De�nition 17. The matrix A has �property A� i� it can be written

A =
[
D1 F
FT D2

]
, (12.5)

where D1 and D2 are diagonal.

The bene�t is that for any matrix possessing �property A�, the work that has
to be carried out in the conjugate gradient method can roughly be cut in half
as showed by Reid in [73]. This property can easily be seen to hold for ĴT Ĵ :

ĴT Ĵ =
[
R(JC)

R(JP )

]−T [
JT

CJC JT
CJP

JT
P JC JT

P JP

] [
R(JC)

R(JP )

]−1

=
[
QT

CQC QT
CQP

QT
PQC QT

PQP

]
,

where QTCQC and QTPQP are both identity matrices and QTPQC = (QTCQP )T .

Partition the variables into camera and point variables and set sk =
[
sk

C

sk
P

]
.

Applying Reid's results to our problem yields the following: By initializing so
that δxC = 0 and δxP = −JTP r, we will have s2m

C = s2m+1
P = 0. We can make

use of this fact in the following way (where for clarity, we have dropped the
subscript j from the outer iteration):

Inner CG loop using "Property A"(J, r)
η = 0.1
δx0
C = 0, δx0

P = −JTP r, r̂0 = −r − Jδx0, p0 = s0 = JT r̂0,

γ0 = s0T s0, q0 = Jp0, k = 0
while ‖sk‖ > η‖s0‖

αk = γk

qkT qk

δxk+1 = δxk + αkpk{
sk+1
C = −αkJTC qk, sk+1

P = 0 k odd
sk+1
P = −αkJTP qk, sk+1

C = 0 k even
γk+1 = sk+1T sk+1

βk = γk+1

γk

pk+1 = sk+1 + βkpk{
qk+1 = βkqk + JCs

k+1
C k odd

qk+1 = βkqk + JP s
k+1
P k even



12.5. EXPERIMENTS 137

12.5 Experiments

For evaluation we compare three di�erent algorithms on synthetic and real data.
Standard bundle adjustment is performed using the Levenberg-Marquardt algo-
rithm and Cholesky factorization of the Schur complement to solve the normal
equations. We henceforth denote this algorithm DBA for direct bundle ad-
justment. Secondly, we study a straightforward adaptation of the conjugate
gradient algorithm to bundle adjustment by using JTJ as the system matrix
and the block diagonal of JTJ as a preconditioner. We simply refer to this
algorithm as CG. Finally, we denote the conjugate gradient method tailored to
bundle adjustment as proposed in this chapter CGBA for conjugate gradient
bundle adjustment.

In all cases we apply adaptive damping to the normal equations as suggested
in [41]. In the case of CGBA, we never form JTJ and we instead apply damping
by using the damped Jacobian

Jλ =
[
J
λI

]
,

which can be factorized in the same manner as J for preconditioning.
For clarity, we focus on calibrated cameras only in this work. Including

additional parameters such as focal length and distortion parameters presents
no problem and �ts into the same general framework without modi�cation.

12.5.1 Synthetic Data: When is the CG Algorithm a Good
Choice?

An common statement is that standard bundle adjustment is good for small to
medium size problems and that Conjugate Gradients should probably be the
way to go for large and sparse problems. This is not quite true as we will
show with a couple of synthetic experiments. In some cases CG based bundle
adjustment can actually be a better choice for quite small problems. On the
other hand it might su�er from hopelessly slow convergence on some large very
sparse setups. Theoretically, the linear CG algorithm converges in a number
of iterations proportional to roughly the square root of the condition number
and a large condition number hence yields slow convergence. Empirically, this
happens in particular for sparsely connected structures where unknowns in the
camera-structure graph are far apart. Intuitively such setups are much less
�sti�� and can undergo relatively large deformations with only little e�ect on
the reprojection errors.

To capture this intuition, we have simulated two qualitatively very di�erent
scenarios. In the �rst setup, points are randomly located inside a sphere of
radius one centered at the origin. Cameras are positioned uniformly around the
sphere at around two length units from the origin pointing roughly towards the
origin. There are 10 times as many points as cameras and each camera sees
100 randomly selected points. Due to this, each camera shares features with a
large percentage of the other cameras. In the second experiments, points are
arranged along a circular wall with cameras on the inside of the wall pointing
outwards. There are four points for each camera and due to the con�guration
of the cameras, each camera only shares features with a small number of other
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cameras. For each scenario we have generated a series of con�gurations with
increasingly many cameras and points (from 10 to about 500 cameras). One
example from each problem type can be seen in Figure 12.1. For each problem
instance we ran both standard bundle adjustment with Cholesky factorization
(DBA) and the Conjugate Gradient based bundle adjustment procedure pro-
posed here (CGBA) and recorded the total time until convergence. Since the
focus of this experiment was on iterative versus direct solvers, we omitted the
comparison CG method. The results of this experiment are perhaps somewhat
surprising. For the sphere problem, CGBA is orders of magnitude faster for
all but the smallest problems, where the time is roughly equal. In fact, the
empirical time complexity is almost linear for CGBA whereas DBA displays the
familiar cubic growth. For the circular wall scenario the situation is reversed.
While CGBA here turns out to be painfully slow for the larger examples, DBA
seems perfectly suited to the problem and requires not much more than linear
time in the number of cameras. Note here that the Schur complement in the
sphere setup is almost completely dense whereas in the wall case it is extremely
sparse. The radically di�erent results on these data sets can probably under-
stood like this. Since the CG algorithm in essence is a �rst order method �with
acceleration�, information has to �ow from variable to variable. In the sphere
case, the distance between cameras in the camera graph is very small with lots
of connections in the whole graph. This means that information gets propagated
very quickly. In the wall problem though, cameras on opposite sides of the cir-
cular con�guration are very far apart in the camera graph which yields a large
number of CG iterations. For the direct approach �sti�ness� of the graph does
not matter much. Instead �ll-in during Cholesky factorization is the dominant
issue. In the wall problem, the Schur complement will have a narrow banded
structure and is thus possible to factorize with minimal �ll-in.

12.5.2 Community Photo Collections

In addition to the synthetic experiments, we have compared the algorithms on
four real world data sets based on images of four di�erent locations downloaded
from the Internet: The St. Peters church in Rome, Trafalgar square in Lon-
don, the old town of Dubrovnik and the San Marco square in Venice. The
unoptimized models were produced using the systems described in [74, 75, 3].

The models produced by these systems initially contained a relatively large
number of outliers, 3D points with extremely short baselines and very distant
cameras with a small �eld of view. Each of these elements can have a very
large impact on the convergence of bundle adjustment (both for iterative and
direct solvers). To ensure an informative comparison, such sources of large
residuals and ill conditioning were removed from the models. This meant that
approximately 10% of the cameras, 3D points and reprojections were removed
from the models.

In addition, we used the available calibration information to calibrate all
cameras before bundle adjustment. In general this gave good results but for a
very small subset of cameras (< 0.1%) the calibration information was clearly
incorrect and these cameras were removed as well from the models.

For each data set we ran bundle adjustment for 50 iterations and measured
the total time and �nal RMS reprojection error in pixels. All experiments were
done on a standard PC equipped with 32GB of RAM to be able to process large
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Figure 12.1: Top-left: An instance of the sphere problem with 50 cameras
and 500 3D points. Top-right: Points arranged along a circular wall, with 64
cameras viewing the wall from the inside. Bottom-left: Time to convergence vs.
number of cameras for the sphere problem. This con�guration is ideally suited
to CG based bundle adjustment which displays approximately linear complexity.
Bottom-right: Time vs. problem size for the circular wall. The CG based solver
takes very long to converge, whereas the direct solver shows an almost linear
increase in complexity, far from the theoretical O(N3) worst case behavior.
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Data set m n nr Algorithm Total Final Error
Time (Pixels)

St. Peter 263 129502 423432
DBA 113s 2.18148
CGBA 441s 2.23135
CG 629s 2.23073

Trafalgar 2897 298457 1330801
DBA 68m 1.726962
CGBA 18m 1.73639
CG 38m 1.75926

Dubrovnik 4564 1307827 8988557
DBA 307m 1.015706
CGBA 130m 1.015808
CG 236m 1.015812

Venice 13666 3977377 28078869
DBA N/A N/A
CGBA 230m 1.05777
CG N/A N/A

Table 12.1: Performance statistics for the di�erent algorithms on the four com-
munity photo data sets.

data sets. For the CG based solvers, we used a constant η = 0.1 forcing sequence
and set the maximum number of linear iterations to 100. The results can be
found in Table 12.1. Basically, we observed the same general pattern for all four
data sets. Due to the light weight nature of the CG algorithms, these showed
very fast convergence (measured in seconds) in the beginning. At a certain point
close to the optimum however, convergence slowed down drastically and in none
of the cases did either of the CG methods run to complete convergence. This
is likely to correspond to the bound by the condition number of the Jacobian
(which we were not able to compute due to the sizes of these problems). In other
words, the CG algorithms have problems with the eigenmodes corresponding to
the smallest singular values of the Jacobian. This situation makes it hard to
give a fair comparison between direct BA and BA based on an iterative linear
solver. The choice has to depend on the application and desired accuracy. In all
cases, CGBA was about two times faster than CG as expected and in general
produced slightly more accurate results.

For the Venice data set, we were not able to compute the Cholesky factoriza-
tion of the Schur complement since we ran out of memory. Similarly, there was
not enough memory in the case of CG to store both J and JTJ . While Cholesky
factorization in this case is not likely to be feasible even with considerably more
memory, a more clever implementation would probably not require both J and
JTJ and could possibly allow CG to run on this instance as well. However, as
can be seen from the other three examples, the relative performance of CG and
CGBA is pretty constant so this missing piece of information should not be too
serious.

As observed in the previous section, problem structure largely determines
the convergence rate of the CG based solvers. In Figure 12.2, sparsity plots
for the Schur complement in each of the four data sets is shown. To reveal
the structure of the problem we applied reverse Cuthill-McKee reordering (this
reordering was also applied before Cholesky factorization in DBA), which aims
at minimizing the bandwidth of the matrix. As can be seen, this succeeds
quite well in the case of St. Peter and Trafalgar. In particular in the Trafalgar
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Figure 12.2: Sparsity plots for the reverse Cuthill-McKee reordered Schur com-
plements. Top-left: St. Peter, top-right: Trafalgar, bottom-left: Dubrovnik,
bottom-right: Venice

case, two almost independent sets are discovered. As discussed in the previous
section, this is a disadvantage for the iterative solvers since information does not
propagate as easily in these cases. In the case of Dubrovnik and in particular
Venice, the graph is highly connected, which is bene�cial for the CG solvers,
but problematic for direct factorization.

12.6 Conclusions

In its current state, conjugate gradient based bundle adjustment (on most prob-
lems) is not in a state where it can compete with standard bundle adjustment
when it comes to absolute accuracy. However, when good accuracy is enough,
these solvers can provide a powerful alternative and sometimes the only alter-
native when the problem size makes Cholesky factorization infeasible. A typical
application would be intermediate bundle adjustment during large scale incre-
mental SfM reconstructions. We have in this chapter presented a new conjugate
gradient based bundle adjustment algorithm (CGBA) which by making use of
�Property A� of the preconditioned system and by avoiding JTJ is about twice
as fast as �naive� bundle adjustment with conjugate gradients and more precise.
An interesting path for future work would be to try and combine the largely
orthogonal strengths of the direct versus iterative approaches. One such idea
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would be to solve a simpli�ed (skeletal) system using a direct solver and use
that as a preconditioner for the complete system.



Chapter 13

Multiscale Preconditioning

In this chapter we present some results on how the bundle adjustment problem
might be preconditioned using domain knowledge. These results were �rst pub-
lished in [11], prior to those of Chapter 11. However, we felt that placing them
here would give the thesis a more natural progression.

As previously mentioned, bundle adjustment problems are often very large,
commonly involving thousands of variables. The traditional Levenberg Mar-
quardt algorithm with a direct sparse solver can be e�ciently adapted to the
special structure of the problem and works well for small to medium size setups.
However, for larger scale con�gurations the cubic computational complexity
makes this approach prohibitively expensive. The natural step here is to turn
to iterative methods for solving the normal equations as was done in the pre-
vious chapter. However, as was noted, this works well in some cases where
the structure makes the problem reasonably well conditioned. In other cases,
convergence is disappointingly slow with �bottom up� preconditioners such as
the block QR preconditioner introduced there. In the �eld of large scale nu-
merical linear algebra, there seems to be a rather wide spread consensus that
�nding the right preconditioners is the most important factor for the success of
any iterative linear solver. In this chapter, we take a �top down� approach to
the problem and ask what domain knowledge can buy us in the case of bun-
dle adjustment. Our basic empirical �nding is that convergence is in general
fast for small local deformations whereas the real problem lies in more global
coarse scale deformations. To address this issue we have experimented with
various ways of introducing di�erent representations of the problem which are
able handle these deformations in a better way.

In this chapter we make use of multiscale representations, derived from the
underlying geometric layout of the problem and show how these can be used
to dramatically increase the power of straightforward preconditioners such as
Gauss-Seidel.

13.1 Multiscale Preconditioning

In this section we discuss how a multiscale representation can be used to acceler-
ate convergence. The conjugate gradient method is invariant under orthonormal
changes of basis. This means that a perfect orthogonal transformation taking

143
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Figure 13.1: (A) Synthetic example with a 32 meter long wall viewed by a
sequence cameras. (B) Deformation corresponding to the smallest (non-zero)
singular value. This deformation has approximately the e�ect of a linearly
varying sca le along the wall. (C) The next smallest eigenmode corresponding
to bending of the wall. (D) The third slowest mode corrsponding to some kind
of combination of bending and varying scale.

JTJ to diagonal form would in principle not improve convergence. What we
will show is how one can improve convergence rates considerably by combining
changes of basis with standard preconditioners. For intuition, consider the left
singular vectors of J . Using these as basis vectors would take JTJ to diagonal
form and then Jacobi preconditioning would produce the identity matrix lead-
ing to convergence in one step in the conjugate gradient method. Of course,
the singular vectors are way to expensive to compute, but if we could somehow
approximate them, then we should be in a good position. Empirically, large
singular values correspond to components representing very local displacements
(�ne scale) in only a few variables, whereas small singular values correspond
to more global (coarse scale) deformations. In the experiments section we con-
sider a synthetic example where a 32 meter long wall is viewed by a sequence
of translating cameras. Figure 13.1 shows this example together with deforma-
tions corresponding to the three lowest eigenmodes (excluding the seven gauge
freedoms) of the Jacobian.

To explicitly tackle this situation we have experimented with various multi-
scale representations of the problem. These can e.g be obtained by hierarchically
splitting the set of unknowns. In each step the set of unknown variables is split
into two (approximately equally sized) pieces. This gives a dyadic multiscale
representation of the problem.

In our changes of basis we have experimented with various approaches. The
�rst approach we tried was using basis vectors corresponding to translation and
counter-translation as illustrated in �gure 13.2.b and c. The basis is similar to
that of the Haar basis, but each division has three basis vectors corresponding to
the three translation directions. By proper weighting of the vectors the basis can
be made orthogonal. In addition to translation we optionally also add rotation
and scaling to a component.

After experimenting with the Haar like basis, we tried a more straightfor-
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Figure 13.2: Illustration of a multiscale basis at a coarser scale (b) and at a
�ner scale (c), where points represent camera locations and/or 3D points. The
points and/or cameras are hierarchically split into a dyadic basis.
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Figure 13.3: Illustration of displacement basis vectors for a speci�c subset of
points (e.g camera centers). From left to right: translation, rotation and scaling.

ward multiscale representation by simply letting all elements within a division
translate, rotate and scale in the same direction. The Haar representation is in
a sense more sophisticated since it by construction yields an orthogonal basis,
whereas the simpler representation is highly correlated and a priori we there-
fore felt that the Haar representation should perform better. To our surprise we
have however not been able to observe this so far. On the contrary, the straight-
forward multiscale representation actually seems to perform slightly better and
this is therefore the one which has been used in the experiments.

13.1.1 Constructing AMultiscale Representation for Bun-
dle Adjustment

We now turn to a more detailed discussion of how the multiscale representation
can be obtained. To get a manageable sized problem, we factor out the 3D
point variables leaving only the camera variables. Now, given a set of cameras
with approximately known camera centers t1, · · · , tm we construct a multiscale
representation matrix P using a hierarchical binary partitioning of the cameras;
At the top level the cameras are split into two groups and these are then recur-
sively split into successively �ner groups until some minimum size is reached.
We have experimented with various ways to do this partitioning e.g using the
camera graph and graph clustering algorithms, but so far simple k-means clus-
tering based on the camera locations with two clusters at each level seems to
yield the best results. We feel that this is not the end of the story and there
should be room to do something more clever on this point.

For each partition ci ⊂ {t1, . . . , tm}, we now add a set of basis vectors
xi, yi, zi representing translational displacement to the basis P . For instance,
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the basis vector xi would consist of ones for each position corresponding to an x
coordinate of ti ∈ ci and zeros otherwise. Optionally, we also add basis vectors
corresponding to rotation in three di�erent planes, txyi , t

yz
i , t

zx
i and scaling si.

See Figure 13.3 for an illustration of these basis vectors.
The basis vectors are collected in a matrix

P = [x1, y1, z1, . . . , xm, ym, zm, . . . ], (13.1)

used to allow multiscale preconditioning. By changing basis according to

Ãs = PTAsP, x = Px̃, b̃ = PT b (13.2)

we obtain
Ãsx̃ = b̃, (13.3)

where As is the Schur complement As = A − BC−1BT discussed in Chap-
ter 11. We can now write Ãs = L̃ + D̃ + L̃T and apply Jacobi or Gauss-Seidel
preconditioning to Ãs.

We have found that the best results are obtained when the partitioning
is done all the way down to single cameras. At the �nest level scaling does
of course not apply and what we get there is thus simply the standard basis.
This obviously yields an overcomplete basis P and empirically this seems to be
important to obtain good convergence

13.1.2 E�cient Implementation of the Multiscale Trans-
formation

At a �rst glance, the step 13.2 might look exceedingly expensive since it involves
two matrix-matrix multiplications (cubic complexity) to obtain Ãs. However,
since this is a multiscale transformation it should not be implemented as a ma-
trix multiplication. For instance, the Haar wavelet transformation x̂ = Phaarx of
a vector is of linear complexity (and not quadratic complexity as normal square
matrix-vector multiplication). Furthermore, there is actually a way to avoid
two dimensional transformation of As (both columns and rows). Writing the
Jacobian in the form J = [JC JP ] we get

As = JTCJC − JTCJP (JTP JP )−1JTP JC
= JTC (I − JP (JTP JP )−1JTP )JC
= JTCTPJC
= (TPJC)T (TPJC)
= JTsCJsC ,

where TP is the projection matrix onto the orthogonal complement of the
columns of JP (and hence symmetric with T 2

P = TP ). This means that we
can write the Schur complement As as the inner product of a �Schur Jacobian�
with itself As = JTsCJsC . Using CGLS instead of the normal CG algorithm
(as described in the previous chapter), we can thus avoid forming As explicitly.
A new complication now is however how to apply Gauss-Seidel precondition-
ing. As it is usually written Gauss-Seidel preconditioning requires the upper (or
lower) triangular part of As. Fortunately, Björck et al have showed how Gauss-
Seidel preconditioning can be applied in the context of least squares without
explicitly forming the normal equations [6]. By applying the preconditioner in
an incremental fashion, we can avoid computing JTsCJsC .
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Figure 13.4: Top: The synthetic wall problem viewed from above with ground
truth below and perturbed starting guess before bundle adjustment above. Bot-
tom: Log10 residual error relative to the optimal solution versus number of iter-
ations for the conjugate gradient method with various forms of preconditioning.
A: Jacobi, B: Gauss-Seidel (GS), C: Multiscale representation + GS, D: Mul-
tiscale with rotation + GS, E: Multiscale with rotation and scaling + GS F:
Multiscale + Jacobi.

13.2 Experimental veri�cation

In a �rst synthetic experiment we have simulated a long wall (32 meter) with
cameras viewing the wall at roughly every meter. In this experiment we cal-
culated the ground truth estimate (not the ground truth reconstruction) by
exhaustive Gauss-Newton iterations. A starting guess was chosen so that the
error was proportional to 1/si in the direction vi, where si are the singular val-
ues of the Jacobian at the optimum and vi are corresponding basis vector. This
simulates the e�ect that we may be far o� in the directions that are most di�-
cult to estimate. In the experiment we have �rst reduced the problem to that
of only cameras as in Chapter 11. In Figure 13.4 the convergence of di�erent
methods are compared. In the �gure, the logarithm of the relative di�erence
between the residual error and the optimal residual error is shown as a function
of optimization steps. In each step of the algorithms a new residual and Jaco-
bian is calculated followed by 10 iterations of the conjugate gradient method
with di�erent choices of bases and preconditioners.

In the �gure, curve A illustrates the convergence of the original equation
with the Jacobi preconditioner and as can be seen, convergence is quite slow.
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Figure 13.5: Topview of the reconstructed 3D points in the St. Peter data set.

The convergence improves with Gauss-Seidel preconditioning as is illustrated by
curve B, but the real boost in convergence is obtained when multiscale represen-
tations are combined with Gauss-Seidel preconditioning (curves C, D and E).
For all of these there is a steady drop in the RMS error relative to the optimum
and convergence within machine precision is achieved after 40-60 iterations. In
this experiment we have tried all three approaches multiscale representation with
only translations (curve C), with translations and rotations (curve D) and with
translations, rotations and scale (curve E). As can be seen, each additional type
of large scale deformation additionally facilitates convergence to the optimum.
Curve F shows the convergence with multiscale representation and Jacobi only
preconditioning. Surprisingly, multiscale together with this most basic form
of preconditioning actually does worse than only Jacobi preconditioning. This
suggests that on its own, the multiscale representation is not su�ciently similar
to the singular vectors of the Jacobian and the additional Gauss-Seidel step is
needed to bring out its potential.

13.2.1 The St. Peters Basilica

In addition to the synthetic data set we have run the proposed method on
a dataset constructed from 285 real photographs of the St. Peters Basilica in
Rome, containing 142283 3D points and 466222 image measurements. This data
set was used in [65] to evaluate an out of core approach to bundle adjustment. A
top view of the reconstructed point cloud of the dataset is shown in Figure 13.5.

On this dataset, we again computed a ground truth estimate by running
normal bundle adjustment until complete convergence. Figure 13.6 shows the
relative di�erence to the optimum on a logscale versus the number of itera-
tions. As in the synthetic experiment, we again see a drastic improvement in
convergence with the proposed method for preconditioning. Note that on this
more di�cult data, the Gauss-Seidel preconditioner was not able to improve
convergence much on its own.

Ni et al optimized the sequence in 49 minutes on a standard PC. After re-
moving 5 images from the data set which did not see any feature points of the
model we optimized the set using our approach. The total running time was
about 20 minutes, probably to slightly lower accuracy. However, for reference
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Figure 13.6: Log10 Bundle adjustment of the St. Peter data set: Residual error
relative to the optimal solution versus number of iterations. A: Jacobi, B: GS,
C: Multiscale with rotation and scaling + GS, D: Levenberg Marquardt.

we also made an implementation of standard bundle adjustment using Matlab's
sparse direct routines for linear systems and this solver optimized the set in also
about 20 minutes to full accuracy. Since running time depends on a large num-
ber of �ne implementation details, especially for the preconditioned conjugate
gradient method and multiscale representations, the results should only be seen
as preliminary.

13.3 Conclusions

In this paper we have studied how multiscale representations can be used in
conjunction with standard preconditioners for conjugate gradient algorithms
for solving large sparse bundle adjustment problems. Our intuition about the
problem is that iterative solvers often have convergence problems due to di�-
culties with large scale, slowly varying deformations. We have tried to tackle
this problem by explicitly introducing variables representing various deforma-
tions on di�erent scales. The algorithms have been tested on both real and
synthetic data sets and the results con�rm our hypothesis in the sense that
vastly improved convergence rates can be obtained this way.

Since the work presented in this chapter was �rst published, some e�ort
has been put into obtaining an e�cient implementation of the multiscale rep-
resentation, hoping to beat bundle adjustment based on direct solution of the
normal equations for large problems. So far though, that goal has not been
reached. One reason for this is that to obtain the kind of powerful improvement
in convergence showed in the experiments in this chapter, it seems necessary to
include all scales down to partitions with only a couple of cameras. This make
the transformed Schur Jacobian JsCP very large in memory.

We still �nd the results interesting though since they show that large im-
provements in convergence can be obtained by simply representing the problem
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in a di�erent way. We hope that these results might open up the possibility
for designing new e�cient bundle adjustment algorithms, possibly enabling the
solution of problems that were previously out of reach. More investigation is,
however, needed in order to exploit these results and to obtain e�cient algo-
rithms.



Chapter 14

Conclusions

This chapter concludes the thesis with some closing remarks and some possible
future research directions. Since the two main parts of the thesis (polynomial
equations and bundle adjustment) are relatively independent the concluding
discussion has been split over two sections; one for each topic.

14.1 Polynomial Equations

In a sense, the title of the main paper for this part of the thesis, �Fast and Stable
Polynomial Equation Solving and Its Application to Computer Vision� is a bit
misleading. The words �fast and stable� seem to imply that we now have the
tools to easily and e�ciently solve most polynomial equations. This is far from
true. Whereas we have come a long way as demonstrated by many examples in
this thesis, many problems still remain way out of reach. However, in the cases
we have encountered so far, numerical stability has no longer been the limiting
factor. Instead what sets the limit for what we can solve numerically is the
sheer size of the matrices occurring in the computations, leading to infeasible
time and memory requirements. We can typically deal with systems of up to
50 or sometimes even 100 solutions, but above that our methods are simply
insu�cient. Alternatively, these problems are perhaps inherently so di�cult
that no really e�cient methods to solve them exist.

There are however many interesting questions directly connected to the
methods presented in this thesis that still have not been answered. The central
theme of this work has been to generalize the action matrix method and exploit
as many previously overlooked opportunities to improve speed and stability as
possible. The most important discovery here is arguably the large freedom in
how a basis can be selected from the set of all monomials M occurring in an
expanded set of equations. This is also where most topics still to be explored
can be found. For instance, given an expanded set of equations, one would like
to know if it is at all possible to construct a solving basis for this set of equations
and in that case how it should be chosen. A solid theoretical understanding of
this question and e�cient and reliable algorithms for answering this for partic-
ular cases would be immensely helpful in applications. Furthermore, except for
manual testing, we have no real guidance in how to construct the expanded set
of equations. Currently, this is largely an empirical process done by hand. What
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degrees should we go to? Should we go to the same degrees for all equations?
For all variables? Are there any bounds on what degrees we will need to go to?
These questions are most likely very di�cult to answer and have been studied
for quite a long time in the algebraic geometry community.

This thesis discusses both stability and speed, but looking at the main con-
tributions and the experiments it is evident that numerical stability has been
the main focus. Since huge amounts of data is typically paired with real time
requirements in computer vision applications, speed is however always of high
priority. An interesting topic which has not been much explored yet in com-
puter vision applications of polynomial solvers is real root extraction. It is not
uncommon in a case with say 50 solutions that only a handful of these are real.
It seems that an algorithm which computes only these could be much faster. A
promising possibility here is to compute a total degree Gröbner basis and then
convert it to a lexicographical Gröbner basis using the FGLM algorithm [27].
This way one obtains a one-variable polynomial for which the real roots can be
bracketed very e�ciently using Sturm sequences [45]. This would then have to
be done once for each variable.

To summarize, we have introduced a range of techniques which have enlarged
the class of problems that can now be handled successfully. However, approach-
ing a particular problem by formulating it as a system of polynomial equations
still comes with a degree of uncertainty. It is di�cult to tell a priori what the
outcome will be in terms of number of solutions, speed and stability. Under the
right circumstances, solving a polynomial equation is by far the best method,
especially in terms of speed. In other cases the polynomial system is simply too
complex to yield anything valuable. Due to this, so far the main application
in computer vision of these techniques has been to solve minimal problems of
structure from motion. Only time will tell whether the strategy of formulating
a given problem as a polynomial equation system will have a broader use.

14.2 Bundle Adjustment

The motivation for studying large scale bundle adjustment is that it constitutes
a major computational bottle neck. For structure from motion reconstructions
in the order of 103 − 104 cameras or more nearly all the computational time
can easily be spent doing bundle adjustment. The bundle adjustment step is
also the hardest step to parallelize and memory requirements can be extreme.
State-of-the-art methods for bundle adjustment in general rely on solving a sys-
tem of linear equations involving all variables in the system in each iteration.
Direct solution of a linear system has time and memory complexity O(N3),
where N is the number of variables and one can thus easily appreciate the need
for alternatives when N grows. We have studied a class of algorithms (conju-
gate gradient methods) where the computationally most demanding step only
involves a matrix-vector product. For a general square matrix, this operation
is O(N )∈. However, in bundle adjustment the matrix in this operation (the
Jacobian) has a sparsity structure which (under some quite reasonable assump-
tions) actually makes this operation O(N). While this looks very promising,
the problem is of course that this says nothing about the number of iterations
needed to reach the solution. What we have observed in our research is that if
one wants to �nd the optimal solution within machine precision, it seems very
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hard (if at all possible) to keep the number of iterations low enough to beat
the standard approach with a direct solver. In that sense, the outcome of this
part of our research is a disappointment. The reason that the direct solver ap-
proach is so hard to beat in practice is probably due to two reasons: (i) modern
sparse direct solvers are extremely e�cient and good at making use of problem
structure, which in practice often means an empirical complexity which is lower
than O(N3) and (ii) the bundle adjustment problem seems to be naturally ill
conditioned (except for some special cases) which makes it a hard target for
iterative linear solvers.

There are however also reasons to be optimistic. First of all, even if the
conjugate gradient (CG) methods show slow convergence near the optimum,
they can at least still handle the type of very large problems we are interested in.
As was shown in Chapter 12 it is possible, in a relatively small amount of time,
to obtain a result which is within subpixel precision of the output from direct
bundle adjustment. Thus perhaps the tradeo� is time/memory vs accuracy.
The Venice data set studied in Chapter 12 is large enough and structured in
such a way that we are nowhere near doing bundle adjustment with Cholesky
factorization in that case. Still we can run our CG based solver and obtain a
good reconstruction (in terms of reprojection errors) in a reasonable amount of
time.

Secondly, there are some interesting paths for future work and some indi-
cations that the slow convergence of the CG solvers can actually be overcome.
Chapter 13 shows that it actually is possible to get much better convergence
with the right preconditioning. The problem there is of course that the precon-
ditioner itself is too expensive in terms of both memory and computation time
to be really practical. The interesting result here is not just that we have found
a preconditioner (recall that e.g using the inverse of JTJ would be the perfect
preconditioner), but how it was constructed. In essence what we showed is that
by simply parameterizing the problem in a di�erent way it is possible to obtain
much improved convergence rates. The hope here is naturally to �nd a way to
compute and apply such parameterizations much more e�ciently.

An interesting observation in Chapter 12 is that direct and iterative bundle
adjustment respectively show their strengths on quite di�erent types of prob-
lems. Bundle adjustment with a direct solver shines where there is much sparsity
and a highly structured variable graph since this allows factorization with little
�ll-in. CG based bundle adjustment on the other hand works best for highly
connected problems where the distance in the variable graph between any two
unknowns is small - precisely the type of structure which produces large amounts
of �ll-in during Cholesky factorization and easily causes that approach to break
down. As previously mentioned it would thus be interesting to try and combine
these largely orthogonal strengths of the direct versus iterative approaches. One
such idea would be to solve a simpli�ed (skeletal) system using a direct solver
and use that as a preconditioner for the complete system.
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