Macrocyclic Carbohydrate/Amino Acid Hybrid Molecules - Synthesis and Evaluation as Artificial Receptors

Billing, Johan

2005

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Synthesis of a \(C_3 \)-symmetric macrocycle with alternating sugar amino acid and tyrosine residues

Johan F. Billing and Ulf J. Nilsson*

Organic and Bioorganic Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden

Received 11 October 2004; revised 1 December 2004; accepted 8 December 2004

Available online 22 December 2004

Abstract—A \(C_3 \)-symmetric macrocycle with alternating sugar amino acid and tyrosine residues was synthesized in seven steps from tyrosine \(\text{tert} \)-butyl ester and a sugar amino acid precursor derived from D-glucosamine. An Fmoc-protected D-glucosamine derivative was oxidized at C-6 to give the sugar amino acid, which was immediately coupled to tyrosine \(\text{tert} \)-butyl ester to produce an orthogonally protected building block. This building block was subsequently elongated to the trimer via the dimer, and finally cyclized to give the \(C_3 \)-symmetric macrocycle.

© 2004 Elsevier Ltd. All rights reserved.

Cyclic sugar amino acid/amino acid hybrids have in recent years attracted interest as peptidomimetics\(^1\)-\(^7\) and have also been proposed as potential artificial receptors.\(^8\)-\(^10\) The sugar amino acids have mainly been used to induce turns, but in the present work a sugar amino acid that has previously been shown to induce an extended conformation\(^1\) has been used in an attempt to obtain a rigid macrocycle that can form a central cavity without collapsing. Such molecules have the potential to form a binding site for guest molecules in the center and thus act as artificial receptors. We here present the synthesis of a \(C_3 \)-symmetric macrocycle with alternating sugar amino acid and tyrosine residues. To the best of our knowledge, this is the first example of a \(C_3 \)-symmetric macrocycle with alternating sugar amino acid and \(\alpha \)-amino acid residues, although examples with \(\beta \)- or \(\varepsilon \)-amino acids have been prepared by others.\(^9,11\)

The first building block for the macrocycle was synthesized by oxidizing sugar amino acid precursor \(^1\)\(^10\) using Jones’ reagent and then directly coupling the crude sugar amino acid to tyrosine \(\text{tert} \)-butyl ester, which afforded \(2 \) in 53% yield over two steps (Scheme 1). Sugar amino acid/amino acid hybrid \(2 \) was deprotected using tetrabutylammonium fluoride (TBAF) and 1-octanethiol in THF\(^12\) to give the second building block \(3 \).

With the necessary building blocks in hand, we turned to the synthesis of the macrocycle (Scheme 2). In the first attempt, building block \(2 \) was treated with 33% trifluoroacetic acid in CH\(_2\)Cl\(_2\) with Et\(_3\)SiH as a scavenger\(^13\) to cleave the \(\text{tert} \)-butyl ester and the crude product was directly coupled to building block \(3 \) using \(N \)-(3-dimethylaminopropyl)-\(N \)-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxybenzotriazole (HOBt) in an attempt to produce \(4 \). This yielded 27% of the desired material \(4 \) along with 19% of epimerized product. Clearly, coupling conditions with lower epimerization were needed and we turned to diisopropylcarbodiimide (DIC) and HOBt in the absence of a base,\(^14\) which gave 58% of \(4 \) and only 6% of the undesired epimer after separation by flash chromatography.

The \(\text{tert} \)-butyl ester of compound \(4 \) was cleaved with TFA/CH\(_2\)Cl\(_2\)/Et\(_3\)SiH and the crude product was coupled to building block \(3 \) to afford \(5 \) in 68% yield. No epimerization was observed in this coupling. The Fmoc

Keywords: Sugar amino acids; Cyclic peptides; \(C_3 \) symmetry; Macrocycles.

*Corresponding author. Tel.: +46 46 2228218; fax: +46 46 2228209; e-mail: ulf.nilsson@bioorganic.lth.se

0040-4039/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

group of 5 was cleaved using DBU with a solid-phase thiol as a scavenger15 to give 6 in excellent yield.

After cleavage of the tert-butyl ester in compound 6, the crude linear material was cyclized using 1-(1-pyrrolidinyl-1H-1,2,3-triazolo[4,5-b]pyridinyl)methylene)pyrrolidinium hexafluorophosphate-3-oxide (HAPyU),16 and N,N-diisopropylethylamine (DIPEA) in THF under dilute conditions to give 7 in 27\% yield. Deprotection of 7 using 10 mM NaOMe in MeOH gave a number of products and only 11\% of the desired compound 8 was obtained after purification by HPLC. The main product of the reaction was instead a compound that had a mass that was 18 lower than expected (HRMS 1079.3709) and exhibited an NMR spectrum indicative of a nonsymmetrical compound with an unexpected signal in the olefinic region at \textasciitilde 6 ppm. This evidence led us to conclude that elimination of water or benzoic acid had taken place during the reaction. Deprotection at lower base concentration (2 mM) reduced the elimination somewhat and improved the yield to 16\%. Deprotection in MeOH using either Et$_3$N, MeNH$_2$ or 4 Å molecular sieves20 was also attempted, but these conditions gave even more side reactions.

The 3J_{HH} coupling constants in the sugar amino acid residues decrease from 8–10 Hz to 7–8 Hz upon cyclization of 6 to 7, which indicates that the 4C_1 conformation no longer is the only major conformation of the sugar amino acids. This prompted us to carry out a computational study on the conformation of 8 using Monte-Carlo conformational searches in MacroModel 8.5 (MMFFs force field with water as solvent, 20,000 steps, all backbone torsions were selected for random variation). The calculated low-energy conformers all had only one of the three sugar amino acid residues in the chair conformation, the other two were either in the boat or skew conformations (Fig. 1). Thus it appears that the macrocyclic ring is rather strained, which may be a reason for the difficulties experienced in the deprotection of the macrocycle.

In conclusion, we have prepared a C_3-symmetric macrocycle with alternating sugar amino acid and tyrosine residues in only five steps from the building blocks. The synthetic strategy is flexible in the sense that it will allow structural diversification by varying the amino acid building blocks to give symmetrical as well as nonsymmetrical macrocycles possessing up to three different amino acids, with potential to function as host molecules in an aqueous environment.

Acknowledgments

We thank the Swedish Research Council, the Swedish Strategic Research Foundation, and the program ‘Glycoconjugates in Biological Systems’ sponsored by the Swedish Strategic Research Foundation for financial support.

Supplementary data

Experimental procedures and physical data for compounds 2–8. Supplementary data associated with this

References and notes

16. The HATU and HBTU coupling reagents were long believed to be uronium salts, but have been shown to be guanidinium salts when prepared using the conventional methods. This is likely to be true for HAPyU as well. HAPyU was prepared from 1-hydroxy-7-azabenzotriazole potassium salt (KOA) and commercially available chloro-N,N,N',N'-bis(tetramethylene)-formamidinium hexafluorophosphate using Knorr/C213 method for the preparation of similar coupling reagents.18,19