
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Merging Real-Time and Control Theory for Improving the Performance of Embedded
Control Systems

Cervin, Anton

2004

Link to publication

Citation for published version (APA):
Cervin, A. (2004). Merging Real-Time and Control Theory for Improving the Performance of Embedded Control
Systems. Department of Computer Engineering and Systems Science, University of Pavia, Italy.
http://www.control.lth.se/documents/2004/cer04rep.pdf

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/59c890ad-f8ef-4ba4-9050-423064d7eca3
http://www.control.lth.se/documents/2004/cer04rep.pdf

Research Report:

Merging Real-Time and Control Theory for

Improving the Performance of Embedded Control

Systems

Anton Cervin

Department of Computer Engineering and Systems Science
University of Pavia, Italy

September 15, 2004

Project Supervisor: Giorgio Buttazzo

Sponsoring Organizations: EU/ARTIST, EU/ARTIST2

Abstract

This report describes the work carried out within the research project
“Merging Real-Time and Control Theory for Improving the Performance
of Embedded Control Systems”. The overall objective of the work has
been to develop integrated control and scheduling methods for im-
proving the performance of real-time control systems with limited re-
sources. The work has fallen into three categories. First, overrun meth-
ods for control tasks has been investigated. Specifically, a reservation-
based scheduling concept called the control server has been further
developed, and control experiments on a ball-and-place process have
been performed. Second, the issue of jitter in real-time control systems
has been explored. The concept of jitter margin has been introduced as
a link between control stability theory and scheduling theory. In this
context, best-case response-time analysis under earliest-deadline-first
scheduling has been researched. Third, some development work on the
S.Ha.R.K. real-time kernel has been performed. The rate-monotonic
and earliest-deadline-first scheduling modules have been extended, and
new modules for the elastic task model and the control server model
have been implemented.

Contents

1. Introduction . 3

2. Overrun Handling in Real-Time Control Systems 5
2.1 Background and Motivation . 5
2.2 Analysis of Basic Overrun Strategies 8
2.3 Overrun Handling in the Control Server 11
2.4 Aperiodic Control Server Tasks . 12
2.5 A Control Application . 13
2.6 Conclusion . 16

3. The Jitter Margin . 17
3.1 Background and Motivation . 17
3.2 The Jitter Margin . 18
3.3 Review of Response-Time Analysis 23
3.4 Best-Case Response-Time Analysis Under EDF 24
3.5 A Codesign Procedure . 26
3.6 Conclusion . 29

4. S.Ha.R.K. Scheduling Modules . 31
4.1 Background . 31
4.2 Improved EDF and RM Scheduling Modules 31
4.3 The Control Server Scheduling Module 33
4.4 The Elastic Scheduling Module . 35

5. Conclusion . 37

References . 38

2

1. Introduction

It is generally agreed that the research area of real-time scheduling theory was
born when Liu and Layland published their seminal work on periodic task schedul-
ing in the early seventies [Liu and Layland, 1973]. What fewer people recall is that
their work was motivated by and firmly based on the assumptions of digital pro-
cess control. Sampled-data control theory had been developed during the fifties
and sixties to cover the case where a continuous-time plant was controlled by a
digital computer. The work of Liu and Layland facilitated the closing of multiple
control loops over the same computer, thus allowing the computational resources
to be used more efficiently. They also carefully pointed out that their proposed
algorithms could introduce a computational delay of up to one sample in each
control loop, and that this should be accounted for in the control design.
Much of the real-time theory developed since the seventies has focused on

different task models rather than on specific applications. Hence, the controller
timing aspects have tended to be forgotten. Similarly, the majority of recent devel-
opments in control theory has been far from implementation-oriented. This has
created an increasing gap between control theory and real-time theory that has
only recently begun to be recognized and addressed, e.g., [Seto et al., 1996; Alber-
tos and Crespo, 1997; Törngren, 1998; Årzén et al., 1999].
It should be pointed out that the well-established theories of hard real-time

systems and sampled-data systems are perfectly applicable as long as the compu-
tational resources are aplenty. It is then possible to use high sampling rates and
to base the real-time design on worst-case assumptions on task activation rates
and execution times. In many embedded applications, however, the cost of the
computing hardware is an important factor, and the developer must strive to use
as lightweight a platform as possible. In the case of limited computing resources,
the choice of scheduling algorithm and other design issues in the implementation
can have a large impact on the control performance.

Summary of Work and Outline

The common theme in this research project has been how to handle timing varia-
tions in real-time control. In Chapter 2, control algorithms with varying execution
times are studied. The traditional approach to such tasks has been to design the
real-time system in accordance with the worst-case execution times. Here, a dy-
namic approach is explored, where the occasional long execution times are treated
as exceptions. The application can be informed about its timing status and adjust
its own actions and activations based on this information. This work is an exten-
sion of the scheduling methods developed in [Abeni and Buttazzo, 1998; Caccamo
et al., 2000; Cervin et al., 2003], coupled with the control analysis developed in
[Lincoln and Cervin, 2002]. For experimental validation, control-scheduling exper-
iments with a ball-on-place control application have been performed.
In the Chapter 3, the timing variations are seen from the point of view of the

controller. The delay variations are not necessarily the result of varying execution
times, but rather of the scheduling algorithm itself. Under the standard rate-
monotonic (RM) and earliest-deadline-first (EDF) scheduling algorithms, various
amount of input-output jitter are introduced in the control loops. Using response-
time analysis [Joseph and Pandya, 1986; Spuri, 1996; Redell and Sanfridson,
2002], the jitter may be quantified for each task. Here, the theory is extended
to give a lower bound of the best-case response time under EDF scheduling. Also,
based on a recent stability theorem for control systems with jitter [Kao and Lin-
coln, 2004], we propose the notion of jitter margin and show how it can be used to
link the response-time analysis to control stability analysis.

3

Chapter 1. Introduction

Chapter 4 reports on the implementation and modification of various schedul-
ing modules in the S.Ha.R.K. real-time operating system [Gai et al., 2001]. One
way to reduce jitter in control applications is to use dedicated tasks for input and
output actions. To synchronize the different communicating tasks, offsets can be
used. Hence, task release offsets have been added to the EDF and RM scheduling
modules. These modules have also been extended to handle deadlines less than the
period, also suitable for the scheduling of dedicated input and output tasks. For
the overrun handling, a new scheduling module for the control server task model
has been developed. For tasks with more slowly time-varying computational re-
quirements changes, a scheduling module for the elastic task model [Buttazzo
et al., 1998] has been implemented.
Finally, in Chapter 5, the results are summarized and some suggestions for

future work, both theoretical and practical, are given.

4

2. Overrun Handling in Real-Time

Control Systems

2.1 Background and Motivation

In embedded control systems, the computational resources are limited and must
be used as efficiently as possible. This can prevent the use of high sampling rates
and a real-time design based on worst-case execution times. In this section, we
study the particular problem of control applications with execution times that can
vary from sample to sample.
At the heart of the problem lies a trade-off between the control task sampling

period and the probability of execution overruns. The CPU utilization Ui of a task
is given by

Ui =
Ci

Ti
, (2.1)

where Ci is the worst-case execution time and Ti is the task period. It is seen
that, for a given value of Ui, a large enough Ti must be chosen to accommodate
the largest possible execution time. It is well known that an overly long sampling
period leads to degraded control performance. Hence, it can be tempting to choose
a smaller Ti than what is dictated by (2.1). The penalty that must be payed is
that of occasional execution overruns. If the performance loss due to the overruns
is smaller than the performance gain due to the shorter sampling period, then
such a design could be considered “better” than the classical worst-case design.
The influence of the sampling interval on the control performance is relatively

easy to understand and to compute. The consequence of execution overruns is
considerably more difficult to predict. The result depends on a large number of
factors: the basic scheduling algorithm, the specific overrun handling method,
the execution-time characteristics of the control task, the controller and plant
dynamics, whether or not dynamic control compensation is used, etc, etc. Hence,
it is simply not possible to devise an overrun handling method that is “the best”
for all control applications.
Varying execution times may stem from the control application itself or have

their origin in the operating system or the computing hardware. Examples in
the first category include discrete logic and data-dependencies in the control algo-
rithm. In the second category we find unaccounted interrupts and hardware effects
such as cache misses. We are concerned with occasional, “random” overruns that
deviate from the nominal execution-time, denoted by Cnom.
One way to try to model the variations in execution time is to use a probability

distribution function. Figure 2.1 shows an example of what such a function might
look like. In the example, the probability function is built from a point distribution
at Cnom and a uniform distribution between Cnom and the true worst-case execution
time, Cmax. It should be noted that, in a real system, the execution times from
sample to sample are typically not independent, and it can be very hard to estimate
the maximum execution time.
The overrun handling methods explored in this chapter are based on reservation-

based scheduling algorithms, where a given fraction of the CPU is assigned to
each task. Such algorithms provide temporal isolation and make it easier to rea-
son about each task separately. Also, we assume local overrun handling, which
means that no global resource repartitioning takes place in the case of an overrun.

5

2.1 Background and Motivation

c

p

Cnom Cmax

P(c)

Figure 2.1 Example of an execution-time probability density function that could be used to
model control tasks with varying execution time. In this example, a point distribution and a
uniform distribution and a total of three parameters are used.

The novelty of the work lies in the controller timing analysis and the introduction
of feedback from the scheduler to the application regarding the current timing
status. This enables the controller to compensate for the overruns.

Server-Based Scheduling

In the hard-real-time scheduling literature, execution-time and deadline overruns
are seldom mentioned. This is quite natural, since the definition of a hard real-
time system implies that such overruns may never occur. It is well known, however,
that ordinary hard scheduling algorithms such as RM and EDF do a poor job in
the case of overruns. Under either strategy, an overrun in one task may lead to
unpredictable deadlines misses in the other tasks [Buttazzo, 2003].
If it is known that overruns may occur, a good design methodology demands

that they are explicitly handled by the real-time system. One way to do so is to
schedule tasks with variable computation time using servers. The server concept
was originally introduced for handling aperiodic tasks (i.e., tasks without a known
minimum interarrival rate) in hard real-time systems. The aperiodic servers were
first developed for fixed-priority scheduled systems [Lehoczky et al., 1987]. Later,
the ideas were also extended to deadline-scheduled systems [Spuri and Buttazzo,
1996].
A server that was designed to handle both aperiodic tasks and tasks with

unknown and variable execution times is the constant bandwidth server (CBS)
[Abeni and Buttazzo, 1998]. A CBS creates the abstraction of a virtual CPU with
a given capacity (or bandwidth) Us. A task executing within the CBS cannot
consume more than the reserved capacity. Hence, from the outside, the CBS will
appear as an ordinary EDF task with a maximum utilization of Us. The time
granularity of the virtual CPU abstraction is determined by the server period Ts.

The Control Server

The overrun handling methods explored in this work are based on a further de-
velopment of the constant bandwidth server, called the control server [Cervin and
Eker, 2003]. The control server is a scheduling mechanism tailored to control tasks
that combines three different ideas:

• Reservation-based scheduling. Each task is scheduled by a modified constant-
bandwidth server, where a dynamic server period is used.

• Subtask scheduling. A task may be divided in several segments that are
scheduled as subtasks. Scheduling the two main parts of a control algo-
rithm (Calculate and Update) as subtasks, the input-output latency of the
controller can be reduced [Cervin, 1999].

• Time-triggered I/O. Inputs can be read and outputs can be written at pre-
defined points in time by the kernel, minimizing the jitter in the control
actions [Halang, 1993; Henzinger et al., 2001].

6

2.1 Background and Motivation

II OO

S1 S1 S2S2

j1j1 j2 j2

Segments

Jobs

t

t

Figure 2.2 A periodic Control Server task with two segments.

An illustration of a periodic control server task is given in Figure 2.2. The task
is divided into two segments, S1 and S2. The segments can be viewed as a static
schedule for the input and output operations. At the beginning of S1, an input is
read (I), and at the end of S1, an output is written (O). At the beginning of each
segment, a job associated with the segment is released.
Formally, a control server task τ i is described by

• a CPU share Ui,

• a period Ti,

• a release offset φ i,

• a set of ni ≥ 1 segments S1i ,S
2
i , . . . ,S

ni
i of lengths l

1
i , l
2
i , . . . , l

ni
i such that

∑ni
j=1 l

j
i = Ti,

Associated with each segment S ji are

• an optional input hook I ji ,

• a code function f ji , and

• an optional output hook O ji .

The segments can be thought of as a static cyclic schedule for the reading of inputs,
the writing of outputs, and the release of jobs. At the beginning of a segment S ji ,
i.e., when t = φ i+

∑ j−1
k=1 l

k
i (mod Ti), the input hook I

j
i is called and a job executing

f
j
i is released. At the end of the segment, i.e., when t = φ i+

∑ j
k=1 l

k
i (mod Ti), the

output hook O ji is called.
The jobs produced by a control server task τ i are served on a first-come, first-

served basis by a modified CBS with the following attributes:

• a server bandwidth equal to the CPU share Ui,

• a dynamic deadline di,

• a server budget ci, and

• a segment counter mi.

The server is initialized with ci = mi = 0 and di = φ i. The rules for updating the
server are as follows:

1. During the execution of a job, the budget ci is decreased at unit rate.

2. If ci = 0, or, if a new job arrives at time r and di = r, then

– the segment counter is updated, mi := mod(mi,ni) + 1,

– the deadline is moved, di := di + l
mi
i , and

– the budget is recharged to ci := Ui l
mi
i .

7

2.2 Analysis of Basic Overrun Strategies

In the case of overruns, the control server, as defined above, queues any pend-
ing jobs. Also, the definition above assumes periodic tasks only. In this work, the
server has been modified to also handle aperiodic tasks. Furthermore, the pos-
sibility to skip jobs has been introduced by new functions in the control server
API.

Related Work

Scheduling of systems that allow skips is treated in [Koren and Shasha, 1995] and
[Ramanathan, 1997]. The latter paper considers scheduling that guarantees that
at least k out of n instantiations will execute. A slightly different motivation for
skipping samples is presented in [Caccamo and Buttazzo, 1997]. Here the main
objective is to use the obtained execution time to enhance the responsiveness of
aperiodic tasks.
A variant of the constant-bandwidth server specifically designed to handle

overruns in real-time control systems is presented in [Caccamo et al., 2002]. The
proposed server, called CBShd, differs from the original CBS by postponing the
deadline only by the amount needed to complete the job. In this way, the task
can be scheduled more efficiently and finish earlier. The approach assumes that
the worst-case execution time of the task is known. Unfortunately, the paper’s
control-theoretical foundation is quite weak. It is not explained when sampling and
actuation are performed, the input-output latency is ignored, and it is assumed
that the controller can change sampling rate with zero penalty. Furthermore, in
the performance evaluation, a steady-state performance index is used to compute
the performance of a controller that switches between different sampling intervals.

2.2 Analysis of Basic Overrun Strategies

In this section, we will explore three basic overrun strategies for control tasks,
called Queue, Abort, and Skip. It is assumed that measurement samples arrive
periodically, each triggering the release of a job. A very simple model will be
used, where the control task is assumed to be running in isolation on a dedicated
processor. This approximates the behavior of a task running in a bandwidth server
when the rest of the processor is being fully utilized. It also models the case where
a task executes in a server with hard reservations, i.e., a system where the task
cannot consume more than its budget in each period.
For the output action, two different models will be analyzed. In the first model,

the output is written at the end of the period. If no control signal has been com-
puted at this point, the previous output value is held. This is the default behavior
of a control server task with one segment. In the second model, the output is writ-
ten no sooner than at the end of the period. In the case of an overrun, the output
is be written as soon as the task finishes (unless the task has been aborted, of
course). This behavior can be be approximated using a control server task with a
short extra segment at the end for the output operation. (Note that this scheme
will also introduce a small jitter in the output.)

The Queue Strategy. The queue strategy is the default strategy in the control
server. The strategy is illustrated in Figure 2.3. When an overrun occurs, the
following job is queued and can start once the first instance completes.
Allowing the first job to complete, the second job will be delayed, introducing

extra input-output latency. Also, since the second job is released late, it is less
likely be able to complete before the third job is released. If several long execution
times occur in a row, a long queue of jobs may build up in the server.

8

2.2 Analysis of Basic Overrun Strategies

Job 1

Job 2

0 T 2T
t

Figure 2.3 The Queue strategy. The second job is queued and can start once the first job
completes.

Job 1

Job 2

0 T 2T
t

Figure 2.4 The Abort strategy. When the first job overruns, it is aborted, allowing the
second job to start immediately.

As with the jobs, the samples themselves may or may not be queued. If they
are queued, the input-output latency will grow longer as more and more jobs are
queued. If they are not queued, several instances of the control algorithm will act
on the same measurement data, which may be unnecessary.
To prevent the server queue from growing indefinitely, the server can be mod-

ified so that only a single job is queued, while the rest are discarded. The same
also makes sense for the measurement samples. Acting on old data when fresh
samples are available is not a good idea for feedback applications. Hence, for con-
trol tasks, it is reasonable to queue only one job and one sample. We call this
modified strategy Queue(1).

The Abort Strategy. In the Abort strategy, only the execution-measurement
part of the server is used. The strategy is illustrated in Figure 2.4. When an
overrun occurs, the job is aborted, allowing the next job to be released on time.
This strategy only makes sense as long as the overrun is not task-dependent,

but caused by external, random events such as cache misses or bursty interrupts.
Aborting the current job, the next job can start over with fresh measurement
data, possibly decreasing the input-output latency. If the job execution times are
not independent random variables, however, several overruns in a row can prevent
the controller from updating its output during a long interval.
A problem with the Abort strategy is that it can be difficult to implement.

Generally, operating systems do not support asynchronous transfer of control (pro-
gram flow). Hence, a task can typically not be aborted until a real-time primitive
is called. One possibility is to insert extra checkpoints in the code. Another pos-
sibility is to lower the priority (or equivalent) of the task and let it run in the
background until it has finished. Meanwhile, a new task, taken from a task pool,
is used to execute the next job. Such a scheme will introduce additional over-
head. Care must also be taken such that the task data is in a consistent state
throughout.

The Skip Strategy. In the Skip strategy, subsequent jobs are skipped as long as
the current instance has not completed. The strategy is illustrated in Figure 2.4.
If the overrun covers several periods, many jobs may have to be skipped.
Compared to queuing, skipping can have the advantage of avoiding a domino

effect of overruns due to a single long execution time. An obvious disadvantage

9

2.2 Analysis of Basic Overrun Strategies

Job 1

Job 2

0 T 2T
t

Figure 2.5 The Skip strategy. When the first job overruns, the second job is skipped.

of the skip strategy is that even a small overrun will cause the next job to be
dropped—even if it might have a chance to complete in time.

Performance Analysis. For a given example, performance analysis of the dif-
ferent basic overrun strategies can be carried out using Jitterbug [Lincoln and
Cervin, 2002]. Jitterbug is a MATLAB toolbox for control performance analysis
in the presence of delays and jitter. The performance is measured by a quadratic
cost function,

J = lim
T→∞

1
T

∫ T

0
xT (t)Qx(t) dt.

Here, x is a vector collecting all states and signals in the control system, and Q
is a positive semidefinite weighting matrix.
For each case, a Markov chain describing the state of the scheduler is built.

The Abort and Skip strategies are very simple to model (requiring only 2 Markov
states), while the Queue(1) strategy is more complicated.
The analysis is exemplified on an integrator process,

G(s) =
1
s
.

The controller is designed to minimize the cost function

J = lim
T→∞

1
T

∫ T

0
y2(t) dt,

i.e., a minimum-variance controller [Åström and Wittenmark, 1997]. The sampling
interval h and a computational delay of h is assumed in the design.
An execution-time distribution is assumed according to Figure 2.1, where p =

0.8, Cnom = 1, and Cmax = 2. The performance for each strategy is computed for
different sampling intervals between h = 1 and h = 2. Note that, in the case
h = 2, no overruns occur and all strategies should behave the same.
The results are displayed in Figure 2.6, where the cost is plotted as a function

of the sampling period. As the period is decreased from Cmax, the cost of the Abort
strategy initially decreases, but then increases again as the period approaches
Cnom. With the Skip strategy, the results are reversed—the cost initially increases,
but then decreases as the period becomes shorter. The Queue strategy increases
the cost monotonically with shorter periods. The results in the different cases
are the results of the interplay between the decreased sampling period (good for
performance) and the cost of overruns (bad for performance).
In this example, the Skip strategy has the best performance, assuming that

the period can be chosen freely. In some cases, however, the sampling period may
be dictated by the application, and then the Abort strategy may give better per-
formance.

10

2.3 Overrun Handling in the Control Server

1 1.2 1.4 1.6 1.8 2
3

3.5

4

4.5

5

5.5

6

h

J

Abort
Skip
Queue

Figure 2.6 Comparison of costs in different basic overrun handling strategies.

2.3 Overrun Handling in the Control Server

The default overrun behavior in the control server is to queue any pending jobs
in the case of overruns. As seen in the example in the previous section, this does
not always give the best performance. It is, however, easy to extend the API of the
control server to facilitate the Skip strategy. This is done by the introduction of a
new primitive which indicates whether the task is late or not:

/* Returns 1 if the task is late, 0 otherwise */

int CS_task_late();

“Late” should here be interpreted as follows. When a task has an execution
overrun, its deadline is postponed, and the task is marked as late. The task returns
to the “not late” state when a job task arrives at time r and di ≤ r.

Period and Segment Skipping

Using the CS_task_late primitive, the user can choose to skip a whole period or
just a segment in the case of overruns. For instance, a control task may divided
into one segment that does the control, while the other segment displays some
graphics on the screen. In this case, the second segment can be skipped without
any impact on the control performance. The principle is illustrated in the example
below:

while (1) {

// segment 1

do_control();

CS_task_endsegment();

// segment 2

if (!CS_task_late()) {

draw_graphics();

}

CS_task_endsegment();

}

Formally, the segment is not really skipped, but it is replaced by an empty
segment with a very short execution time. This scheme gives full flexibility to
the programmer while keeping the internal implementation of the control server
simple.

11

2.4 Aperiodic Control Server Tasks

I

OCalculate Update
t

Figure 2.7 Handling late outputs using an extra output segment.

III OOO

S1S1S1 S2S2S2
t

Figure 2.8 An aperiodically triggered control server task.

Alternative Handling of Late Outputs

In the control server, outputs are written at the end of a segment. This creates a
constant input-output latency in a control task, as long as no overruns occur. The
constant latency can be easily be compensated for in the controller design.
If an overrun occurs, however, the control signal is delayed a whole period. In

this case, the fixed output point increases the output jitter rather than decreases it.
Intuitively, a better solution would be to release the output “as soon as possible”
if the output instance is missed. This can be achieved in the control server by
introducing a dedicated “Output” segment, see Figure 2.7. Placing the output
action in an extra segment will introduce a jitter of at most l ji when the task is
on time.

2.4 Aperiodic Control Server Tasks

The control server was originally designed for periodic tasks only. Hence, it was
assumed that all tasks would be periodically triggered by an internal timer in the
kernel. There exist some applications, however, where the sampling is triggered by
external events or hardware, and not by the kernel. An example of such a system is
a frame grabber that delivers new frames in a buffer at a given approximate rate.
The sampling process is in this case almost periodic, but may experience a small
drift or release jitter compared with the real-time clock in the computer. To keep
the task synchronized with the hardware, it is necessary to support aperiodically
triggered tasks.
An aperiodic control server task is declared in the same way as a periodic task,

but the period is interpreted as a minium-interarrival time instead. Should a new
job arrive before the end of the last segment of the recent invocation, the new
job is queued until the output action of the last segment has been executed, see
Figure 2.8.
It is important to select an appropriate period for the aperiodic server. If the

period is chosen longer than the minimum interarrival time of the task, the queue
of jobs may grow indefinitely, and the task will loose synchronization with the
arriving samples. As an example, consider a frame grabber that delivers images
at a rate of about 24.9–25.1 frames per second. Too be on the safe side, the server
period could be chosen as 39 ms (rather than the average value of 40 ms).

12

2.5 A Control Application

PC

PIC

Camera

Figure 2.9 Schematic picture of the vision-based ball-and-plate control system.

2.5 A Control Application

As a testbench for the new control server scheduling module, a vision-based ball-
and-plate application was used. Some system identification was performed, and
an LQG controller with adaptive feedforward was designed. Finally, experiments
with different overrun handling methods were performed.

The Ball and Plate Process

A schematic diagram of the ball-and-plate application is displayed in Figure 2.9.
The object of the control is to make the ball follow a given reference trajectory on
the plate. Feedback regarding the position of the ball is provided by a black-and-
white video camera mounted above the plate. The plate can be tilted in the x and y
directions by sending commands over a serial connection to a PIC microcontroller,
which in turn gives commands to the servo motors mounted under the plate.
The process has been successfully controlled in previous projects by two PID

controllers—one for each axis. The dynamics in each direction are essentially de-
scribed by a double integrator. Hence, a PD controller should be sufficient to
stabilize the process. Due to friction, the ball can get stuck close to the setpoint.
Therefore, it is also good to add integral action in the controller.

The Vision System

The camera is connected to a frame grabber in the PC, which produces 25 pictures
per second. The image size is 320 times 200 pixels, and each pixel has a value
between 0 (black) and 255 (white). To simplify the image processing, only a rect-
angle of 170 times 150 pixels in the middle of the plate (away from the borders)
was used.
To locate the ball on the plate, a simple center-of-mass calculation can be

performed. First, the image is thresholded to separate the dark ball from the
light background. Then, the center of the dark area is computed. The size of the
ball used was about 65 pixels.
To speed up the image processing, a smaller search window can be used. If the

location of the ball in the previous image (40 ms ago) is known, it is likely that
the ball remains close by in this image. It was found that a window of 30 times
30 pixels around the previous position was sufficient never to lose the ball during
normal operation. The execution time for a complete scan of the plate was about
5 ms, while the smaller window could be searched in about 1.4 ms.

Controller Design

Although the process had previously successfully been controlled using PID con-
trollers, some system identification experiments were performed to see if there
was additional dynamics. Further dynamics could possibly be introduced by the

13

2.5 A Control Application

0 200 400 600 800 1000
−20

0

20

40

60

80

100

120

140

Sample number

u
1
,u

2
,y

1
,y

2

Figure 2.10 Some of the data from the system identification experiment. On the bottom are
the two control inputs; on the top are the two measurement outputs.

0 0.5 1 1.5
−2

0

2

4

6
From u1

T
o
 y

1

0 0.5 1 1.5
−0.1

0

0.1

0.2

0.3
From u2

0 0.5 1 1.5
−0.3

−0.2

−0.1

0

0.1

T
o
 y

2

0 0.5 1 1.5
−2

0

2

4

6

Figure 2.11 Step responses of the identified MIMO model.

servo motors and the time delays present in the serial communication and the
frame grabber.

System Identification. Since the process is open-loop unstable, the system
identification was performed in closed loop. Two detuned PID controllers were
used to barely stabilize the process, and random disturbances were added to the
control signal. The data from such an experiment is shown in Figure 2.10. The data
was analyzed using the System Identification Toolbox in MATLAB. An 6th order
multiple-input multiple-output (MIMO) state-space model was deemed sufficient
to capture the dynamics. The poles of the model could be interpreted as a double
integrator and a low-pass filter in each dimension. The time delay was found to
be (approximately) one sample (i.e., 40 ms). The step responses of the 6th order
MIMO model are shown in Figure 2.11. It is seen that the two dimensions have
slightly different gains, and that there is some cross-coupling between the axis.
This was probably the result of the board being slightly rotated a few degrees
compared to the camera.

Control Design. Based on the 6th order MIMO model of the process, a MIMO
LQG controller [Åström and Wittenmark, 1997] was designed using the Control
Systems Toolbox in MATLAB. The controller was then augmented with an addi-
tional integrator for each output to eliminate steady-state errors. The gain of the
feedback from the integrator states and the feedforward from the reference to the

14

2.5 A Control Application

control signal were handtuned to achieve good tracking performance.
To achieve integral action, the model was augmented with an additional in-

tegrator on each output. The resulting controller was of 8th order. The complete
controller (Kalman filter, state feedback, integrators and reference feedforward)
can be written as a standard linear filter on the form

x(k+ 1) = Ax(k) + By(k) + Brr(k)

u(k) = Cx(k) + Dy(k) + Drr(k)
(2.2)

where y is the measurement signals, r is the reference signals, x is the controller
state vector, and u is the control signals. The coefficients of the matrices A, B, Br,
C, D, and Dr were exported in a C file for use in the real-time control program.

Experiments

In the experiments, we consider a heavily loaded system, where there is not CPU
resources to do a complete scan of the plate image in every sample. The control task
consists of two segments. In the first segment, the image processing and control
takes place. If the ball was located in the previous period, then a small search
window around that position is used in this period. If the ball is not located in
the window, the entire plate must be searched. In the case of overrun, the second
segment may be skipped. The pseudo-code of the control task is shown below:

while (1) {

// segment 1: locate ball, do control

if (mode == 1) {

search_small_window();

if (!found) {

mode = 0;

}

if (mode == 0) {

search_entire_plate();

if (found) {

mode = 1;

}

}

if (mode == 1) {

do_control();

}

CS_segment_end();

// segment 2: draw graphics

if (!CS_task_late()) {

draw_ball_and_plate();

}

CS_segment_end();

}

An aperiodic task was used, where the task is triggered by the arrival a new
image from the frame grabber. In the input hook of the first segment, a request
for a new image acquisition is sent to the frame grabber. This way, the task is
constantly synchronized with the frame grabber and the input-output latency from
image to control is minimized.
From measurements it was found that the execution times of the local window

scan plus control, the full scan plus control, and the graphics display were 1.4 ms,
5.0 ms, and 9.3 ms respectively. Allocating U = 0.27 of the processor for the control
task, segment lengths were chosen as l1 = 1.4/0.22 = 5.2 ms and l2 = 9.3/0.27 =
34 ms. This means that a full scan will cause an execution overrun.

15

2.6 Conclusion

The performance of the overrun strategies of Queue and Skip was compared in
control experiments were the view of the ball was blocked for a few frames. This
caused the global scan to be invoked, causing repeated execution overruns in the
control task. The performance of the controller was measured by a quadratic cost
function, which was integrated over dozens of repeated experiments. In the end,
no significant difference in control performance between the two strategies could
be observed.
In this application, the consequence of queuing a few jobs is simply that the

sampling period will be slightly longer for a few periods. This may not have a
very great impact on the performance if the sampling rate is high compared to
the bandwidth of the closed-loop system.

2.6 Conclusion

Overrun handling can be an issue for control tasks with varying execution times.
Examples of such tasks are optimization-based control algorithms (for instance
model-predictive control) or vision-based algorithms with dynamically-sized search
windows. Assuming reservation-based scheduling (approximating the case of a sin-
gle task on a single processor), three basic overrun strategies have been identified:
Abort, Queue, and Skip. For simple examples, the performance of each strategy
may be computed analytically, given linear dynamical models of the controller and
the plant and an execution-time distribution. Calculations on an integrator pro-
cess showed that the Skip strategy had the best performance for that particular
example.
The Queue and Skip strategies have been implemented in the control server

scheduling module in the S.Ha.R.K. real-time operating system, and their per-
formance have been compared in a ball-and-plate control application. The results
from these experiments showed that Queue and Skip strategies performed equally
well.

16

3. The Jitter Margin

3.1 Background and Motivation

In classical feedback control theory (e.g., [Franklin et al., 2002]), notions such as
phase margin and gain margin are used to describe how sensitive a control loop
is towards various uncertainties in the plant. Nonnegative margins are required
to ensure the stability of the closed-loop system. The margins are also used as
practical stability measures, and there are various rules of thumb associated with
them. For instance, it is typically recommended to have a phase margin of at least
30○–45○ to ensure some degree of robustness and performance of the system.
When a controller is implemented as a task in a real-time system, a new kind

of uncertainty is introduced—an implementation uncertainty. Here, we will focus
on the specific problem of output jitter. Variability in the task execution time and
preemption from other tasks can cause the controller to experience a different
amount of input-output delay in each period. It is well known that such a jitter
can degrade the control performance and in extreme cases even cause instability of
the control loop (e.g., [Törngren, 1998]). Although the present work only considers
jitter due to CPU scheduling, some of the results also carry over to networked
control systems, where jitter due to variable transmission times is a major issue.
The majority of previous work on jitter in real-time control systems has fo-

cused on either scheduling theory or control theory. In the few instances where
an integrated approach has been taken, the control analysis has been somewhat
underdeveloped. By contrast, our analysis yields hard results and should hence
be applicable to a wide range of systems, including safety-critical applications.
Recently, a new stability theorem for control loops with time-varying input-

output delays has been developed [Kao and Lincoln, 2004]. Based on this theorem,
we propose the notion of jitter margin for control tasks. The jitter margin can be
combined with real-time scheduling theory to guarantee the stability and perfor-
mance of the controller in the target system. The jitter margin can also be used
as a tool for assigning meaningful deadlines to control tasks.
It is noted that the jitter analysis can be improved if best-case response times, as

well as worst-case response times, can be computed. For this purpose, we propose
a lower bound on the best-case response time under EDF scheduling, where no
such results are known to exist.
When designing a real-time control system, information about the task timing

is needed in the control design, and information about the controller timing sen-
sitivity is needed in the real-time design. Based on this insight, we propose an
iterative control–scheduling codesign procedure, where the jitter margin is used
as a central tool.

Related Work

Several works have considered scheduling solutions to reduce output jitter in gen-
eral. In [Locke, 1992] and [Klein et al., 1993], it is suggested to use dedicated
high-priority output tasks to reduce the jitter. This has the disadvantages of a
more complex implementation and longer delays on average. [David et al., 2001]
considers jitter reduction under deadline-monotonic and EDF scheduling. Output
jitter reduction under EDF is also the topic of [Baruah et al., 1999] and [Kim
et al., 2000]. It can be noted that, in these papers, the jitter is defined between
successive periods, rather than over the lifetime of the system (as in this work).

17

3.2 The Jitter Margin

There have also been some efforts to specifically minimize jitter in control
tasks. The papers [Crespo et al., 1999; Balbastre et al., 2000] define the control
action interval, which is just another term for output jitter. The proposed solution
introduces high-priority tasks for the input and output actions. Again, this has
the disadvantage of longer delays on average. Also, the resulting control perfor-
mance is not analyzed. [Cervin, 1999] proposes a subtask scheduling method for
control tasks, where the main part of the control algorithm are scheduled at dif-
ferent priorities. The scheme attempts to reduce both the delay and the jitter. The
performance improvements are verified by simulations.
Jitter compensation in control has been the subject of much research. In [Nils-

son, 1998], an optimal jitter-compensating LQG controller is derived in the context
of networked control loops. The controller uses timestamps to track the sensor-to-
controller and controller-to-actuator delays. The performance is measured by a
quadratic cost function and is evaluated by stochastic analysis. [Marti et al., 2001]
considers jitter compensation in state feedback controllers. No specified schedul-
ing algorithm is considered, but it is assumed that the delays are known a-priori.
Also, full state information is assumed. The performance improvements are veri-
fied by simulations. In [Lincoln, 2002] a more realistic approach is taken, where
the output jitter experienced in one period is compensated for in the next period.
The resulting jitter-compensating controller can be viewed as a generalization of
the well-known Smith predictor.
In the area of control–scheduling codesign, [Shin et al., 1985] studies computa-

tional delays in computer-controlled systems. Hard constraints on the controlled
variables (e.g., physical constraints) are used to derive maximum allowable con-
trol latencies in different regions of the state space. It is noted that the hard
deadline may be a random variable due to stochastic disturbances acting on the
process. The approach is extended in [Shin and Kim, 1992] where the stability
of the closed-loop system is also considered. Sampling period selection for control
tasks is the topic of [Seto et al., 1996]. The performance of the control loops are de-
scribed using cost functions, and the period assignment problem is formulated as
an optimization problem. The combined effect of period and delay on control per-
formance is studied in [Ryu et al., 1997], where simulations are used to evaluate
the performance. None of these papers considers jitter, however.

3.2 The Jitter Margin

Preliminaries

Computer-controlled systems (e.g., [Åström and Wittenmark, 1997]) are typically
designed assuming periodic sampling and either zero or a constant computational
delay. A real implementation, however, will introduce jitter at various points in
the control loop.
Here, for analysis purposes, we will assume that the sampling is jitter-free,

while the input-output delay may be time-varying. Jitter-free sampling can be
achieved by programming the A-D converter to take samples periodically, or by
requesting the A-D conversion when the control task is released.
The assumed control loop is shown in Figure 3.1. The plant is described by

the linear continuous-time system P(s), and the plant output is sampled with the
constant interval h. The controller is described by the linear discrete-time system
K (z). Following the zero-order hold, there is a time-varying delay ∆ before the
control signal is applied to the input of the plant.
Exact stability analysis of the closed-loop system is trivial if the delay ∆ is

either constant or varying according to a known, periodic pattern. If the delay

18

3.2 The Jitter Margin

P(s)

K (z) ShZOH

∆

Σ
−

Figure 3.1 Computer-controlled system with continuous-time plant P(s), periodic sampler
Sh, discrete-time controller K (z), zero-order hold, and time-varying delay ∆.

Input Output
0

t
h

JL

Figure 3.2 The input-output delay can be divided into a constant delay, L, and a jitter, J.

varies randomly among a set of known delays, Lyapunov theory can be used to
verify the stability of the closed-loop system. For freely time-varying delays, the
analysis is considerably more difficult. The following theorem from [Kao and Lin-
coln, 2004] is only sufficient, but it guarantees stability for any delays in a given
interval, including constant, periodic, and random delays:

THEOREM 3.1—STABILITY UNDER OUTPUT JITTER
The closed-loop system in Figure 3.1 is stable for any time-varying delays ∆ ∈
[0, Nh], where N > 0 is a real number, if

∣

∣

∣

∣

Palias(ω)K (e
iω)

1+ PZOH(eiω)K (eiω)

∣

∣

∣

∣

<
1

Ñ
∣

∣eiω − 1
∣

∣

, ∀ω ∈ [0, π], (3.1)

where Ñ =
√

⌊N⌋2 + 2⌊N⌋� + � and � = N−⌊N⌋; PZOH(z) is the zero-order hold
discretization of P(s), and

Palias(ω) =

√

√

√

√

∞
∑

k=−∞

∣

∣

∣

∣

P

(

i(ω + 2π k)
1
h

)∣

∣

∣

∣

2

. (3.2)

Proof. See [Kao and Lincoln, 2004].

Definitions and Properties

We now consider a periodic control task with the period T = h, executing in a
real-time system. The plant is assumed to be sampled when the task is released,
and the control signal is actuated when the task finishes.
The input-output delay experienced by the controller can be divided into two

parts: a constant part, L ≥ 0, and a time-varying part (the jitter), J ≥ 0, see
Figure 3.2. The minimum possible delay is hence given by L, and the maximum
possible delay is given by L + J.
We will first recall the definition of the classical delay margin for the jitter-free

case (J = 0):

19

3.2 The Jitter Margin

DEFINITION 3.1—DELAY MARGIN
Given the system in Figure 3.1, the delay margin is defined as the largest number
Lm for which closed-loop stability is guaranteed assuming a constant delay ∆ =
Lm.

Remark. For continuous-time control systems, the delay margin can be computed
as

Lm = ϕm/ω c, (3.3)

where ϕm is the phase margin and ω c is the crossover frequency of the system.
Due to aliasing effects, the exact computation is more complicated for computer-
controlled systems (see [Åström and Wittenmark, 1997]).

In systems with jitter, the delay and the jitter will both contribute to the destabi-
lization of the system. Hence, we give the following definition of the jitter margin:

DEFINITION 3.2—JITTER MARGIN
Given the system in Figure 3.1, the jitter margin is defined as the largest number
Jm(L) for which closed-loop stability is guaranteed for any time-varying delay
∆ ∈ [L, L+ Jm(L)].

Remark. Since Theorem 1 is only sufficient, it can only be used to compute a
lower bound on the jitter margin. The theorem is not very conservative, however. To
apply the theorem, we replace the plant P(s) by its time-delayed version P(s)e−sL

and let N = J/h.

The reason for defining the jitter margin as a function of L is to make the stability
test less conservative whenever a lower bound on L is available. It is obvious that,
if a system is stable for any time-varying delay ∆ ∈ [0, J], it must also be stable
for any time-varying delay ∆ ∈ [L, J], 0 < L ≤ J. Furthermore, in the latter case,
the system might also be stable for longer delays. Based on this argument, the
following properties of the jitter margin can be derived (the proofs are omitted):

PROPERTY 3.1
Jm(L) = 0, L ≥ Lm.

PROPERTY 3.2
Jm(L) ≤ Lm, ∀L.

PROPERTY 3.3
Jm(L) + L is an increasing function of L.

EXAMPLE 3.1—JITTER MARGIN
Figure 3.3 reports the jitter margin as computed by Theorem 1 for the plant
P(s) = 1000/(s(s+1)) and two different controllers. Both controllers are designed
with the sampling interval h = 10 [ms]. In (a), a PID controller is used. The delay
margin is Lm = 7.8, and the jitter margin has the maximum value Jm(0) = 3.7.
In (b), an LQG controller designed for a constant delay L = 5 is used. Here,
the delay margin is Lm = 15.5, and the jitter margin has the maximum value
Jm(4.8) = 7.1. It can be seen that the jitter-margin function can have different
shapes for different controllers, but the maximum total delay, Jm(L)+L, is always
an increasing function.

20

3.2 The Jitter Margin

(a)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Constant Delay L

Jitter margin J
m

(L)

Maximum total delay J
m

(L)+L

 L
m

(b)

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Constant Delay L

Jitter margin J
m

(L)

Maximum total delay J
m

(L)+L

 L
m

Figure 3.3 Example of jitter margins Jm(L): (a) PID controller with h = 10, (b) LQG
controller with h = 10, designed for the delay L = 5. (All units are in ms.)

Verifying Stability and Performance

If we know the constant delay L and the jitter J of a control task, stability of the
closed-loop system is guaranteed if

Jm(L) > J. (3.4)

Often, it is not enough to just guarantee stability—there must also be some
margins that guarantee performance. In classical control theory, the phase margin
is sometimes used as a performance and robustness measure. Unfortunately, the
phase margin is only defined for systems without jitter. It is, however, possible to
generalize the concept via an extended definition of the delay margin. Hence, we
start by defining a delay margin for systems with delay and jitter:

DEFINITION 3.3—DELAY MARGIN FOR SYSTEMS WITH DELAY AND JITTER
Given the system in Figure 3.1, assuming some constant delay L and jitter J, the
delay margin is defined as the largest number Lm for which closed-loop stability
is guaranteed for any time-varying delay ∆ ∈ [L + Lm, L+ Lm + J].

Remark. For systems without jitter, this definition is equivalent to Definition 1.

Expressed in terms of the jitter-margin function Jm(L), the delay margin is given

21

3.2 The Jitter Margin

by the smallest Lm that solves

Jm(L + Lm) = J. (3.5)

For the control designer, it is often more convenient to think in terms of phase
margin, since that measure is independent of time. For systems without jitter, the
relationship between phase margin and delay margin is approximately given by
(3.3). Based on this observation, we propose the notion of apparent phase margin:

DEFINITION 3.4—APPARENT PHASE MARGIN
Given the system in Figure 3.1, assuming the constant delay L and the jitter J, the
apparent phase margin is defined as the largest number ϕ̂m for which closed-loop
stability is guaranteed for any time-varying delay ∆ ∈ [L+ϕ̂m/ω c, L+ϕ̂m/ω c+J],
where ω c is the crossover frequency of the system if assuming only the constant
delay L.

Similar to above, expressed in terms of the jitter-margin function Jm(L), the ap-
parent phase margin is given by the smallest ϕ̂m that solves

Jm(L + ϕ̂m/ω c) = J. (3.6)

A system with the apparent phase margin ϕ̂m ≤ 0○ can be interpreted as
a system for which stability cannot be guaranteed, while any ϕ̂m > 0○ can be
interpreted as a performance guarantee. For systems without jitter, the apparent
phase margin is equal to the classical phase margin.

Deadline Assignment

In the real-time literature, task deadlines are often considered as given param-
eters. Using the jitter margin, we can derive real hard deadlines that guarantee
closed-loop stability. For instance, given that we have a lower bound on the con-
stant delay L in the target system, we can guarantee stability by assigning the
relative deadline

D = L+ Jm(L). (3.7)

(It is of course also required that all deadlines are really met during run-time.)
Note that, if no estimate of L is available, assuming L = 0 yields a more conser-
vative deadline.
Similarly, we can assign deadlines that guarantee a certain apparent phase

margin in the target system. Given a lower bound on the constant delay L in the
target system and a desirable apparent phase margin ϕ̂m < ω c(Lm − L), we can
guarantee a level of performance by assigning the deadline

D = L+ Jm(L + ϕ̂m/ω c). (3.8)

EXAMPLE 3.2—DEADLINE ASSIGNMENT
Consider the LQG controller in Example 1, whose jitter margin is shown in
Figure 3(b). Without jitter, assuming L = 5, the phase margin is ϕm = 34.9○ and
the crossover frequency is ω c = 57.9 rad/s. Suppose that we require an apparent
phase margin of ϕ̂m = 20○. The allowable jitter is then given by

Jm(5+ 20○/57.9 rad) = Jm(11.0) = 1.4,

and we should hence assign the relative deadline

D = L + Jm(11.0) = 6.4.

22

3.3 Review of Response-Time Analysis

An interesting problem here is that, depending on the scheduling policy, the con-
stant delay might depend on the deadline which we are trying to compute. For
instance, under deadline-monotonic scheduling, the assigned deadline will affect
the priority of the task, which might in turn affect the constant delay. The problem
could possibly be addressed using an iterative deadline assignment procedure, but
this is left as future work.

3.3 Review of Response-Time Analysis

In order to apply the stability and performance analysis of the previous section,
we need to be able to compute the constant delay and the jitter for each control
task in the system. This can be done using response-time analysis. Let Ri and Rbi
denote, respectively, the worst-case and best-case response times of task i. The
constant delay Li and the jitter Ji are then given by

Li = R
b
i , (3.9)

Ji = Ri − R
b
i . (3.10)

Often, the true values of Ri and Rbi cannot be obtained. First, if the task
phasing is unknown, one must assume worst-case phasing when computing Ri
and best-case phasing when computing Rbi . It is not certain that Ri and R

b
i can

both occur during the lifetime of the system. Second, depending on the scheduling
policy and the task set, exact analysis for the worst-case and the best-case response
times may not be available.
From a stability perspective, it is always safe to overestimate Ri and to under-

estimate Rbi . This will make Li smaller and Ji larger, causing the apparent phase
margin to decrease.
Below, a brief outline of the available results in response-time analysis under

fixed-priority and EDF scheduling is given. For EDF, a new lower bound on best-
case response times is proposed.

Worst-Case Response Time Analysis

Under fixed-priority scheduling, assuming Di ≤ Ti, the worst-case response time
of task i is given by the well-known equation [Joseph and Pandya, 1986]

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj . (3.11)

Exact analysis also exists for task sets with release offsets as well as deadlines
D > T [Audsley et al., 1993; Tindell et al., 1994].
Under EDF scheduling, worst-case response-time analysis is more complicated.

Assuming Di ≤ Ti, the worst-case response time of task i is given by [Spuri,
1996; George et al., 1996; Stankovic et al., 1998]

Ri = max
{

Ci, max
a≥0

{Li(a) − a}
}

, (3.12)

where the busy interval Li(a) is given by the equation

Li(a) = Wi
(

a, Li(a)
)

+

(

1+
⌊

a

Ti

⌋)

Ci, (3.13)

23

3.4 Best-Case Response-Time Analysis Under EDF

and the higher-priority workload Wi(a, t) is given by

Wi(a, t) =
∑

j ,=i, D j≤a+Di

min
{⌈

t

Tj

⌉

, 1+
⌊

a+ Di − D j
Tj

⌋}

Cj . (3.14)

It should be noted that only a finite number of values of a must be checked when
evaluating (3.12). The analysis has also been generalized to arbitrary deadlines
[George et al., 1996].

Best-Case Response Time Analysis

Under fixed-priority scheduling, exact best-case analysis has recently been devel-
oped for the case D ≤ T [Redell and Sanfridson, 2002]. The best-case response
time of task i is given by the equation

Rbi = C
b
i +

∑

j∈hp(i)

⌈

Rbi
Tj
− 1

⌉

Cbj , (3.15)

where Cbi denotes the best-case execution time of task i.
Under EDF scheduling, no exact best-case analysis is known to exist. In the

next section, a lower bound on the the best-case response time under EDF schedul-
ing is developed.

3.4 Best-Case Response-Time Analysis Under EDF

We will consider a set of periodic tasks scheduled under EDF. Each task i has a
period Ti, a relative deadline Di ≤ Ti, and a best-case execution time Cbi . It is
assumed that the task set is schedulable.
A trivial lower bound Ri on the best-case response time of task i is given by

Rbi = C
b
i . (3.16)

This is actually a quite good bound for the shortest-period tasks. The longest-
period tasks can, however, have much longer best-case response times, especially
if the system load is high.
A tighter lower bound on the best-case response time can be obtained by in-

terference analysis. Let Ri be the response time of an instance of task i that is
released at time 0, and let task j be a potentially interfering task. We will con-
struct a lower bound on Ri by shifting each task j such that minimum interference
is obtained.
First, consider a task j with D j ≥ Ri. It is obvious that the task can be phased

such that it does not interfere with task i.
For each task j with D j < Ri we must consider two different cases, see Fig-

ure 3.4. In case (a), Di − D j > Ri, and each instance of task j released within
the interval [0, Ri] will have higher priority than task i. Minimum interference
is obtained when task j is phased such that one release occurs at time Ri. The
number of complete preemptions from task j is hence given by ⌈Ri/Tj − 1⌉.
In case (b), Di−D j ≤ Ri, and instances of task j will only have higher priority

if released within the interval [0, Di − D j]. Minimum interference is obtained
when task j is phased such that one release occurs at time Di − D j . The number
of complete preemptions from task j is hence given by ⌈(Di − D j)/Tj − 1⌉.

24

3.4 Best-Case Response-Time Analysis Under EDF

(a)

(b)

Task j

Task j

Task i

Task i

0

0

t

t

Ri

Ri

Di

Di

Di−D j

Figure 3.4 Different cases where task j causes minimum interference for task i: (a) Di −
D j > Ri , (b) Di − D j ≤ Ri.

Each complete preemption from task j will contribute Cj to the response time.
Combining the two cases above, a lower bound, Rbi , on the minimum response time
of task i is given by

Rbi = C
b
i +

∑

∀ j:D j<R
b
i









min
{

Rbi , Di − D j
}

Tj
− 1









Cbj (3.17)

This expression provides only a lower bound, since it does not take any initial
(partial) interference from task j into account (see for instance Figure 3.4(a)). It
is possible to improve the formula slightly by including some obvious cases where
initial interference must occur. It is conjectured, however, that the expression for
the exact best-case response time is as complex as the formula for exact worst-case
response time under EDF.
The results obtained with the proposed bound have been compared to re-

sults obtained by simulation, where the shortest response time of each task was
recorded. (Note that the latter constitutes an upper bound on the real best-case
response time.) The bounds were evaluated for loads ranging from U = 0.5 to
U = 0.99. For each load case, 100 random task sets were generated. The num-
ber of tasks in each set was integer-uniformly distributed between 2 and 10. The
task periods were exponentially distributed with mean 1, and the fraction of the
execution time to the period was uniformly distributed between 0 and 1. The ex-
ecution times were uniformly rescaled to give the task set the desired utilization.
Throughout, Di = Ti and Cbi = Ci were assumed.
For each task set, the system was simulated for 1000 s, and the minimum

response time of the longest-period task (task n) was recorded. The result was
compared with the bounds (3.16) and (3.17). Figure 3.5 shows the mean of Rbn/Cn
over the task sets for different bounds and different loads. It is seen that the
proposed bound performs quite well up to a load of U = 0.95. The bound is not
tight since it does not consider initial interference.

25

3.5 A Codesign Procedure

0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

U

m
e

a
n

(R
b n
/C

n
)

Upper bound (from simulation)
Proposed lower bound
Trivial lower bound

Figure 3.5 Comparison of bounds on the best-case response time under EDF. The results
are shown for the longest-period task.

3.5 A Codesign Procedure

To illustrate how the jitter margin could be applied in the design of real-time
control systems, we describe an iterative control–scheduling codesign procedure.
It is assumed that a set of independent controllers should be implemented in

the same processor. The controllers are designed in continuous time, and should
be discretized and implemented as periodic tasks with different periods. The goal
of the codesign procedure is to choose sampling periods such that the controllers
will experience the same relative performance degradation in the target system,
taking the jitter into account. The performance of the continuous-time controller
is measured by its original phase margin ϕm, and the performance of the control
task is measured by its apparent phase margin ϕ̂m (see Section 2.3). The goal of
the procedure is to make the ratio ϕ̂m/ϕm as equal as possible among the tasks.
The inputs to the codesign procedure are a set of n continuous-time plants,

P(s), a set of n continuous-time controllers, K (s), estimates of the best-case and
worst-case execution times of the control algorithms, C and Cb, and a scheduling
policy where worst-case as well as best-case response time analysis is available.
The procedure is outlined is the following steps:

1. Initialize by assigning initial (nominal) sampling periods h for the con-
trollers. (A common rule of thumb [Åström and Wittenmark, 1997] is to
choose the sampling period such that ω bh ∈ [0.2, 0.6], where ω b is the band-
width of the closed-loop continuous system.)

2. Rescale the periods linearly such that the task set becomes schedulable under
the given scheduling policy. (Here, a suitable sufficient schedulability test
can be used.)

3. Discretize the controllers using the assigned sampling periods, yielding the
set of discrete-time controllers K (z).

4. For each task, compute worst-case and best-case response times, R and Rb.
(Here, the analysis in Section 3 is applicable.)

5. For each task, compute the jitter margin using Theorem 1 and the apparent
phase margin ˆϕmi from (3.6), assuming the constant delay Li = R

b
i and the

jitter Ji = Ri − Rbi .

26

3.5 A Codesign Procedure

6. For each task, compute the relative performance degradation ri = ˆϕmi/ϕmi.
Also, compute their mean value, r̄ =

∑

ri/n.

7. For each task, adjust the period according to

hi := hi + khi(ri − r̄)/r̄,

where k < 1 is a gain parameter.

8. Repeat from 2 until no further improvement is given. A suitable stop cri-
terion is when sum of the performance differences,

∑

pri − r̄p, is no longer
decreasing.

The period adjustment mechanism in step 7 is intended to decrease the periods
of controllers with bad performance, and to increase the periods of controllers with
good performance. Choosing the gain parameter can be difficult. A small k will
give slow adaptation, while a large k can cause instability.
The iterative procedure tries to solve a highly nonlinear optimization problem.

Hence, it is not certain that it will converge to an optimal solution. For instance,
under rate-monotonic scheduling, a small period adjustment may change the task
priorities, and this can in turn have a huge impact on the jitter. Neither is it
certain that a completely equal performance degradation can be achieved.

EXAMPLE 3.3—CODESIGN
We consider an example where three controllers should be implemented in a single
CPU. Both rate-monotonic and EDF scheduling is considered. The execution times
of the control algorithms are assumed to be equal and constant and are given by
R = Rb = 0.15 [ms]. The plants to be controlled are given by

P1(s) =
8⋅105

s(s+ 1000)
,

P2(s) =
4⋅104

(s− 200)(s+ 200)
,

P3(s) =
5⋅107

s(s2 + 100s+ 2.5⋅105)
,

(3.18)

and the continuous-time controllers are given by

K1(s) =
4.88⋅103(s+ 2⋅105)(s+ 1295)

(s+ 5000)(s2 + 7.325⋅104s+ 2.573⋅109)
,

K2(s) =
2.57⋅103(s+ 2⋅105)(s+ 259.1)

(s+ 3000)(s2 + 1.645⋅104s+ 1.35⋅108)
,

K3(s) =
478(s+ 2⋅105)(s2 + 160.6s+ 1.655⋅105)

(s+ 2740)(s+ 1000)(s2 + 2494s+ 7.109⋅106)
.

(3.19)

Table 3.1 reports the bandwidth ω b and the original phase margin ϕm of each
control loop. It is seen that the loops have different bandwidths, which suggests
that the controllers would require different sampling intervals. The differences in
bandwidth are also visible in Figure 3.6, which shows the system responses for
the different continuous-time loops.
To initialize the procedure, nominal sampling periods are chosen by the rule

of thumb ω bh = 0.2. This results in a CPU utilization of U = 1.30. Hence, slower
sampling must be used in the target system. For the controller discretization, the
Tustin method is used.

27

3.5 A Codesign Procedure

0 0.02 0.04

−1

0

1

Time

O
u
tp

u
t

Plant 1

0 0.02 0.04

−1

0

1

Time

Plant 2

0 0.02 0.04

−1

0

1

Time

Plant 3

Figure 3.6 System responses of the original continuous-time control loops.

(a)

0 0.02 0.04

−1

0

1

Time

O
u
tp

u
t

Plant 1

0 0.02 0.04

−1

0

1

Time

Plant 2

0 0.02 0.04

−1

0

1

Time

Plant 3

(b)

0 0.02 0.04

−1

0

1

Time

O
u
tp

u
t

Plant 1

0 0.02 0.04

−1

0

1

Time

Plant 2

0 0.02 0.04

−1

0

1

Time

Plant 3

Figure 3.7 Control system responses under rate-monotonic scheduling: (a) after one itera-
tion, (b) after ten iterations.

First, rate-monotonic scheduling is assumed. The target utilization is chosen
as U = 0.78. The adaptation gain is chosen as k = 0.2. The results of the codesign
procedure after one and ten iterations are shown in Table 3.2. After the initial
iteration, where the nominal sampling periods have been simply rescaled, loop 3
has a small negative apparent phase margin. That means that stability cannot
be guaranteed for that loop. After ten iterations, the periods have been adjusted
such that they are nearly equal, resulting in a somewhat more equal performance
degradation (as measured by the ratio ϕ̂m/ϕm).
To verify the results of the procedure, the complete real-time system (in-

cluding plants, controllers, and scheduler) was also simulated using the MAT-
LAB/Simulink toolbox TrueTime [Henriksson et al., 2002]. The actual control
system responses after one and ten design iterations are shown in Figure 3.7. It
is seen that, after one iteration, loop 3 is close to unstable, as predicted by the neg-
ative apparent phase margin. After ten iterations, the performance degradation
of loop 3 is visibly smaller.
Next EDF scheduling is assumed. The target utilization is chosen as U = 0.95.

The results of the codesign procedure after one and ten iterations are shown in
Table 3.3. After the initial iteration, task 3 has a large negative apparent phase

Table 3.1 Bandwidths and phase margins of the original continuous-time control loops

Loop ω b ϕm

P1(s), K1(s) 960 rad/s 74.1○

P2(s), K2(s) 599 rad/s 49.5○

P3(s), K3(s) 179 rad/s 69.7○

28

3.6 Conclusion

(a)

0 0.02 0.04

−1

0

1

Time

O
u
tp

u
t

Plant 1

0 0.02 0.04

−1

0

1

Time

Plant 2

0 0.02 0.04

−1

0

1

Time

Plant 3

(b)

0 0.02 0.04

−1

0

1

Time

O
u
tp

u
t

Plant 1

0 0.02 0.04

−1

0

1

Time

Plant 2

0 0.02 0.04

−1

0

1

Time

Plant 3

Figure 3.8 Control system responses under EDF scheduling: (a) after one iteration, (b)
after ten iterations.

margin, implying that the control loop might be unstable. After ten iterations, the
performance degradation is quite even among the controllers. Again, the results
were also verified in simulations. Figure 3.8 shows the system response after one
and ten iterations.
The final design results under rate-monotonic scheduling and EDF scheduling

are quite similar. Under EDF, slightly shorter periods could be used, due to the
higher level of schedulability of EDF. It can also be noted that, under EDF, the
jitter is more evenly distributed among the tasks. This makes it possible to achieve
a more even performance degradation among the control loops.

3.6 Conclusion

This chapter has proposed the notion of jitter margin and showed how it can be
applied in the design of real-time control systems. The stability test is based on
worst-case assumptions about the jitter, and hence produces hard stability results.
We have also linked the control analysis to scheduling analysis, showing how
output jitter analysis can be used together with the jitter margin. An extensive
codesign example has been presented, where many of the proposed concepts have
been applied.

Table 3.2 Codesign results under rate-monotonic scheduling: (a) after one iteration, (b)
after ten iterations.

(a) Task h R Rb J Jm(R
b) ϕ̂m ϕ̂m/ϕm

1 0.35 0.15 0.15 0 1.08 60.8○ 0.82

2 0.56 0.30 0.15 0.15 1.17 27.9○ 0.56

3 1.87 0.90 0.15 0.75 0.47 −4.8○ −0.07

(b) Task h R Rb J Jm(R
b) ϕ̂m ϕ̂m/ϕm

1 0.56 0.15 0.15 0 0.96 56.5○ 0.76

2 0.57 0.30 0.15 0.15 1.17 27.7○ 0.56

3 0.60 0.45 0.15 0.30 1.18 27.9○ 0.40

29

3.6 Conclusion

Table 3.3 Codesign results under EDF scheduling: (a) after one iteration, (b) after ten
iterations.

(a) Task h R Rb J Jm(R
b) ϕ̂m ϕ̂m/ϕm

1 0.28 0.16 0.15 0.01 1.11 64.0○ 0.86

2 0.46 0.34 0.15 0.19 1.21 33.4○ 0.67

3 1.53 1.35 0.60 0.75 0.03 −18○ −0.27

(b) Task h R Rb J Jm(R
b) ϕ̂m ϕ̂m/ϕm

1 0.40 0.31 0.15 0.16 1.04 43.1○ 0.58

2 0.50 0.40 0.15 0.25 1.19 26.7○ 0.54

3 0.54 0.45 0.15 0.30 1.20 29.8○ 0.43

This work has only treated output jitter. In some applications, sampling jitter
is also an issue. We are investigating if the stability analysis can be extended to
also handle this case.
The topic of best-case response-time analysis needs to be investigated further.

For instance, exact best-case response-time analysis under EDF could be devel-
oped. It would also be interesting to consider jitter analysis where the same task
phasing is assumed for the best-case and the worst-case response-time analysis.
The suggested codesign approach is only one of many possible. It would be

interesting to also consider direct digital design, where the controller is designed
to compensate for the constant delay. In this case, a quadratic cost function is
probably a better performance measure than the apparent phase margin.

30

4. S.Ha.R.K. Scheduling Modules

4.1 Background

S.ha.R.K. [Gai et al., 2001] is a modular, open-source real-time kernel developed at
Real-Time Systems Laboratory at the Scoula Superiore S. Anna di Pisa, Italy. The
kernel supports hierarchical scheduling and a number of different resource-access
protocols. There is also support for a large number of peripheral units, including
many Linux 2.6 drivers for keyboard, framegrabber, network, etc. When building
an application in S.ha.R.K., the user selects which scheduling modules, resource
protocols, and hardware drivers to use by including them in the initialization
function. The application is compiled, together with relevant the kernel files, into
an executable file.
A typical hierarchy of scheduling modules is shown in Figure 4.1. At the top,

at the highest priority, is a server mechanism for the scheduling of the device
driver interrupts. At the priority below follows the first user-level module, the
EDF scheduling module. Here, tasks with hard deadlines are scheduled. At the
next layer is the CBS module, which is used to schedule soft and aperiodic tasks.
This module inserts jobs into the EDF module, as indicated in the figure. At the
lowest layers we find the round robin module for scheduling of the main() function
and the dummy layer (for the dummy task). At each scheduling point, the kernel
schedules the highest-priority ready task in the highest layer for execution. If no
task is eligible for execution in layer 0, the kernel proceeds to layer 1, and so on.
A new scheduling module can be created by implementing a set of kernel in-

terface functions. It is the responsibility of the module to keep track of the task
data structures, the sorting of the ready queue (if any), and to post and handle
any timers that are needed by module. Via the kernel interface, the module is
informed about when a task is created, activated, preempted, blocked, finished,
etc. Special kernel calls can be used to insert individual jobs into other scheduling
modules.
During this project, the EDF and RM scheduling modules have been extended

to handle task offsets and deadlines less than the task period. Some different
overrun handling options have also been included. A new module has been writ-
ten to implement control server scheduling, including some different options for
overrun handling. Finally, a new module for the elastic task model has also been
implemented, together with Giacomo Guidi and Mauro Marinoni.

4.2 Improved EDF and RM Scheduling Modules

The EDF (earliest-deadline-first) and RM (rate-monotonic) scheduling modules
were originally designed to schedule hard periodic tasks according to the classical

CBS

RR

DUMMY

INTDRIVE

EDF

0

1

2

3

4

Figure 4.1 A typical hierarchy of scheduling modules in S.Ha.R.K.

31

4.2 Improved EDF and RM Scheduling Modules

Liu and Layland algorithms [Liu and Layland, 1973]. In the model, each task
was described by a period T and a worst-case computation time C. The relative
deadline was assumed to be equal to the period, i.e., D = T . There was also
support for sporadic tasks, where T is interpreted as a minimum interarrival
time. If a task violated its computation time, deadline, or minimum interarrival
time, an exception was generated.
The new version of the modules introduces the possibility to have relative

deadlines smaller than the period and release offsets. The HARD_TASK_MODEL
included a field for the deadline, which was previously ignored by the EDF and
RM modules. A new field was added to support release offsets. The updated task
model structure looks as follows:

typedef struct {

TASK_MODEL t;

TIME mit;

TIME drel;

TIME wcet;

int periodicity;

TIME offset;

} HARD_TASK_MODEL;

If the deadline attribute is not specified, D = T is assumed. If D < T is used,
the utilization factor of the task is computed as U = C/D. Unfortunately, the
schedulability guarantee test in S.Ha.R.K. only uses the utilization factor, so this
can result in a pessimistic design with low average utilization.
The task offsets can be used in two ways. First, they can be used to synchronize

two or more tasks that are part of the same transaction. In this model, an event
triggers a chain of tasks that should be executed at points in time relative to the
event. The first task in the chain is typically given the offset 0. A transaction is
defined using a task group in S.Ha.R.K., as in the following example:

hard_task_def_offset(task1,0);

hard_task_def_group(task1,1);

hard_task_def_offset(task2,10000);

hard_task_def_group(task2,1);

...

group_activate(1); // activate task1 now and task2 10000 us later

The second way to use offsets is to assign an absolute release time to a task (or
a group of tasks). This can be done using the two new primitives task_activate_at

and group_activate_at:

/*+ Activate a task specified via pid from task_create at time t +*/

int task_activate_at(PID pid, struct timespec *t);

/*+ Activate the task group g at time t +*/

int group_activate_at(WORD g, struct timespec *t);

The EDF and RM modules can generate exceptions in the case of execution
overruns, deadline overruns, and too frequent activation. Some additional flags
have been added to control the behavior in the case of overruns. They are sum-
marized in Table 4.1.
To implement the release offsets, a new transition was introduced in the state

transition diagram, see Figure 4.2. When a task is activated with an offset, the
task is put in the IDLE state, and a timer is posted to wake up the task at
the correct time. To keep track of deadlines less than the period, an additional
deadline timer was introduced. The timer is disabled when the task finished (i.e.,
when task_endcycle is called).

32

4.3 The Control Server Scheduling Module

Table 4.1 Exception flags in the new EDF and RM modules.

(No flags enabled) Deadline and wcet overruns are ignored. Pend-
ing periodic jobs are queued and are eventu-
ally scheduled with correct deadlines accord-
ing to their original arrival times. Sporadic
tasks that arrive to often are simply dropped.

EDF_ENABLE_DL_CHECK When a deadline overrun occurs, a deadline
miss counter for the task is increased. Same
behavior for pending jobs as above.

EDF_ENABLE_WCET_CHECK When a wcet overrun occurs, a WCET miss
counter for the task is increased. Same behav-
ior for pending jobs as above.

EDF_ENABLE_DL_EXCEPTION When a deadline overrun occurs, an exception
is raised.

EDF_ENABLE_WCET_EXCEPTION When a wcet overrun occurs, an exception is
raised.

EDF_ENABLE_ACT_EXCEPTION When a periodic or sporadic task is activated
too often, an exception is raised.

FREE SLEEP EXE

EDF_WAIT

EDF_READY

EDF_IDLE

create activate dispatch

endcycle,

sporadic

endcycle

(endperiod)

epilogue

(endperiod)

activate,

offset

EDF_ZOMBIE
(endperiod)

end

Figure 4.2 Task state transition diagram for the new EDF module.

4.3 The Control Server Scheduling Module

The Control Server is a variant of the constant bandwidth server (CBS), specif-
ically designed to schedule control tasks that are sensitive towards jitter. A task
may be divided into several segments, and time-triggered I/O points may be de-
fined. The scheduling algorithm has been described in Chapter 2 of this report.
The Control Server scheduling module in S.Ha.R.K. schedules tasks that are de-
fined using the CS_TASK_MODEL, as defined below:

typedef struct {

TASK_MODEL t;

TIME offset; /* release offset */

int nbr_segs; /* the number of segments */

TIME *seg_lens; /* pointer to segment lengths */

void (**seg_inhooks)(); /* pointer to input hooks */

void (**seg_outhooks)(); /* pointer to output hooks */

bandwidth_t bandwidth; /* task bandwidth */

int periodicity;

33

4.3 The Control Server Scheduling Module

} CS_TASK_MODEL;

An absolute time release offset may be given to synchronize the task to other
tasks in the system (including other modules). The number of and lengths (in
microseconds) of the segments must be specified, together with optional input
and output hooks for each segment. The reserved bandwidth of the task must be
given, and the task may be declared as periodic or aperiodic.
As with the other scheduling modules, a set of macros are provided to simplify

the initialization of a task structure. The example below shows how a task with
two segments is specified:

static TIME seg_lens0[] = { 1000000, 2000000 };

static void (*seg_inhooks0[])() = { inhook1, inhook2 };

static void (*seg_outhooks0[])() = { outhook1, outhook2 };

...

cs_task_default_model(m);

cs_task_def_nbr_segs(m,2);

cs_task_def_seg_lens(m,seg_lens0);

cs_task_def_seg_inhooks(m,seg_inhooks0);

cs_task_def_seg_outhooks(m,seg_outhooks0);

cs_task_def_bandwidth(m, MAX_BANDWIDTH/2);

Here, the segment lengths are given in microseconds, and the input and output
hooks pointers to functions that should perform functions such as reading samples
or writing control signals.
A control server task is implemented by the user as an infinite loop, where a

special primitive CS_task_endsegment is called after each segment (equivalent to
task_endcycle for regular tasks). An example with two segments is given here:

void *cstask_code(void *p)

{

while (1) {

/* First segment */

// do work here

CS_task_endsegment();

/* Second segment */

// do some more work here

CS_task_endsegment();

}

}

Another special primitive, CS_task_late, can be used to check if the task has
exhausted its budget and is currently executing with a postponed deadline. To
implement period skipping in the case of overruns, the following scheme can be
used:

void *cstask_code(void *p)

{

while (1) {

if (CS_task_late()) {

// Late, skipping a period

CS_task_endsegment();

CS_task_endsegment();

continue;

}

/* First segment */

// do work

CS_task_endsegment();

34

4.4 The Elastic Scheduling Module

(a)

(b)

U1

U1

U2

U2

U3

Figure 4.3 Illustration of the utilization rescaling in the elastic task model: (a) Tasks 1 and
2 are executing at their nominal utilization. (b) Tasks 1 and 2 are compressed to make room
for the new task 3.

/* Second segment */

// do some more work

CS_task_endsegment();

}

}

Internally, each control server task is driven by a timer. The timer is set up to
expire between each segment. In the timer handler, the following operations are
carried out:

• The output hook of the previous segment is called (if not null).

• The input hook of the next segment is called (if not null).

• A new job is released.

The jobs are scheduled according to the CBS algorithm, except that the server
period is dynamic (and equal to the current segment length). The jobs are inserted
as guests in the EDF module (which must be present in the system). A counter
is used to keep track of queued jobs in the case of overruns.

4.4 The Elastic Scheduling Module

The idea of the elastic task model [Buttazzo et al., 1998] is to treat task with flex-
ible resource requirements as springs that can be compressed and decompressed,
see Figure 4.3. This can be useful to model for instance control tasks that can give
acceptable performanace over a range of different sampling periods. By rescaling
the task periods when tasks enter or leave the system, the elastic manager can
make sure that the task set is schedulable at all times.
In the model, each task is described by a worst-case execution time C, a mini-

mum (nominal) period Tmin, a maximum period Tmax, and an elasticity coefficient
E. Whenever possible, the tasks execute at their maximum rate (i.e., with the pe-
riod Tmin). If that is not possible, then the task periods are rescaled in proportion
to the elasticity of the tasks. A task can never be forced to execute with a longer
period than its declared Tmax, however. In S.Ha.R.K., an elastic task is described
by the following model structure:

typedef struct {

TASK_MODEL t;

TIME Tmin;

TIME Tmax;

TIME C;

int E;

35

4.4 The Elastic Scheduling Module

int beta;

int arrivals;

} ELASTIC_TASK_MODEL;

Here, the beta attribute is reserved for future extensions where the task might
be rescaled either by its period or by its computation time.
In the scheduling module, the elastic compression algorithm is implemented

in a function which must be called with interrupts disabled. The function is called
whenever a task is created or destroyed, or whenever a relevant task attribute is
modified by the user.
If, during the compression, any task periods are shrunk, the periods of those

tasks are changed at their next release. If periods are prolonged, they are immedi-
ately changed. This involves removing the task from the EDF level, changing the
deadline, and inserting the task again. This way, the task set remains schedulable
at all times.

36

5. Conclusion

This report has presented the work carried out within the six-month research
project “Merging Real-Time and Control Theory for Improving the Performance of
Embedded Control Systems”. The project has focused on handling timing varia-
tions in real-time control.
The problem of overruns due to varying control task execution times has been

investigated. Theoretical analysis of simple models has shown that the perfor-
mance can be improved by sampling fast but allowing occasional overrun. The
overrun handling has been implemented in the control server scheduling mod-
ule and practical experiments on a vision-based ball-and-plate control application
have been performed. The practical experiments were inclusive, however.
From a control design point of view, the problem of response-time jitter in

control tasks has been researched. By calculating the jitter for each task in the
system, the control stability can asserted. The A new lower bound for the best-case
response time under EDF scheduling has been developed.
Finally, some scheduling modules in the S.Ha.R.K. real-time kernel has been

implemented or improved. The rate-monotonic and EDF modules have been ex-
tended to handle offsets. The control server scheduling mechanism has been im-
plemented in a new module. Also, an elastic scheduling module has been imple-
mented.

37

References

Abeni, L. and G. Buttazzo (1998): “Integrating multimedia applications in
hard real-time systems.” In Proc. 19th IEEE Real-Time Systems Symposium.
Madrid, Spain.

Albertos, P. and A. Crespo (1997): “Real-time control of unconventionally sampled
data systems.” In Proc. 4th IFAC Workshop on Algorithms and Architectures
for Real-Time Control, Algarve, Portugal.

Årzén, K.-E., B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson, and
L. Sha (1999): “Integrated control and scheduling.” Technical Report ISRN
LUTFD2/TFRT--7586--SE. Department of Automatic Control, Lund Institute
of Technology, Sweden.

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems. Prentice
Hall.

Audsley, N., K. Tindell, and A. Burns (1993): “The end of the line for static cyclic
scheduling.” In Proc. 5th Euromicro Workshop on Real-Time Systems.

Balbastre, P., I. Ripoll, and A. Crespo (2000): “Control task delay reduction under
static and dynamic scheduling policies.” In Proc. 7th International Conference
on Real-Time Computing Systems and Applications.

Baruah, S., G. Buttazzo, S. Gorinsky, and G. Lipari (1999): “Scheduling periodic
task systems to minimize output jitter.” In Proc. 6th International Conference
on Real-Time Computing Systems and Applications.

Buttazzo, G. (2003): “Rate monotonic vs. EDF: Judgment day.” In Proceedings of
the 3rd ACM International Conference on Embedded Software (EMSOFT’03).

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model for adaptive rate
control.” In Proc. 19th IEEE Real-Time Systems Symposium, pp. 286–295.

Caccamo, M. and G. Buttazzo (1997): “Exploiting skips in periodic tasks for
enhancing aperiodic responsiveness.” In Proc. 18th IEEE Real-Time System
Symposium.

Caccamo, M., G. Buttazzo, and L. Sha (2000): “Elastic feedback control.” In Proc.
12th Euromicro Conference on Real-Time Systems, pp. 121–128. Stockholm,
Sweden.

Caccamo, M., G. Buttazzo, and L. Sha (2002): “Handling execution overruns in
hard real-time control systems.” IEEE Transactions on Computers, 51:7.

Cervin, A. (1999): “Improved scheduling of control tasks.” In Proceedings of the
11th Euromicro Conference on Real-Time Systems, pp. 4–10. York, UK.

Cervin, A. and J. Eker (2003): “The Control Server: A computational model for
real-time control tasks.” In Proceedings of the 15th Euromicro Conference on
Real-Time Systems, pp. 113–120. Porto, Portugal.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén (2003): “How does
control timing affect performance?” IEEE Control Systems Magazine, 23:3,
pp. 16–30.

Crespo, A., I. Ripoll, and P. Albertos (1999): “Reducing delays in RT control: The
control action interval.” In Proc. 14th IFAC World Congress, pp. 257–262.

38

References

David, L., F. Cottet, and N. Nissanke (2001): “Jitter control in on-line scheduling
of dependent real-time tasks.” In Proc. 22nd IEEE Real-Time Systems Sympo-
sium.

Franklin, G., D. Powell, and A. Emami-Naeini (2002): Feedback Control of
Dynamic Systems, 4th edition. Prentice Hall.

Gai, P., L. Abeni, M. Giorgi, and G. Buttazzo (2001): “A new kernel approach for
modular real-time systems development.” In Proc. 13th Euromicro Conference
on Real-Time Systems.

George, L., N. Rivierre, and M. Spuri (1996): “Preemptive and non-preemptive
real-time uniprocessor scheduling.” Technical Report 2966. Institut National
de Recherche en Informatique et en Automatique.

Halang, W. (1993): “Achieving jitter-free and predictable real-time control by
accurately timed computer peripherals.” Control Engineering Practice, 1:6,
pp. 979–987.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002): “TrueTime: Simulation of
control loops under shared computer resources.” In Proceedings of the 15th
IFAC World Congress on Automatic Control. Barcelona, Spain.

Henzinger, T. A., B. Horowitz, and C. M. Kirsch (2001): “Giotto: A time-triggered
language for embedded programming.” In Proc. First International Workshop
on Embedded Software.

Joseph, M. and P. Pandya (1986): “Finding response times in a real-time system.”
The Computer Journal, 29:5, pp. 390–395.

Kao, C.-Y. and B. Lincoln (2004): “Simple stability criteria for systems with time-
varying delays.” Automatica. To appear in September 2004. Preprint available
at http://www.control.lth.se.

Kim, T., H. Shin, and N. Chang (2000): “Deadline assignment to reduce output
jitter of real-time tasks.” In Proc. 16th IFAC Workshop on Distributed
Computer Control Systems.

Klein, M. H., T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Härbour (1993):
A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic Publisher.

Koren, G. and D. Shasha (1995): “Skip-over: Algorithms and complexity for
overloaded systems that allow skips.” In Proc. IEEE Real-Time Systems
Symposium.

Lehoczky, J., L. Sha, and J. Strosnider (1987): “Enhanced apriodic responsive-
ness in hard real-time environment.” In Proc. 8th IEEE Real-Time Systems
Symposium.

Lincoln, B. (2002): “Jitter compensation in digital control systems.” In Proceedings
of the 2002 American Control Conference.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis of real-time control
performance.” In Proceedings of the 41st IEEE Conference on Decision and
Control. Las Vegas, NV.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for multiprogramming
in a hard-real-time environment.” Journal of the ACM, 20:1, pp. 40–61.

Locke, C. D. (1992): “Software architecture for hard real-time applications: Cyclic
vs. fixed priority executives.” Real-Time Systems, 4, pp. 37–53.

39

References

Marti, P., G. Fohler, K. Ramamritham, and J. M. Fuertes (2001): “Jitter
compensation for real-time control systems.” In Proc. 22nd IEEE Real-Time
Systems Symposium.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis ISRN
LUTFD2/TFRT--1049--SE, Department of Automatic Control, Lund Institute
of Technology, Sweden.

Ramanathan, P. (1997): “Graceful degradation in real-time control application
using (m,k)-firm guarantee.” In Proc. 27th Annual International Symposium
on Fault-Tolerant Computing.

Redell, O. and M. Sanfridson (2002): “Exact best-case response time analysis of
fixed priority scheduled tasks.” In Proc. 14th Euromicro Conference on Real-
Time Systems. Vienna, Austria.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time controller
design: From performance specifications to end-to-end timing constraints.” In
Proc. 3rd IEEE Real-Time Technology and Applications Symposium, pp. 91–99.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task schedulability in
real-time control systems.” In Proc. 17th IEEE Real-Time Systems Symposium,
pp. 13–21. Washington, DC.

Shin, K. G. and H. Kim (1992): “Derivation and application of hard deadlines
for real-time control systems.” IEEE Transactions on Systems, Man, and
Cybernetics, 22:6, pp. 1403–1413.

Shin, K. G., C. M. Krishna, and Y.-H. Lee (1985): “A unified method for evauating
real-time computer controllers and its applications.” IEEE Transactions on
Automatic Control, 30:4, pp. 357–366.

Spuri, M. (1996): “Analysis of deadline scheduled real-time systems.” Technical
Report 2772. INRIA, France.

Spuri, M. and G. Buttazzo (1996): “Scheduling aperiodic tasks in dynamic priority
systems.” Real-Time Systems, 10:2, pp. 179–210.

Stankovic, J. A., M. Spuri, K. Ramamritham, and G. C. Buttazzo (1998): Deadline
Scheduling for Real-Time Systems—EDF and Related Algorithms. Kluwer
Academic Publishers.

Tindell, K., A. Burns, and A. J. Wellings (1994): “An extendible approach for
analyzing fixed priority hard real-time tasks.” Real-Time Systems, 6:2, pp. 133–
151.

Törngren, M. (1998): “Fundamentals of implementing real-time control applica-
tions in distributed computer systems.” Real-Time Systems, 14:3.

40

