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Transient electromagnetic waves and inversion
techniques

Gerhard Kristensson
Department of Electromagnetic Theory
P.O. Box 118, S-221 00 Lund, Sweden

Abstract

This paper reviews an efficient inversion technique for complex media utilizing transient electromag-
netic scattering data. The approach to solve the scattering problems (direct and inverse) relies on
a wave splitting technique and an invariant imbedding technique. The analysis is illustrated by a
numerical example.

1 Introduction

In this paper a review of some results on propagation of transient electromagnetic waves in spatially
inhomogeneous, lossy slabs of finite length is presented. The sources of the problem are assumed to be
located outside the slab, and they generate a transient, transversely polarized wave that impinges normally
on the slab. Furthermore, the permittivity and the conductivity profiles are assumed to vary with depth
only, and the scattering problem is thus one-dimensional. The slab extends from [0, L], and outside the
slab the medium is lossless and homogeneous, see Figure 1. A more extensive treatment of this scattering
problem is found in Refs [5, 6, 9]. Several related problems are found in Ref. [2]. Reconstructions of
profiles from experimental data are found in Ref. [3].

The direct and inverse scattering problems for the continuous permittivity profiles are reviewed (the
corresponding scattering problems for discontinuous permittivity profiles are given in Refs [7–9]). The
direct scattering problem is to calculate the scattering kernels from known permittivity and conductivity
profiles. In the inverse problem, these profiles are calculated from finite time traces of scattering data.
The input data set consists of finite time traces of reflection and transmission data.

2 Basic time domain equations

The medium, which is inhomogeneous wrt the depth z, is assumed to be non-magnetic and non-dispersive.
Extensions to dispersive media are found in Refs [1, 4]. The losses of the medium are modeled by a DC
conductivity function σ(z). The appropriate constitutive relations are therefore

D(r, t) = ε0ε(z)E(r, t)
J(r, t) = σ(z)E(r, t)
B(r, t) = µ0H(r, t)

where ε(z) is the relative permittivity of the slab, and ε0 and µ0 are the permittivity and the permeability
of vacuum, respectively. The medium is assumed to be homogeneous and lossless outside a slab of
thickness L, see Figure 1.

The electric field are assumed to vary with z and t only, and, furthermore, it has only a transverse
component E(z, t). The Maxwell equations and the constitutive relations imply that the electric field
E(z, t) satisfy the wave equation

∂2E

∂z2
(z, t)− 1

c2(z)
∂2E

∂t2
(z, t)− µ0σ(z)

∂E

∂t
(z, t) = 0 (2.1)

where the wave front speed c(z) is
c(z) = c0/

√
ε(z)

and c0 is the speed of light in vacuum. Note that there are two varying coefficients in this wave equation,
viz , the wave front speed c(z) (or equivalently, the permittivity ε(z)) and the conductivity σ(z).

The direct scattering problem is to compute the reflected and the transmitted fields if the material
parameters, ε(z)) and σ(z), are known. The inverse problem is the reverse; to infer information about
the material parameters, ε(z)) and σ(z), from the reflected and the transmitted fields.
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Figure 1: Geometry of the lossy slab. The media outside the slab are assumed to be homogeneous,
permittivity ε1 and ε2, respectively, and lossless, i.e. σ = 0.

3 Wave splitting

The electric field that satisfies the wave equation, (2.1), can be written as a system of first order equations
in the variable z.

∂

∂z

(
E
Ez

)
(z, t) =

(
0 1

c−2(z) ∂
2

∂t2 + µ0σ(z) ∂∂t 0

)(
E
Ez

)
(z, t)

where subscript on the field, e.g., Ez(z, t), denotes differentiation wrt z.
The dependent variables in this system of equations, E(z, t) and Ez(z, t), are now transformed, by the

wave splitting transform, into two new dependent variables E±(z, t).

E±(z, t) =
1
2

{
E(z, t)∓ c(z)

∫ t

−∞
Ez(z, t′)d t′

}
This transformation transforms the equation into the following system of PDEs:

∂

∂z

(
E+

E−

)
(z, t) +

1
c(z)

(
1 0
0 −1

)
∂

∂t

(
E+

E−

)
(z, t) =

(
α(z) β(z)
γ(z) δ(z)

)(
E+

E−

)
(z, t) (3.1)

where the coefficients α(z), β(z), γ(z) and δ(z) are
α(z) =

1
2

(
c′(z)
c(z)

− c(z)µ0σ(z)
)

β(z) = −1
2

(
c′(z)
c(z)

+ c(z)µ0σ(z)
)


γ(z) = −1

2

(
c′(z)
c(z)

− c(z)µ0σ(z)
)

δ(z) =
1
2

(
c′(z)
c(z)

+ c(z)µ0σ(z)
)

In a homogeneous, lossless region these functions are identically zero, and the system of PDEs decouple
into right- and left-moving waves, i.e. c(z) = c = constant and σ = 0 and{

E+(z, t) = f(z − ct)

E−(z, t) = g(z + ct)

These new dependent variables, E±(z, t), are therefore the natural dependent variables to work with in
the solution of the scattering problem, since they generalize the concept of reflected and transmitted
fields inside the inhomogeneous medium.

4 Scattering operator formulation

This section presents the scattering operator formulation of the scattering problem in an invariant imbed-
ding geometry.

Consider a subsection [z, L] of the physical region [0, L], see Figure 2. Mathematically, the original
problem, [0, L], is imbedded in a family of problems where the left edge of the slab, z, is the parameter
that is varied. The value z = 0 corresponds to the full slab problem, and the other limit value, z = L,
corresponds to the absence of the slab.

The fields E+(z, t) and E−(z, t), defined at the position z, are related to each other by the reflection
operator. In the same way the fields E+(z, t) and E+(L, t) are related to each other by the transmission
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Figure 2: The imbedding geometry of the slab.

operator. These operators are represented as integral operators, where the scattering kernels R+(z, t)
and T (z, t) are defined.

E−(z, t) =
∫ t

−∞
R+(z, t− t′)E+(z, t′)d t′

E+(L, t+ τ(z)) = Γ(z)
{
E+(z, t) +

∫ t

−∞
T (z, t− t′)E+(z, t′)d t′

} (4.1)

In these expressions the wave front factor Γ(z) and the time delay τ(z) are used. Their definitions are
Γ(z) =

√
c(L)
c(z)

exp

{
−µ0

2

∫ L

z

σ(z′)c(z′) dz′
}

τ(z) =
∫ L

z

dz′

c(z′)

The kernels R+(z, t) and T (z, t) are identically zero for negative time due to causality, i.e. R+(z, t) =
T (z, t) = 0 for t < 0.

As the parameter z varies from z = 0 to z = L, the corresponding kernels R+(z, t) and T (z, t) vary
from their physical values at z = 0, R+(0, t) and T (0, t), to zero values at z = L, since the subsection
[z, L] then vanishes.

From (4.1) and (3.1) it is possible to derive an imbedding equation for the reflection kernel R(z, t), for
details see [5]. The result is (t > 0)

R+
z (z, t)− 2

c(z)
R+
t (z, t) = c(z)µ0σ(z)R+(z, t)

+
1
2

(
c′(z)
c(z)

+ c(z)µ0σ(z)
)∫ t

0

R+(z, t− t′)R+(z, t′)d t′
(4.2)

The reflection kernel, R+(z, t) has the initial value [5]

R+(z, 0+) =
1
4
(
c′(z)− c2(z)µ0σ(z)

)
(4.3)

5 The resolvent kernel of T (z, t)

The crucial quantity for the solution of the inverse problem is the resolvent of the transmission kernel
T (z, t). This kernel is denoted by W (z, t) and satisfies the resolvent equation.

T (z, t) +W (z, t) + (T (z, ·) ∗W (z, ·)) (t) = 0

The kernel W (z, t) satisfies an imbedding equation similar to (4.2). This imbedding equation is (t > 0),
see Ref. [5]

Wz(z, t) = −1
2

(
c′(z)
c(z)

+ c(z)µ0σ(z)
){

R+(z, t) +
∫ t

0

W (z, t− t′)R+(z, t′)d t′
}

(5.1)
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Figure 3: Reconstruction of the permittivity profile.

Notice the explicit presence of the reflection kernel R+(z, t) in the right hand side of the equation.
The kernel W (z, t) has compact support in [0, 2τ(z)], for a proof, see Ref. [5]. The length of time

interval [0, 2τ(z)] is the time it takes for the wave front to travel through the slab, reflect at the right
edge at z = L, and travel back to z again. This time interval is usually referred to as one round trip
through the subsection [z, L]. The compact support of the kernel W (z, t) and the resolvent equation can
be used to extend transmission data from one round trip to arbitrary time intervals [5].

In Section 4 the reflection kernel for reflection from the left, R+(z, t), was introduced. Reflection from
the right is represented by a similar reflection kernel, R−(z, t). This kernel has a finite jump discontinuity
after one round trip, 2τ(z), in the imbedding medium [z, L]. The finite jump discontinuity is related to
the W (z, t) kernel and the material parameters at z, see Ref. [5]. The explicit result is∫ 2τ(z)

0

W (z, 2τ(z)− t′)R−(0, t′)d t′ +R−(0, 2τ(z)−)

= −1
4
(
c′(z) + c2(z)µ0σ(z)

)
exp

{
−µ0

∫ L

z

c(z′)σ(z′) dz′
} (5.2)

Notice that (4.3) contains information about c′(z) − c2(z)µ0σ(z), but (5.2) contains information about
c′(z) + c2(z)µ0σ(z). By clever use of these two quantities, the two parameters, wave front speed c(z) (or
equivalently the permittivity ε(z)), and the conductivity σ(z), can be constructed from scattering data.
This reconstruction is presented in the next section.

6 Inversion algorithm

In this section the inversion algorithm of this paper is presented. The input data set needed for the
algorithm is given in Table 1. Three scattering kernels are required and three constants. The scattering
kernels are measure during a finite time interval, [0, 2τ(0)], which is one round trip through the entire
slab. The first constant exp

{
−µ0

∫ L
0
σ(z′)c(z′) dz′

}
can be obtained from transmission data, cf. Γ(0);

the other two are obtained from the medium outside the unknown slab.
The inversion algorithm using the invariant imbedding equations then proceeds as follows starting at

z0 = 0:

1) Use (5.1) to explicitly step W (z, t) from the current grid line z0 to the next grid line z1 = z0 + h
for 0 < t < 2τ(z1).

2) Use (4.2) to implicitly step a portion of R+(z, t) forward in the z-direction to the grid point (z1, 0).

3) To estimate c(z1) and σ(z1), set z = z1 in (4.3) and (5.2). These coefficients are found by solving
a set of non-linear equations. This is straightforwardly done by a Newton iteration scheme.
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Figure 4: Reconstruction of the conductivity profile.

Data set for inversion
R±(0, t), 0 < t < 2τ(0)
T (0, t), 0 < t < 2τ(0)
exp

{
−µ0

∫ L
0
σ(z′)c(z′) dz′

}
c(0) and c(L)

Table 1: Data requirements for inversion of the profiles ε(z) and σ(z).

4) Use (4.2) to implicitly step the remaining R+(z0, s) data forward in the z-direction to the set of
grid points at z1 for 0 < t < 2τ(z1).

5) Repeat steps 1-4 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of iteration. All that
needs to be done is to add the following steps after step 4:

4a) Use (5.1) to implicitly step W (z, t) from the current grid line z0 to the next grid line z1 for 0 < t <
2τ(z1). This can be done since c(z), σ(z) and R+(z, t) are known (to some degree of accuracy) on
the grid lines z0 and z1.

4b) Go to step 2.

7 Numerical example

In this section a numerical example is given that illustrates the performance of the algorithm. The original
permittivity and the conductivity profiles as well as the reconstructed profiles are found in Figures 3 and
4. The input scattering data to these reconstructions are given in Figure 5. 257 data points are used
to represent the data in the inversion algorithm, and two iterations have been used to improve the
reconstruction. As clearly is seen from Figures 3 and 4, the reconstructions are very good and stable.
Several additional examples, which illustrates the performance with noise-corrupted data, are presented
in Ref. [9].
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Figure 5: The reflection and transmission data set used in the reconstruction of the example given in
Figures 3 and 4.
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