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Abstract 
 

Random-walk and diffusion models for two-choice comparison of paired successive or 
simultaneous stimuli focus on response time (RT), modeled as the time needed to reach one or the 
other barrier, and its relation to the response probabilities. Logit P1 = ln[P1/(1-P1)], where P1 is 
the probability of responding ”first greater,” can be seen as a measure of subjective stimulus 
difference, d. Signed response speed (SRS), ±1/RT with the sign of the response, yields another d 
measure. The two measures are highly correlated and, importantly, the intercept in the regression 
of logit P1 on mean SRS estimates the asymmetry of the starting point relative to the barriers, that 
is, the bias. New analyses of data from Patching, Englund, and Hellström (2011) show that this 
bias helps explain the variability of the time-and space order errors. Possible connections of the 
bias with the parameters in Hellström’s (2003) sensation-weighting (SW) model are explored.  
 
  
What are the processes that lead to the response in a two-choice situation, such as forced-
choice comparison of paired successive or simultaneous stimuli? Several models focus not 
only on the response probabilities, but also on the response time (RT), seen as comprising the 
time needed to accumulate sufficient information to reach one or the other response criterion 
(bound, barrier), where the accumulation is conceived as being stepwise (Link, 1975, 1992; 
Link & Heath, 1975) or continuous (Ratcliff, 1978, 2002). One purpose of this paper is to 
introduce a simple analysis method for timed two-alternative forced-choice (2AFC) tasks, 
developed within the ”diffusion-to-bound framework” described by Shadlen et al. (2007; see 
also Palmer, Huk, & Shadlen, 2005), and demonstrate how it can detect initial bias, the offset 
of the starting point for the accumulation, and how its results relate to those of an advanced 
method of fitting the Ratcliff diffusion model (Vandekerckhove et al., 2011). Another purpose 
is to explore the nature of this bias and how it might contribute to the time- and space-order 
errors (TOEs, SOEs) in stimulus comparison. 
            Just as travel between two points is conveniently described, not only by the time 
required, but also by the speed and direction of travel, a very useful alternative concept and 
tool for describing a timed response is the signed response speed (SRS) = ±1/RT, with the sign 
of the response: + for 1st greater or left greater and - for 2nd greater  or right greater (Hell-
ström, 2008). The individual value of SRS represents the speed (µ) and direction (+ or -) of 
the accumulation process (ignoring the nondecision time, τ). This process is not going on for-
ever even when µ = 0. Instead, its randomness makes it likely that a spurious deviation makes 
it hit one or the other barrier (A, -A) after an average number of steps that increases with A2 
and decreases with σ2 as well as with |µ| (Shadlen et al., 2007, Eqs. 10.32-10.35). This makes 
very long RTs (near-zero values of SRS) unlikely and yields a bimodal distribution of SRS for 
a given stimulus pair, which on each side of zero is seen to be symmetric, resembling the 
normal distribution, and thus more user-friendly than the skewed distribution of RT. 



 

            Link (1992) and Shadlen et al. (2007) discuss in terms of the average number of steps 
to reach either border. Instead, we here partition the SRS values into positive and negative 
values, SRS+ and SRS–, corresponding to responses of 1st greater and 2nd greater. We also 
denote the corresponding mean accumulation rates by µ∗+ and µ∗-. This yields E(SRS+) = µ∗+/A 
and E(SRS-) = µ∗-/A. Thus, µ = P µ∗+ + (1-P) µ∗−, and E(SRS) = P µ∗+/A + (1-P) µ∗-/A. The 
individual SRS values estimate either µ∗+/A or µ∗-/A, but, as µ∗+ = -µ∗- (Shadlen et al., Eq. 
10.38),  E(SRS)  = µ/A, so that MSRS for a given stimulus pair, over replications, yields an 
estimate of µ/A. Further, Shadlen et al.’s Eq. 10.38 yields logit P = 2 µA/σ2. Thus, from the 
slope b of the plot of logit P against MSRS one can estimate logit P / MSRS = (2 µA/σ2) / (µ/A) = 
2A2 / σ2. This plot is usually linear near the origin with a slight inverted-S shaped deviation 
towards the ends; linearity can be improved by estimating τ and computing SRSadj = 1/(RT-τ).  
            Effects of initial bias. In the model above, with no bias, and thus with bounds A and -A, 
it is clear that with P = 1/2, yielding logit P = 0, E(SRS) also becomes 0. However, with an 
initially biased starting point c, the bounds, relative to this point, are A-c and -(A+c). So, 
 
E(SRS) = P E(SRS+) + (1-P) E(SRS-) = P µ∗+ / (A-c) + (1-P) µ∗- / (A+c).                     (1) 
 
When bounds are symmetrical, µ∗+ = -µ∗- should hold. With bounds A-c and -(A+c), E(SRS+) = 
µ∗+ / (A-c) and E(SRS-) = µ∗- / (A+c). Assuming that, still, µ∗+ = - µ∗-, E(SRS) = 0 yields  
P µ∗+ / (A-c) + (1-P) µ∗- / (A+c) = 0, so that P/(1-P) = (A-c)/ (A+c) and thus 

 
              logit PE(SRS) = 0  = ln[(1-q)/(1+q)],                                               (2) 

 
where q = c/A. Thus, with logit PE(SRS) = 0  = a, q = (1-ea)/(1+ea). For a small, q is close to -a/2, 
and for a = 0, q = 0. So, the intercept in the plot of logit P against MSRS estimates the bias c 
relative to A. As the influence of τ vanishes when SRS −> 0, this estimate should be indepen-
dent of τ. It can also be shown that under our assumptions, logit Pµ = 0  = -logit PE(SRS) = 0. 
            Diffusion model analysis. Validation of the chronometric results is available by com-
parison with results from the fitting of Ratcliff’s (2002) diffusion model to the data from our 
experiments. Computational estimation of the parameters of this model requires a large num-
ber of alternate responses (i.e., > 50) to each stimulus pair. Recently, however, Vandekerck-
hove et al. (2011) detail a hierarchical Bayesian fitting method, which analyzes the data from 
all participants while allowing for differences between participants. Thus, in addition to the 
analyses based on logit P and MSRS, the Ratcliff Diffusion Model was fitted to the timed res-
ponse data using the program WinBUGS (a MicrosoftTM Windows program for Bayesian in-
ference Using Gibbs Sampling). For each participant the fitting yielded one common value of 
the response criterion A and one value of the relative initial bias q for each ISI or spatial 
separation. 
 

Method 
 
In each of four microcomputer-controlled experiments, forty different participants compared 
successive or simultaneous paired circular spots of light. In Exp. 1, the spots had nine lumi-
nance levels from 3.5 to 5.9 cd/m2 in steps of 0.3 cd/m2. Their diameter was 5 mm. In Exp. 2, 
the luminance was 4.7 cd/m2 and the diameter varied from 5.1 to 6.7 mm in steps of 0.2 mm. 
The temporal separation (ISI) between the light spots was 400, 800, 1600, or 3200 ms. Each 
spot was presented for 200 ms. Response time was measured from the onset of the 2nd sti-
mulus. The intertrial interval was 3000 ms. In Exps. 3 and 4, the two light spots were presen-
ted simultaneously for 200 ms with a spatial separation of 10, 20, 40, or 80 mm. In Exp. 3, the 



 

luminance ranged from 1.5 to 7.9 cd/m2 in steps of 0.8 cd/m2, and the diameter was 5 mm. In 
Exp. 4, the diameter ranged from 4.3 to 7.5 mm in steps of 0.4 mm, and the luminance was 
4.7 cd/m2. After Hellström (1978) the nine levels of luminance or diameter were combined 
factorially in their mean and difference, to create 25 different stimulus pairs. In Exps. 1 and 2, 
half of the participants were to press the left key if the first spot was the larger and the right 
key if the second spot was the larger (response assignment 1, RA1), and the other half had the 
reverse assignment (RA2). In Experiment 3, all participants were to press the left key if the 
left spot was the brighter and the right key if the right spot was the brighter (RA1). In Exp. 4, 
half of the participants were to press the left key if the left spot was the larger and the right 
key if the right spot was the larger (RA1), and the other half were to press the left key if the 
left spot was the smaller and the right key if the right spot was the smaller (RA2).  
 

Results and Discussion 
 

Estimates of initial bias. The q values from the chronometric (CM) and WinBUGs (WB) 
analyses were found to be linearly related, with the following rs, in order from the lowest to 
the highest ISI or separation: Exp. 1: .865, .858, .812, .813; Exp. 2: .755, .803, .782, .869; Exp. 
3: .531, .707, .625, .609; Exp. 4: .822, .609, .541, .724. All rs were significantly > 0 (ps 
< .001). In linear regressions with the WB values as DV, the intercepts were ns (ps > .05), and 
the slopes were on average 2.67 (Exp. 1), 2.50 (Exp. 2), 1.43 (Exp. 3), and 1.70 (Exp. 4).   
Apparently, the CM and WB estimated q values measure the same thing, although on differ-
ent scales, the reason for this discrepancy being unclear. We here favor the WB estimates as 
they are built on more data and seem more reliable. 
            WB-estimated q values. (Means are shown as ”intercept” in Figs. 2a-d.) For Exp. 2, 
means were significantly < 0 for each ISI (ps .025, .022, .007, .001). For Exps. 1, 3, and 4, 
means were not significantly ≠ 0 for any ISI or separation. 
            Mean TOE or SOE. For Exps. 1, 2, and 4, MTOE/SOE (estimated using MSRS) was not 
significantly ≠ 0 for any ISI. For Exp. 3, MSOE was > 0 for 40 mm separation (p = .018).              
 
Modeling Stimulus Comparison and the TOE/SOE 
 
Sensation weighting. Hellström’s (e.g., 2003) sensation weighting (SW) model accounts for 
effects of time- or space-order in stimulus comparison. In the simplified version of the model, 
the subjective difference d is described by this equation:  
 

d = W1 ψ1 ‐ W2 ψ2 + U,                                                 (3) 
 
where k is a scale constant, W1 = k s1, and W2 = k s2 (cf. Eq. 4). When ψ1 and ψ2 are at their 

mean values, U becomes a measure of the TOE or SOE.  
            For Exp. 1, W1-W2 was < 0 for all ISIs, significantly so for 800 and 3200 ms (ps 
= .001), and with p = .052 for 1600 ms. For Exp. 2, 400 ms, W1-W2 was > 0 (p = .038). For 

Exp. 3, W1-W2 was not significantly ≠ 0 for any separation. For Exp. 4, 80 mm, W1-W2 was 
> 0 (p = .022). Thus, differential sensation weighting is in operation. 
 
Initial Bias in Stimulus Comparison 
 
            Empirical relation of initial bias to TOE/SOE. Correlations were computed (for each 
ISI, over participants) between TOE/SOE (estimated using MSRS) and q (estimated by WB). 



 

All rs were positive [Exp. 1: ISI = 400 ms: .920; 800 ms: .875; 1600 ms: .753; 3200 ms: .624 
(ps < .001); Exp. 2: .578; .569; .651; .639 (ps < .001); Exp. 3: separation 10 mm: .500, p 
= .001; 20 mm: .524, p =.001; 40 mm: .348, p = .028; 80 mm: .418, p = .007. Exp. 
4: .675; .650; .691; .556 (ps < .001)]. Similar results, but with somewhat lower rs, were 
obtained for the U values estimated from logit P. Thus, it seems clear that the measured initial 
bias contributes to the TOE/SOE. It remains to find out how.  
            The full equation specified by Hellström’s (e.g., 2003) SW model may be written, 
 

                     d = k [s1 (ψ1 - ψr1) - s2 (ψ2 - ψr2) + (ψr1- ψr2)] + b,                    (4) 
 
where d is the scaled subjective difference between the compared stimuli, and k is a scale 
constant. ψ1 and ψ2 are the sensation magnitudes of the stimuli, s1 and s2 weighting coef-

ficients, and ψr1 and ψr2 the subjective magnitudes that correspond to the current reference 
levels (ReLs). b is a constant term, which captures a possible contribution to d independent of 
the weighting mechanism; here, any kind of bias that is independent of accumulated evidence.   
             Possible nature of initial bias (q). (1) Response preference: One possibility is that q 
reflects the SW model’s bias term, b, which can be seen as describing a general preference for 
one response over the other. If so, q should be constant across ISIs or stimulus distances, and 
thus highly intercorrelated across conditions within participants. (2) ReL-primed evidence 
accumulation: Another conjecture is that evidence accumulation starts from the reference 
levels with the null assumptions ψ1 =  ψr1 and  ψ2 =  ψr2, so that with µ = 0, ψ1 and ψ2 are 

identified with their respective ReLs, ψr1 and ψr2. This would save response time if the ReLs 

are near the current values of ψ1 and ψ2. k (ψr1- ψr2) then becomes the initial bias, q, in the 

CM or WB analysis, and µ will only reflect the remainder of the right member of Eq. 4. 
According to the CM analysis, for µ = 0, logit P = -ln [(1+q)/(1-q)], which should thus esti-
mate k (ψr1- ψr2). When µ ≠ 0, this term is added to the measure of µ, and [as shown by nu-

merical exploration of Link’s (1992) Eq. 11.2] ’amplified’ to a degree that increases with µ.  
            According to both suggested accounts of q, the q value for each ISI or spatial separa-
tion should reflect the same underlying bias. To check this, for each experiment the four WB-
estimated q values for each participant were submitted to repeated measures ANOVAs (using 
SPSS 19 GLM with polynomial contrasts and multivariate tests) to check for a possible effect 
of ISI or spatial separation. For Exp. 1, the effect of ISI was significant, p = .016 (p = .002 for 
the quadratic effect). For Exp. 2, the effect of ISI was ns. For Exp. 3, the effect of spatial 
separation had p = .051. For Exp. 4, this effect was ns.  
            Thus, the evidence on the constancy of mean q across conditions is mixed and does 
not favor the notion that q reflects a general response preference. Also, in order to identify q 
with k (ψr1- ψr2), we would have to accept the idea that the inter-ReL distance, ψr1- ψr2, 
can vary greatly with the stimulus separation. A more likely possibility seems to be that q 
reflects a response readiness that is dependent on the temporal or spatial stimulus separation.  
            Component structure of initial bias. The latter conclusion makes it of interest to deter-
mine if the variability of q across separations might have a component structure. Therefore, 
principal component analyses were conducted, using all eight q values, from WB as well as 
CM analyses. For each of Exps. 1, 2, 3, and 4, two components, with eigenvalues 5.34 and 
1.42; 6.06 and 0.66; 3.81 and 1.84;  4.21 and 1.31, were extracted. In Fig. 1, the unrotated 
component loadings are plotted against the temporal or spatial separation. q can be seen as a 
linear combination of two components. The plots all show one component, C1, that loads 



 

similarly on q for all separations, and another, C2, whose loading is negative for small, and 
positive for large separations. Next, the contribution of C1 and C2 to the TOE and SOE was 
investigated by linear regression of U (estimated by MSRS) on the unrotated component scores. 
The results are shown in Fig. 2. About half of the variance of U can be ascribed to the influ-
ence of C1 and C2. When contributing to the TOE/SOE (by the regression coefficients in Fig. 
2), C1 and C2 are weighted-in differently than when determining q (by the loadings in Fig. 1).  
            One might expect that the response assignment (RA1 vs. RA2) could influence the 
response criterion A. For Exps. 1 and 2, WB-estimated A was higher for RA2, p = .027 (Exp. 
1) and p = .001 (Exp. 2). (For Exp. 4, A was likewise higher for RA2, but with p = .165, ns). 
Thus, it takes a little extra accumulated evidence to respond using the less straightforward 
response assignment, RA2.  
  

 
 
 
 

 
 
 
 

 
Fig. 1. Unrotated loadings from principal component analyses of q estimates from WinBUGs 
and chronometric analyses, plotted against temporal or spatial stimulus separation. 
 

 
 
 
 
 
 
 
 

 
Fig. 2. Regression coefficients, with TOE or SOE as dependent variable, for unrotated scores 
from principal component analyses of q estimates. 
 
            Likewise, the RA might influence the initial bias q, or its components. For Exp. 1, 
mean WB-estimated q values for each ISI were negative for RA1 but positive for RA2. A 
repeated-measures ANOVA with multivariate tests showed a significant effect of RA, F(1,38) 
= 6.20, p = .017, but ns effects of ISI and of RA x ISI. Likewise, C1 was negative for RA1 but 
positive for RA2, p = .012 for the difference. These results suggest that there was a general 
preference for using the right key, regardless of whether this meant judging the first or the 
second stimulus as the brighter. (All participants in Exp. 1 were right-handed.) However, the 
effect is not present for Exps. 2 and 4 (in Exp. 3, only RA1 was used). For Exp. 2, C2 was 
higher for RA1, p = .044. 
            Effects of gender and age were also explored. Gender: For Exp. 1, C1 was higher for 
females than for males, t(38) = 2.025, p = .0499. For Exp. 4, C2 was higher for males than for 
females, t(38) = 2.21, p = .033. For Exp. 2, A (WB estimated) was higher for males than for 
females, t(38) = 2.76, p = .009. Age: For Exp. 1 A increased with age  (r = .35, p = .027). For 
Exp. 4, A likewise tended to increase with age,  r = .31, ns (p = .052), and C2 decreased with 
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age, r = -.415, p = .008. Although these effects of gender and age are unpredicted and might 
be spurious, they suggest that individual response tendencies, depending on personal 
characteristics, exist. This comes out more clearly for C1 and C2 than for q, for which there 
were no significant effects. Whereas C1 is largely independent of the ISI, C2 indexes an 
initial bias tendency used in opposite ways with a small versus a large separation. One might 
like to think that this tendency is somehow rational, using stimulus separation as a cue.  
 

Conclusion 
 
            Although the initial bias, q, is not the main factor behind the TOE/SOE, it contributes 
to it. The nature of q could not be fully determined from the present data. In some types of 
experiments it may be partly due to a hand preference and thus sensitive to the response 
assignment. Yet, q also has a component that depends, in a participant-specific manner, on the 
temporal or spatial stimulus separation.  
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