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Abstract— A critical component in detection under intersymbol
interference (ISI) and in turbo equalization is the BCJR algo-
rithm. We combine three approaches to reducing its computation.
First, energy seen by the receiver is focused by a phase-
maximizing all pass filter; an improvement on this older idea
is proposed. Then the state used by the BCJR is broken into
an offset state and a main state. Finally, some reduced-state
BCJR procedures are evaluated. These receivers are tested by
ISI detection and turbo equalization over strongly bandlimited
channels.

I. INTRODUCTION

We investigate the design and complexity of the BCJR cal-
culation when a coded transmission is strongly band limited.
The transmission is linear modulation with a baseband pulse
h(t) according to

s(t) =
√

Eb/T
∑

n

anh(t− nτT ), τ ≤ 1 (1)

where {an} are binary data, Eb is the symbol energy, h(t)
has unit energy and τT is the symbol time (τ < 1). The pulse
h(t) is much narrower band than 1/2τT , and consequently
there is strong intersymbol interference (ISI). An additive
white Gaussian noise (AWGN) channel follows. The receiver
consists of a matched filter of some sort, a sampler and a post
filter, which together reduce the channel model to a discrete-
time convolution with v = v0, v1, . . ., to whose outputs are
added zero-mean IID Gaussians with variance N0/2. We
will employ this Linear Modulation—AWGN Channel—BCJR
Algorithm system in two ways, as the inner coder/decoder in
turbo equalization [9] and as a narrowband communication
system in its own right.

Some receiver possibilities for this scenario are sketched in
Section II. It has been known for some time (see e.g. [2]) that
the samples should be all-pass filtered to produce a maximum
phase output; reversing the output frame then produces a
minimum phase block that feeds a Viterbi Algorithm (VA)
or reduced-search decoder such as the M-algorithm or the
M∗-algorithm [11]. For finite ISI with total length mT and
taps v0, . . . , vmT , minimum phase will not help a full 2mT

state VA, but it strongly aids schemes like the M-algorithm
that work better with ISI whose energy is “up front”. For the
reduced state VA or BCJR, which has 2m states, m < mT ,
recent work [3], [4] shows that some sort of minimum phase
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Fig. 1. Turbo equalization with a simple detection inner coder (dashed box).

presented to the VA is key to improving the error performance:
The reduced state space built upon v0, . . . , vm should include
the high-energy part of the ISI, and this is promoted by a
minimum phase input. Our paper confirms this. But we find
that the minimum phase notion can be extended, in ways that
lead to 2–4 fold further reduction in the VA. The novel work in
the paper centers on the marrying this extension to some new
reduced BCJR algorithms, and testing them in very narrow
band ISI.

Earlier reduced state work primarily treats the VA. The
BCJR is a rather different algorithm that consists of two linear
recursions, instead of the add-compare-select of the VA. It is
reasonable that energy focusing by minimum phase is also
important to BCJR state reduction, and we confirm this, but
there is little reason to suspect that the inner workings of
the BCJR can be similar to the VA’s. We evaluate a number
of modifications to the BCJR recursions and report in detail
on one that is a good compromise between simplicity and
accurate log-likelihood ratio (LLR) outputs. It is evaluated as
a detector in its own right, (“simple detection” in the sequel)
and as an element in turbo equalization. These are shown
schematically in Fig. 1. An earlier study of reduced-state BCJR
algorithms for non-minimum phase channels is [10]. A factor
graph based approach for reduced complexity receivers has
also been presented in [5].



The pulses h(t) in this paper are chosen within the so-
called faster than Nyquist, or FTN, framework. In this way
of thinking, h(t) with τ = 1 is a familiar T -orthogonal
pulse. In this paper h is a root raised-cosine (RC) pulse
with 30% excess bandwidth. Its error probability in AWGN is
Q(

√
2Eb/N0). As τ drops below 1, pulses come “faster”, but

the transmitted average power spectral density (PSD) shape
remains the same, namely, a raised cosine. The bit density is
2/τ bits/Hz-s, taking 3 dB bandwidth. The asymptotic error
rate remains Q(

√
2Eb/N0) for τ ≥ .703, the “Mazo limit” [1].

Thereafter, it declines with τ according to Q(
√

d2
minEb/N0),

d2
min < 2, in which dmin is the signals’ Euclidean minimum

distance. The methods in this paper apply to any ISI, but
there are good reasons for the FTN framework. First, the
transmissions generated as τ declines have proven to be an
effective way to design coded systems that minimize both
energy and bandwidth. Second, they yield increasingly high
bit density systems that have identical PSD shapes; this is
important because above 3–4 bits/Hz-s both practical schemes
and the Shannon capacity are sensitive to the PSD rolloff and
hard to compare unless the PSD shape is the same. Finally, the
Shannon capacity of FTN signals exceeds that of orthogonal
signals with the same PSD [6].

The paper is organized as follows. Section II sets up a white
noise receiver structure that facilitates a reduced state space.
One element is an all-pass filter, and Section III proposes a
generalization on earlier designs that further reduces the state
space. Section IV proposes some BCJR alternatives. Section
V evaluates the best of these in simple detection and turbo
equalization.

II. A SUITABLE DISCRETE-TIME RECEIVER

We require a receiver that creates discrete-time outputs
that are suitable for conversion to maximum phase form and
subsequent VA or BCJR processing. In addition, we will
require that the noise at the VA/BCJR input be white. There
are colored noise BCJR algorithms and detectors that appear
to be successful with certain ISI patterns, but whether colored
or white noise is best is a complex question that depends on
the ISI, and in this paper we focus on the white noise case.
The transmit/receive chain thus comprises the following: Data
each nτT → Transmit Filter h(t)→ AWGN→Matched Filter
→ Sample at nτT → Post Filter B(z) → Reverse Frame →
VA/BCJR → Data Out.

There are two main candidates for this chain.
(i) The whitened matched filter (WMF) receiver con-

sists of a receive filter matched to h(t), sampled at nτT , and
a Post Filter designed to whiten the noise. Because h(t) is
not τT -orthogonal, the samples have colored noise. According
to a standard argument, a stable post filter whitens the noise
but creates a maximum phase channel model as seen by the
VA/BCJR. With reduced-state VA/BCJRs, this output must be
frame-reversed to produce a minimum phase model. The WMF
design is useful for τ near 1. Details appear in [4].

(ii) The orthogonal basis model (OBM) receiver

expresses h(t) as a sequence of wider band orthonormal
pulses. That is,

h(t) =
K∑

k=−K

ckφ(t− kτT ) (2)

where ck =
∫

h(t)φ(t − kτT ) dt. The basis function φ(t) is
τT -orthogonal and the sampling rate 1/τT must satisfy the
sampling theorem for h(t). The Matched Filter is matched to
φ, not h, and consequently the noise in its outputs is white.
The Post Filter is an all-pass that converts the sample stream
to maximum phase, while leaving the noise white. As before,
Frame Reverse converts the sequence to minimum phase, and
the VA/BCJR sees a minimum phase white noise ISI model.

Essentially, (2) expresses h(t) by 2K + 1 of its samples,
with the remaining ones truncated (those < 0.01/T can be
safely ignored). Further, the sampling need not be at the
symbol rate 1/τT , but can be faster or slower, so long as
the sampling theorem is satisfied (we found that neither offers
an advantage). Because of its simplicity and versatility, we
will use the OBM receiver. The τ will be 1/2 and 1/3, a
doubling and tripling of bandwidth efficiency. For φ(t) we
simply take the 30% root RC pulse whose bandwidth is scaled
by τ ,

√
1/τh(t/τ). This satisfies the sampling criterion for

τ ≤ 1/1.3 ≈ .77.
The h(t)—AWGN—Matched Filter—Sampler—Post Filter

chain creates the channel model v0, . . . , vmT seen by the
VA/BCJR. Without the Post Filter, the model for τ = 1/3, 1/2
is simply the samples h−K , . . . , hK , with a delay of K
inserted for causality. The autocorrelation of {vk} are samples
at nτT of the autocorrelation of the original h(t). The addition
of an all-pass filter does not change this; it only produces a
v with a new phase. In every case the (untruncated) v and
the true continuous-time signal set have the same dmin, since
this depends only on the autocorrelation. Consequently, the
different receivers should have about the same error event rate
≈ Q(

√
d2
minEb/N0).

The key to reducing the state space of VA/BCJR that follows
is to base that space on the most energetic parts of the ISI
model. This is the verdict of several decades of research.
The receivers above present the VA/BCJR with an ISI that
is minimum phase, i.e., its energy is up front as much as
possible for the model autocorrelation. Minimum phase ISI
models that stem from strong band limitation have taps in
the pattern [low energy precursor] + [high energy response] +
[long decaying tail]. These facts motivate the following offset
receiver. Consider branch labels sn at trellis stage n each
generated from some ±1 data sequence a by

sn =
m∑

k=0

an−kvk +
mT∑

k=m+1

an−kvk (3)

Symbols an−1, . . . , an−m comprise the size-m reduced
VA/BCJR state. The first term stems from the high energy
state symbols, while the second is an offset created by earlier
symbol history. An offset is associated with each state in the
reduced VA/BCJR but is itself not part of the algorithm’s state.



The first symbols are the main state, while the second form
the auxilliary offset state. In the add-compare-select step of the
VA, the offset states of the survivors become the new offsets
for each main state.

This sort of trellis search dates back at least to the 1970s
[7] and was popularized by several authors in the 1980s, the
best known paper being Duel-Hallen and Heegard [8], who
calculated the minimum distance that applies to the receiver.
Studies then and now [4] show that under narrowband ISI a
large truncation of the VA is possible without significant loss
of distance and that the VA needs only encompass the high
energy taps. The long tail taps cannot be ignored because they
significantly offset the trellis branch labels, but only the offset
needs to be remembered, one per main state.

The offset receiver needs to ignore any low energy precur-
sor. It incorporates the decaying tail without much complexity,
but there seems to be no reasonable way to incorporate the
precursor, other than setting its taps to zero. Unfortunately,
important minimum phase models can have significant precur-
sor length. We have found that for a unit-normalized channel
model, precursor taps below 0.02 and tail taps below 0.03 in
absolute value can be truncated without significant effect.

In summary, the following are necessary, in priority order,
to reduce the states of the VA or BCJR:

• First, small precursor taps should be set to zero.
• The VA/BCJR should see a minimum phase channel.
• An offset VA/BCJR should be used, focused on the

energy concentration.

III. NEW MINIMUM PHASE MODELS

There are actually many OBM receiver possibilities because
any all-pass Post Filter block satisfies the white noise and no
dmin loss requirements. Is there a better one than the phase
maximizing all-pass? The answer is yes, and the reason is a
subtlety in the idea of maximum phase: The precise maximum
phase solution depends on the support of the input. It depends
on the pulse time frame, here [−KτT, KτT ], the sampling
rate, and whether the domain is continuous or discrete. All
rates that meet the sampling theorem on h(t) are allowed in
principle, which for the τ = 1/3 case allows samples at less
than half the symbol rate.

A fruitful design procedure for B(z) is as follows: Design
B(z) as the all-pass that creates the maximum phase version
of 2K + 1 centered samples of h(t), sampled at 1/τT ; all
such all-passes are legal and produce a channel model with
the full dmin. Then truncate outer small taps such that dmin

is not significantly reduced. Search over K for the (reversed)
solution that best concentrates the minimum distance into the
later taps.

For the root RC base pulse in this paper, one finds
that reducing either K or the sampling rate leads to more
compaction of the energy in the maximum phase outcome
{h−K , . . . , hK}∗b. Very low postcursor taps (precursor in the
reversed model) develop, but these can be truncated directly.
Some truncation of the tail taps leads to models (4) at τ = 1/3

and (5) at 1/2; (4) derives from 2K + 1 = 13 samples
of h(kτT ), while (5) derives from 9. The continuous-time
reference d2

min is 0.58 for the first and 1.02 for the second,
and both discrete-time models achieve 98% of these. Four
precursor taps are deleted in the first and 8 in the second.

v = {.191, .464, .623, .506, .176,−.123,−.197 (4)

−.075, .060., .080, .013,−.035,−.022}
v = {.375, .741, .499,−.070,−.214, .019, (5)

.087,−.020,−.028}
v = {.130, .484, .706, .368,−.178,−.228, (6)

.083, .125,−.057,−.056, .043}
The last model (6) is for τ = 1/2 and is provided for
comparison to [4]. It is derived by a less effective minimum
phase method and leads to a 2–4 times larger state space.

IV. SOME TRUNCATED BCJR ALGORITHMS

This section reviews the BCJR algorithm and presents a
scenario for its state reduction.We then present a number of
reduced algorithms. All are based on the main+offset state
idea.

The BCJR algorithm computes the probabilities of states
and paths in a signal trellis, given the channel outputs y =
y1, . . . , yN and the apriori data probabilities. A compact
statement of the algorithm is given in terms of two matrix
recursions1 that calculate trellis working variables αn and βn

at stage n. These vectors have components

αn[j] � P [Observe y1, . . . , yn ∩ Sn = j]
βn[i] � P [Observe yn+1, . . . , yN | Sn = i] (7)

where Sn is the encoder state at time n. The following forward
and backward recursions hold:

αn = αn−1Γn, n = 1, . . . , N

βn = Γn+1βn+1, n = N − 1, . . . , 1 (8)

Here Γn is the matrix with [i, j] element

Γn[i, j] � P [yn ∩ Sn = j | Sn−1 = i] (9)

= [P (a′)/
√

πN0/Es] exp [−(N0/Es)(yn − �i,j)2]

where �i,j is the label (3) on the branch from state i to j and
a′ is the value of data symbol an that causes the transition.
Our data frames terminate at both ends at the all-0 state, so
α0 = (1, 0, . . . , 0) and βN = (1, 0, . . . , 0)′. From the {α}
and {β} come many quantities, but we are interested only in
the LLR of an, which is

LLR(an) � ln
P [an = +1]
P [an = −1]

= ln

∑
j∈L+1

αn[j]βn[j]
∑

j∈Lc
+1

αn[j]βn[j]
(10)

where L+1 is the set of states reached by an = +1.

1The matrix is sparse. The recursions execute 2 · 2m multiplications per
stage, not 22m. We use this in our implementations. The breakdown into
main+offset states makes precomputation and storage of all labels practical.



The heart of the BCJR is (9). Its elements contribute when-
ever an �i,j is close to yn. Whereas the VA “picks winners”,
continually dropping path segments that fall short, the BCJR
counts every contributing region of the trellis. Hopefully, “hot
regions” can be specified—and an accurate LLR computed—
by a reduced main state. With narrow band ISI, the labels � i,j

in both the VA and BCJR depend strongly on both the main
and offset states. Only a reasonable approximation of the latter
is needed, but it must be present.

The application scenario for ISI is as follows. The α
recursion is taken to be the one proceeding left to right in the
direction of time, the direction in which the sequence phase is
minimum. At the extension to trellis stage n+1, the alignment
of ISI model taps, state symbols and alphas is

vmT , . . . . . . , v1, v0

. . . , a′
n−mT

, a′
n−mT +1, . . . , a

′
n, a′

n+1

. . . , αn, αn+1 −→
with the main state and main v energy to the right. The main
state is defined by the symbols at stages n−m+1, . . . , n. The
extension to stage n+1 computes αn+1; all such decided α are
stored. Once the state symbols a′ become fixed they become
the tentative data; this can occur at position n − m when a
symbol enters the offset state, or it can occur at an earlier
n. In any case, the decision is made from α information and
a′

n−mT +1, . . . , a
′
n+1 determine the label on their respective

branch at stage n + 1.
In the reverse recursion, labels are formed from m main

state symbols and mT − m offset symbols that lie in the
α-decided tentative data. The reverse recursion has not yet
reached the area of the offset symbols. The situation is aligned

vmT , . . . . . . , v1, v0

a′
n−mT +1, . . . , a

′
n, a′

n+1

←− βn, βn+1 βn+2, . . .

The β vectors are not stored. βn is immediately used with
αn to find the LLR and from it an update to the nth tentative
path symbol. Note that the updated path is much better than
the α-only path; it typically has one tenth the bit error rate.

Here are some of the approaches to a reduced state BCJR
that we have investigated within this scenario.

(i) True offset algorithm: A different offset state is
associated with each main state. Some method is needed to
choose which offset survives after the move forward to new
main states at stage n + 1. In analogy to the VA, it could
be the offset+main path that makes the largest contribution to
the new αn+1[j] (there are two at each new state j), but this
strategy is poorer than others because the contributions do not
correlate tightly enough with hot trellis regions. A simple but
effective alternative has proven difficult to find.

(ii) Single offset algorithm: Associate the same offset
with all main states. Take the new offset bit as the oldest
main state bit that leads to the larger set of αn+1 contributions
(2m of these stem from each bit value). In performance and
complexity, this is in fact the best strategy we have found.

This oldest main state bit is a very good indicator of a hot
region.

(iii) VA aided BCJR: While the BCJR calculates state
probabilities and not bit decisions, the VA decision path is
nonetheless a good pointer to hot regions, even if the VA is
strongly reduced. An accurate reduced BCJR of this type needs
about one unit less m than a BCJR of type (ii), but it adds
the VA complexity, and is therefore no overall improvement.

(iv) Worst case offset each state: Since the BCJR
looks for hot spots wherever they occur, they can be located
by finding the α-maximizing offset for each new state at n+1.
This strategy is also not as effective as (ii).

(v) Iterating: Multiple passes of any of the preceding
can be executed. This improves the α, β estimate because
each new forward recursion can use for its tentative path
the LLR-determined path from the previous reverse recursion.
The tentative paths thus constantly improve. We find that the
α, β accuracy so obtained is not worth the complexity of the
additional iterations.

V. SIMPLE DETECTION AND TURBO EQUALIZATION WITH

A REDUCED BCJR

We have constructed the ISI—AWGN Channel—BCJR
blocks at the right side of Fig. 1 in discrete time and tested
them with simulated AWGN. The signals are (1) with τ either
1/2 or 1/3, a bandwidth efficiency 2 and 3 times that of
orthogonal-pulse root RC. The ISI model2 is that of (5) and
(4), respectively, and the reduced BCJR is of type (ii) with
2m main states. Bit decisions follow from the LLR (10).

Figure 2 plots observed BCJR and offset VA [4] error event
rates (EERs) for both τ and a number of state memories
m (note that the BCJR optimizes BER, not EER). A dis-
tance study shows that the dmin-causing difference sequence
is 2,−2, 2 for τ = 1/2; the multiplicity for this is 1/4
(see [4]), so that the full-state VA or BCJR EER is ≈
.25Q(

√
1.02Eb/N0). The τ = 1/3 case is more complex and

is ≈ .35Q(
√

.58Eb/N0). These appear as heavy curves. The
bit error rate (BER) is about 3 times the EER at higher SNR
and 4–5 times at lower SNR. The BCJR needs only 8–16 states
at τ = 1/2 and about 64 at τ = 1/3.

Next we investigate the same reduced BCJR as part of the
turbo equalization system in Fig. 1. The transmitter consists
of the (7,5) rate 1/2 convolutional encoder, an interleaver, and
the same two τ in (1). A block of N = 1000 information
bits is encoded to produce 2N bits, which feed a size 2N
random interleaver; these map to ±1 via {0→ +1, 1→ −1},
terminating +1s are added, and the sequence is passed through
the discrete time ISI model.

2The discrete time transmitter uses a longer ISI model with precursors and
extra tail taps so that the root RC autocorrelation is accurate to ≈ ±.0002.
The receiver is thus slightly mismatched, but the effect on BER is small.
The test setup is as in our earlier paper [4]: Size 800 frames of random ±1
data, with enough frames to give 40–100 error events; frames are terminated
before and after by mT ‘+1’ symbols; error events are taken to begin when
the receiver output state splits from the transmitter state path and to end after
5 output data are correct.



6 7 8 9 10 11 12 13 14 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

2
4  BCJR

VA, 2
       6 

τ=1/2,
Q−fn.    

EER 

E
b
/N

0
 

BCJR
 7   4

 VA
 4,  7 

τ=1/3,
Q−fn. 
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Figures 3–4 plot BER outcomes for the offset BCJR and
a BCJR that simply truncates its state to the strongest m
positions. Enough frames are decoded to produce at least 70
error events. The ISI model is (4) for τ = 1/3 and (6) for
τ = 1/2; the last is the one in [4] and comparison can be
made to that paper. Were this model (5), performance would
be better because the BCJR would see a model with more
concentrated energy. In these figures the offset BCJR clearly
improves simple truncation. The size needed is 16–32 states
at τ = 1/2 and 64–128 at 1/3.

VI. CONCLUSION

We have investigated a number of reduced state BCJR
algorithms, and tested them as simple detectors and as part of
a turbo equalizer over two narrow band ISI channels. These
BCJRs are of an offset type that depends on the fact that the ISI
model is minimum phase. We have proposed a generalization
of that concept that reduces state size by a further 2–4 times.
The outcome is a decoder of reasonable complexity, which
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in a turbo configuration can lead simultaneously to an energy
saving of 4 dB and a bandwidth reduction of 35%.
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