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Convenient Representations of Structured Systems

for Model Order Reduction

Aivar Sootla and Anders Rantzer

Abstract— In control theory there exist two convenient repre-
sentations of a model, which are transfer functions and state-
space matrices. However, structure in the transfer functions
is not clearly seen in the state-space form, and on the other
hand structure in the state-space form is not clearly seen in
the transfer functions. The main reason for this is that Laplace
transformation destroys most types of structures. The goal of
this paper was introducing such representations that clearly
reflect structure in both frequency and time domain. Such
representations are obtained by introducing auxiliary signals
which define the interactions within the structure. The auxiliary

signals lower level of abstraction of input-output mappings, thus
providing an insight into physical properties of a system.

Index Terms— Interconnected systems, structured systems,

coprime factorization, model order reduction.

Model order reduction is an approximation tool typically

used for simulation of complex systems, which takes con-

siderable time and/or it has overwhelming memory require-

ments. Typically, approximation quality is measured by the

H∞ norm, which reflects the input-output mapping of a

model. Most of the existing LTI model order reduction meth-

ods fall into two categories: singular value decomposition

(SVD) based (balanced truncation [1] and Hankel model

reduction [2]) and Krylov based methods ([3], [4], [5]). The

SVD and Krylov methods can even preserve some specific

types of structure, for example, a second order structure [6],

[7], [8]. However, if structure induced by a block diagram

is considered these methods generally cannot be applied.

One of the first step to address this issue was made by

Enns in [9]. The method extended the established balanced

truncation algorithm ([1]) to a frequency-weighted problem.

Essentially, a cascade interconnection of three systems was

approximated. A number of approaches to address this

problem have been proposed (e.g., [10], [11]). A method

reported in [12] can be also seen as a generalized version of

frequency-weighted model reduction problems. An important

subclass of systems with a structure is a controller-plant

interconnection. A number of methods address the controller

reduction problem including those described in [13], [14],

[15], [16] and recently proposed in [17], [18].

In this paper, the main focus is on an interconnection

of “subsystems” in a typical block diagram. Interactions

of subsystems define a certain topology of interconnections

in a system. Clearly, a modeling procedure should account

for such a structure. Therefore, the goal of model order

reduction in this setting is to reduce certain subsystems,
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Fig. 1. An LFT loop with two subsystems G and N .

while preserving the overall structure of the system. This

concept can be formalized in a concrete example. Consider

two subsystems N and G interacting in a linear fractional

transformation (or LFT) loop (see, [13]). The LFT system

Fl (N, G) is depicted in Figure 1. Assume N should be

preserved in the reduction procedure and G should be

approximated by some Ĝ. It is also required that the resulting

LFT is similar to the original one, which entails that the error

‖Fl (N, G)−Fl (N, Ĝ)‖H∞
has to be minimized. However,

to author’s best knowledge, there is no such method, that

can guarantee finding a solution for an arbitrary order of

Ĝ. Therefore, in order to simplify this problem, auxiliary

input and output signals are introduced. By adding these

signals, the transfer function Fl (N, G) will be replaced by

an extended one Se(N, G), which will be, in fact, reduced in

the optimization problem. The extended system Se depicts

the input-output mapping in Figure 2. Finally, the structured

model reduction problem is cast as a minimization one.

min
low-order bG

‖Se(N, G) − Se(N, Ĝ)‖H∞
(1)

This minimization problem is approached by rewriting the

system Se(N, Ĝ) in a coprime factor form. These coprime

factors will also represent the structure of interconnections.

As shown in [19], this problem can be approached using

semidefinite optimization techniques. The main goal of this

paper is to generalize the coprime factor representation to

multiple subsystems and thus generalize the optimization

framework to these systems. The optimization framework

[19] is not the only model reduction framework, which can

take advantage of the proposed representation. The authors

suppose the coprime factors can be directly approximated by

Krylov methods and balanced truncation, again generalizing




y
z1

z2



 = Se(N, G)




u
w1

w2





Fig. 2. An extended system Se with two subsystems G and N .



known techniques to multiple systems. The LFT case is

discussed in detail in Sections I and II. In Section III, the

reduction of multiple subsystems is discussed. There an LFT

loop is replaced by an arbitrary block diagram, with multiple

subsystems interacting with each other. Numerical examples

can be found in [19].

I. COPRIME FACTORIZATION IN AN LFT LOOP

Consider an LFT loop in Figure 2 and the minimization

criterion (1). The biggest advantage of introducing the auxil-

iary signals wi and zi is the ability to create a convenient co-

prime factor representation. This representation is computed

by a direct calculation using the coprime factorization of N
and G. Indeed, the extended system Se can be described by

the following set of equations:

[
y
z1

]
=

[
N11 N12

N21 N22

] [
u

z2 + w1

]

z2 = G(w2 + z1)

Factorize N and G using a left coprime factorization, i.e.:

[
N11 N12

N21 N22

]
=

[
QN11 QN12

QN21 QN22

]−1 [
PN11 PN12

PN21 PN22

]
(2)

G = Q−1

G PG

and substitute them into the equations above. Since z1 and

z2 are treated as outputs, they are moved to the left hand side

of the equations:

[
QN11 QN12 −PN12

QN21 QN22 −PN22

]


y
z1

z2


 =

[
PN11 PN12

PN21 PN22

] [
u
w1

]

−PGz1 + QGz2 = PGw2

Both equations can be united into the following matrix

equation

Q




y
z1

z2


 = P




u
w1

w2




where

P =




PN11 PN12 0
PN21 PN22 0

0 0 PG




Q =




QN11 QN12 −PN12

QN21 QN22 −PN22

0 −PG QG




(3)

Lemma 1: The transfer matrices P and Q are left coprime

over H∞ .

Proof. To show coprimeness, the definition from [13] is

used: transfer matrices P and Q are left coprime in H∞ if

there exist rational transfer matrices X and Y in H∞ such

that

P · X + Q · Y = I

Due to coprimeness of PN and QN , there exist such XNii

and YNii that
(

PN11 PN12

PN21 PN22

) (
XN11 XN12

XN21 XN22

)
+

(
QN11 QN12

QN21 QN22

) (
YN11 YN12

YN21 YN22

)
= I

similarly XG and YG are defined trough PG and QG as:

PGXG + QGYG = I

To prove coprimeness of P and Q, the transfer matrices

X and Y can be chosen as

X =




XN11 XN12 0
XN21 XN22 YG

YN21 YN22 XG


 Y =




YN11 YN12 0
YN21 YN22 0

0 0 YG




Finally, the relation PX + QY = I is verified by direct

computation.

Now examine the transfer matrices P and Q closely.

Every block-row of each transfer matrix depends either on

a coprime factor of N , either on a coprime factor of G. It

can not be called a “sparsity structure”, since some entries

are repeated in P and Q, however, this kind of structure can

be exploited by techniques laid out in [20], [19]. Note also

that Se is stable if and only if Q has a stable inverse.

Remark 1: The state-space representation also manifests

the structure in a convenient manner. Assume the space-space

representations of N and G are given as follows.

N =




AN BN1 BN2

CN1 DN11 DN21

CN2 DN21 DN22



 G =

[
AG BG

CG DG

]

(4)

where DG is set to 0, which is a common assumption in

control theory. To shorten the notation, additionally define

BT
N =

[
BT

N1

BT
N2

]
DN =

[
DN11 DN12

DN21 DN22

]
CN =

[
CN1

CN2

]

A state space representation can be derived for P and Q

[
P Q

]
=

[
A B
C D

]

where

A = blkdiag(AN + LNCN , AG + LGCG)

B =

[
blkdiag(BN + LNDN , BG)

[
LN −BN2[

0 −BG

]
LG

]]

C = blkdiag(CN , CG) D =
[
blkdiag(DN , 0) I

]

where LN and LG are free parameters, which are used to sta-

bilize the coprime factors. The dynamics of the subsystems

N and G are completely decoupled. The structure manifests

itself only in the input and output matrices. If model reduc-

tion in the time domain is considered, the transfer function[
P Q

]
can be approximated using a structured Gramian

framework from [12]. However, stability of Se(N, Ĝ) is

achieved if the reduced order Q has a stable inverse. This

property is generally hard to accommodate.



II. MODEL REDUCTION IN AN LFT LOOP

Above, instead of solving

argmin
low-order bG

‖Fl (N, G) −Fl (N, Ĝ)‖H∞
(5)

it is proposed to address the following optimization problem

argmin
low-order bG

‖Se(N, G) − Se(N, Ĝ)‖H∞
(6)

The major feature in (6) is the ability of tracking signals

wi and zi. It means that not only the behaviour of Fl is

approximated as in (5), but also the interaction between N
and G.

Now let us try to understand what kind of problem is being

addressed. The transfer function Se reads as

Se =



Fl (N, G) N12Ξ N12ΞG

ΘN21 N22Ξ N22ΞG
GΘN21 GΘN22 GΘ




where Θ = (I − N22G)−1 and Ξ = (I − GN22)
−1. Due to

the structure of Se, it can be shown that the program (6) is

equivalent to:

min
low-order bG

∥∥∥Ho((I − GN22)
−1G − (I − ĜN22)

−1Ĝ)Hi

∥∥∥
H∞

where Hi =
(
NT

12 NT
22 I

)T
and Ho =

(
N21 N22 I

)
.

The LFT loop Fl (N, G) appears at the block entry {1, 1}.

Therefore (6) provides an estimate on (5).

If only the transfer matrix generated by signals w1, w2, z1

and z2 is considered (the lower two by two block of Se),

it can be shown, that it is the loop depicted in Figure 3. It

is a so called “gang-of-four” applied to G and N22. It is

also known that this loop admits a very convenient coprime

factorization parametrization, which is exploited in H∞ loop

shaping (see, [21]). Adding these transfer functions into the

objective takes also care of robust stability of the LFT loop.

Given these insights, the problem (6) can be modified as

follows:

argmin
low-order bG

‖Wo(Se(N, G) − Se(N, Ĝ))Wi‖H∞

where the weights Wo and Wi regulate the trade-off between

performance (block-entry {1, 1}) and robustness of the loop

(block-entries {2, 2}–{3, 3}).

A. Model Reduction Based on Semidefinite Programming

Assume Se(N, G) is an asymptotically stable discrete-

time transfer function. The H∞ optimization problem being

addressed reads as

min
P,Q

‖Se(N, G) −Q−1P‖H∞

subject to: Q has a stable inverse
(7)

Fig. 3. Gang of Four Loop

where Q and P correspond to the left coprime factorization

of Se(N, Ĝ) = Q−1P and Ĝ is a low order approximation of

G. The reduction procedure will be decoupled into two prob-

lems: finding a stability preserving low-order approximation

of G by some Ĝ0 without considering the quality of the

loop Se(N, Ĝ0). There are quite a few reduction techniques

of structured models which guarantee stability under certain

conditions. However, none of those can guarantee finding

a solution, if one exists. Given this initial point Ĝ0, the

approximation quality of (7) is minimized.

Let us return to the problem at hand: (7). The transfer

matrices Q and P admit the representation as in (3)

P =




PN11 PN12 0
PN21 PN22 0

0 0 Y




Q =




QN11 QN12 −PN12

QN21 QN22 −PN22

0 −Y X




where PNii and QNii is a factorization of N as in (2) and

X , Y constitute a left coprime factorization of Ĝ = X−1Y
and are unknown and parameterized as

X =

r∑

i=0

Xiz
−i Y =

r∑

i=0

Yiz
−i

with the real matrices Xi, Yi being the decision variables.

The procedure is concluded in Algorithm 1. For every

fixed Qj the program is semidefinite. Convergence of the

algorithm can be treated as in [19, Chapter 2]. The transfer

matrix Q0 is computed based on the initial point Ĝ0. It is

reasonable to assume that Q0 should have the same structure

as Q , therefore:

Q =




QN11 QN12 −PN12

QN21 QN22 −PN22

0 −Y 0 X0





where X0, Y 0 are FIR filters of order r, and Ĝ0 =
(X0)−1Y 0. Since, Se(N, Ĝ0) is stable, Q0 has a stable

inverse, and so does Q (as shown in [19, Chapter 2]). Now,

Algorithm 1 Structured Model Reduction

Compute PN , QN as described above. Obtain Q0, e.g.,

using a stability preserving heuristics from [13]. Set Qj =
Q0 and j = 1
Introduce X , Y , P and Q as above.

repeat

Solve a semidefinite problem

min
Xi, Yi, γ

γ2 subject to for all ω ∈ [0, π]
[
QjQ

∼ + QQ∼
j −QjQ

∼
j QSe(N, G) − P

(QSe(N, G) − P)∼ γ2I

]
≥ 0

Set Qj+1 = Q and j = j + 1
until ‖Qj+1 −Qj‖∞ ≤ ε

Compute the reduced model as Ĝ = X−1Y



given an initial point Q0, it is possible to find another

feasible point Q with an improved approximation quality.

A semidefinite program with a finite number of constraints

can be obtained using the KYP lemma ([22]) or using a

frequency griding approach as in [19].

III. GENERALIZATION TO MULTIPLE SUBSYSTEMS

Let us start with an example, to see what kind of problems

can occur, if a generalization is not performed carefully.

Consider a block diagram with three subsystems G1,

G2 and G3 in Figure 4. In order to obtain a coprime

factorization as before, excite every subsystem Gi by an

additional signal wi and measure its output by an additional

signal zi. Note that three signals u, w1 and w3 are exciting

only two subsystems G1 and G3. Additionally, the output

of the system y is a sum of z1 and z3. This way some

degree of redundancy appears in the extended supersystem.

These simple observations raise a question: how the is model

reduction problem affected? Assume the extended transfer

function is introduced as follows:
[
yT zT

1 zT
2 zT

3

]T
= Se

[
uT wT

1 wT
2 wT

3

]T

Note that the sum of last two rows of Se will be equal to

the first one, since y = z1 + z3. The sum of the second and

fourth columns of Se will be equal to the first one, since u
excites the system in the same manner as the sum of w1 and

w3. Thus, the transfer matrix Se will have at least one zero

singular value for all the frequencies ω in [0, π]. Solving a

model reduction problem in this setting is problematic, since

a rank-deficient matrix is approximated. On the other hand,

all zero singular values can be eliminated while designing

the extended system. Therefore, some signals should be

eliminated to provide a full rank Se for all the frequencies.

Here, signals z1 and w3 were chosen to be eliminated,

providing the equations:

y = z3 + G1(u + y + w1 + z2)
z2 = G2(w2 + y − z3)

z3 = G3(u + y)

Factorize the subsystems Gi using left coprime factorizations

Q−1

i Pi. Substitute them into the equations above, while

multiplying both sides with Qi. Also, separate the outputs

and inputs on the different sides of the equations:

(Q1 − P1)y + P1z2 − Q1z3 = P1(u + w1)
−P2y + Q2z2 + P2z3 = P2w2

−P3y + Q3z3 = P3u

The relationship between the signals can be computed as:


Q1 − P1 P1 −Q1

−P2 Q2 P2

−P3 0 Q3







y
z2

z3


 =



P1 0 P1

0 P2 0
0 0 P3






w1

w2

u




This representation is left coprime, to show this let:

P =




P1 0 P1

0 P2 0
0 0 P3



 Q =




Q1 − P1 −P2 −Q1

−P2 Q2 P2

−P3 0 Q3





Fig. 4. A block diagram with three subsystems

Algorithm 2 Coprime factorization of an arbitrary block

diagram

• Given a block diagram with interconnected subsystems

G1, G2, . . . , Gn, introduce signals wi, zi. Every wi

excites the subsystem Gi, and every zi measures its

output

• If u excites the system Se the same way as a linear

combination of wj , then one of the signals wj is set to

zero

• If a signal zj is a linear combination of other output

signals it is eliminated by zj = y −
∑n

j 6=i γjzj , where

γj are zeros or ones

• Write down the equations describing dependence of zi

on the signals wj , u, y and zj , while replacing Gi by

its left coprime factorization Q−1

i Pi

• Compute the left coprime factors P and Q

PG =




P1 0 0
0 P2 0
0 0 P3



 QG =




Q1 0 0
0 Q2 0
0 0 Q3





Given the notations, it can be computed that

[
P Q

]
=

[
PG QG

]
T

where the transformation T is invertible. Note that PG and

QG are left coprime, since they are block diagonal with left

coprime factors of the block diagonal and there exist XG

and YG such that:

[
PG QG

] [
XG

YG

]
= I

Thus, there exist stable X and Y such that:

[
P Q

] [
X
Y

]
= I where

[
X
Y

]
= T−1

[
XG

YG

]

This proves that P and Q are left coprime if and only if PG

and QG are left coprime. Inspired by this simple example,

Algorithm 2 is formulated. The algorithm is constructive,

however, it has to be shown that it always produces a left

coprime factorization.

Lemma 2: The transfer matrices P and Q obtained in

Algorithm 2 are left coprime.

Proof. The proof is a generalization of the technique

described for the block diagram investigated above. Introduce



PG and QG:

PG =



P1 0

. . .

0 Pn


 QG =



Q1 0

. . .

0 Qn




where Qi and Pi are left coprime and Gi = Q−1

i Pi. The

equations describing the relationships between the signals

read as:

Qizi = Pi(α
i
0u + αiwi + βi

0y +

n∑

j=1

βi
jzj) (8)

Qi(y −
n∑

j 6=i

γjzj) = Pi(α
i
0u + αiwi + βi

0y +
n∑

j=1

βi
jzj)

(9)

where αi
0, αi, βi

j and γj are equal to zero or one, depending

on a particular block diagram. The equation (9) appears when

a signal zi is a linear combination of other outputs, i.e.,

zi = y −
∑n

j 6=i γjzj , and it is eliminated. Hence, only one

equation has the form (9). Note that P will not depend on

QG since none of the signals u, wi are multiplied with Qi.

The static transformation between the transfer matrices PG,

QG and P , Q are given as follows.

[
P Q

]
=

[
PG QG

] [
T11 T12

0 T22

]

Since the transformation is block triangular, it remains to

show that T11 and T22 are invertible. For most of the signals,

the relation (8) is valid. The transfer matrix QGT22 will be

affected only by the summands containing multiplication of

Qi and the outputs y or zi. Therefore, most of the block

rows of QGT22 will have only one non-zero entry Qi and it

will appear on the block diagonal.

For a single equation, the relation (9) is valid and therefore

one block row of QGT22 consists of multiple Qi with

different signs. Without loss of generality, we can assume

that zi with i = 1 is eliminated, therefore T22 is a block-

triangular matrix with the identity matrices on the block

diagonal. Only the first block row has non-zero off diagonal

entries. Given these facts T22 is invertible.

It can be similarly shown that T11 is an invertible block-

triangular matrix, where only one block-column has non-

zero entries except for the block-diagonal elements. Since

T11 and T22 are invertible so is the whole transformation.

Due to coprimeness of PG and QG, there exist XG and YG

such that: [
PG QG

] [
XG

YG

]
= I

Finally, there exist stable X and Y such that

[
P Q

] [
X
Y

]
= I where

[
X
Y

]
=

[
T11 T12

0 T22

]−1 [
XG

YG

]

Therefore P and Q are left coprime if and only if PG and

QG are left coprime, which is satisfied by construction.

The statement of this lemma is not unexpected. If there is

just one subsystem with one input and one output, then the

coprime factors P , Q should have one input and one output.

It stands to reason that the extended system Se should have

n inputs and n outputs, if there is n subsystems in Se with

one input and one output each. Stability of the system is

equivalent to Q and Q−1 being stable, since the transfer

matrices P and Q constitute a coprime factorization of Se.

Addressing the model reduction problem can be done

similarly as was done before. Assume without loss of gener-

ality, that subsystems Gk+1, . . . , Gn have to be preserved

during the approximation procedure and G1, . . . , Gk are

being reduced. All the subsystems Gk+1, . . . , Gn are treated

as one subsystem N and the problem is cast a minimization

one as follows.

min
bG1,..., bGk

‖Se(N, G1, . . . , Gk) − Se(N, Ĝ1, . . . , Ĝk)‖H∞

where Ĝ1, . . . , Ĝk are low-order approximations of G1,

. . . , Gk. After that, Algorithm 1 can be modified in a

straightforward manner in order to address this problem.

A. Structures in the State Space

In the state-space case it is assumed that the vector x
is partitioned, providing us with a structure. Our goal is to

reduce this representation to the coprime factorization in-

troduced for block-diagrams. Due to space limitation we are

going to explain only the main idea on a simple example. Let

S a system with a state-space representation (A,B, C,D).

A =




A11 0 0 0
0 A22 0 0

A31 A32 A33 0
A41 A42 0 A44




B = blkdiag{B1, B2, B3, B4}
C = blkdiag{C1, C2, C3, C4}
D = blkdiag{D1, D2, D3, D4}

The matrices Aij represent the interconnections between the

subsystems with dynamic matrices Aii. The obvious step is

to factorize Aij into matrices Fij and Lij , which will define

the outputs and the inputs in corresponding subsystems.

However, if the factorization is not performed carefully it

can lead to Se, which is rank-deficient. This case is easy

to obtain. Assume the singular value decomposition of Aij

gives:

A =




A11 0 0 0
0 A22 0 0

U31S1V
T
31 U31S3V

T
32 A33 0

U41S2V
T
31 U41S4V

T
32 0 A44




where Uij and Vij are columns and Si are distinct, not equal

to one, positive scalars. Now we can try to introduce the

subsystems. The matrices S1V31 and S3V31 can be treated

as output matrices from the subsystem 1, which entails its

state-space representation:

G1 =




A11 B1

S1V
T
31 0

S3V
T
31 0

C1 D1






Whatever we do next the extended system Se will be rank

deficient, since the output matrix of G1 is row-rank deficient.

In order to avoid such issues, it is required to keep track of

the columns Vij , Uij and introduce new output matrices only

when it is required. For example, if we introduce matrices

L1 = S
1/2

1 V T
31, F3 = U31S

1/2

1 , L2 = S
−1/2

1 S3V
T
32 and F4 =

U41S2S
−1/2

1 , the system Se will not be rank-deficient for all

frequencies. The subsystems are defined as:

G1 =




A11 B1

L1 0
C1 D1



 G2 =




A22 B2

L2 0
C2 D2





G3 =

[
A33 F3 B3

C3 0 D3

]
G4 =

[
A44 F4 B4

C4 0 D4

]

Note, at the block-entry {4, 2} we have a term F4DL2, where

D = S4S1/(S2S3). The static term D cannot be included

into any of the subsystems or eliminated. We can define

G4 =




A44 F4 B4

C4 0 D4

0 D 0




however, it seems as a strange definition. Therefore the

term D appears in the block diagram (the right-most block-

diagram in Figure 5) and thus in the structured coprime

factorization. The subsystems can be introduced in a number

of other ways. For example, if matrices Fi and Li are

introduced directly through Uij and Vij , and accordingly the

subsystems G̃i. In this case all Si are static signal trans-

formations between the subsystems. Both block-diagrams in

Figure 5 depict the same state-space representation. Never-

theless in the structured coprime factor representation these

block-diagrams will be equivalent.

Fig. 5. Two equivalent block diagrams with static signal transformations

This algorithm can be readily extended to a more general

case for Aij and i 6= j with rank larger than one and full A
matrix. In this case, every Aij is factorized into UijSijV

T
ij

using singular value decomposition. After that, new output

L (or input F ) matrices are introduced only for linearly

independent columns of Uij (or Vij ) for all i 6= j. After

the subsystems are introduced the coprime factors can be

computed as before and model reduction algorithms can be

applied.
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